@@ -78,102 +78,6 @@ Wiederholen Sie die Messreihe mit verschiedenen Gewichten an der Metallstange un
Passen die an sich ergebenden Kurven jeweils ein Modell nach Gleichung (**(3)**[hier](https://gitlab.kit.edu/kit/etp-lehre/p1-praktikum/students/-/blob/main/Kreisel/doc/Hinweise-Aufgabe-2-a.md)) an.
#### Aufgabe 2.4
Die Trägheitsmomente $\theta_{x}'$, $\theta_{y}'$ und $\theta_{z}'$ lassen sich aus den Messungen der **Aufgaben 2.2** und **2.3** auf zweierlei Art und Weise bestimmen:
- Zum einen, indem an alle Messungen als unabhängig betrachtet und die gesuchten Größen daraus Schritt für Schritt extrahiert (**Methode-1**).
- Zum anderen, indem man, mit Hilfe der *Multifit* Methode aus *kafe2*, ein gemeinsames zugrundeliegendes Modell gleichzeitig an alle Messungen anpasst (**Methode-2**).
Methode-2 ist zwar technisch anspruchsvoller, es ist jedoch die bessere Methode, weil sie es erlaubt, alle Messpunkte gleichzeitig für die Bestimmung von drei gesuchten Parametern zu nutzen. Nach Methode-1 kann man immer nur einen Bruchteil der aufgezeichneten Messpunkte zur Bestimmung einzelner Parameter nutzen, deren individuelle statistische Unsicherheiten dadurch größer sind.
##### Methode-1
###### Schritt-1:
Hierbei nutzen Sie zunächst die Messung von $\omega_{N}$ als Funktion von $\omega$ zur Berechnung von $\theta_{x}'$ nach Gleichung (**(1)**[hier](https://gitlab.kit.edu/kit/etp-lehre/p1-praktikum/students/-/blob/main/Kreisel/doc/Hinweise-Aufgabe-2-a.md))
Dabei nutzen Sie die Messung **einmal mit** und **einmal ohne Zusatzgewichte**, um die Ambiguität zwischen $\theta_{x}'$, $\theta_{y}'$ und $\theta_{z}'$ in der Steigung der jeweiligen Ursprungsgeraden aufzuheben.
Zunächst bestimmen Sie die Steigungen $m_{1}$ und $m_{2}$ mit und ohne Zusatzgewichte:
wobei $m$ der Masse und und $r$ dem Radius der jeweils baugleichen Zusatzgewichte und $\ell$ dem Abstand der Schwerpunkte der Zusatzgewichte von der Symmetrieachse des Kreisels entsprechen.
Das Trägheitsmoment $\theta_{z}'$ lässt sich aus der Messung aus **Aufgabe 2.3** nach Gleichung (**(3)**[hier](https://gitlab.kit.edu/kit/etp-lehre/p1-praktikum/students/-/blob/main/Kreisel/doc/Hinweise-Aufgabe-2-a.md)) bestimmen:
wobei $M$ der Masse und und $s$ dem Abstand des Schwerpunkts des Stabs vom Schwerpunkt des Kreisels und $g$ der Erdbeschleunigung entsprechen. Sie können zur Bestimmung von $\kappa$ die Präzessionsfrequenz $\Omega$ gegen $1/\omega$ auftragen und $\kappa$ als Steigung einer Geraden bestimmen. Besser ist jedoch der Auftrag von $\Omega$ gegen $\omega$ und die direkte Anpassung der Hyperbelgleichung aus Gleichung **(2)**. Letzteres Vorgehen belässt die Grundannahme normalverteilter Unsicherheiten $\Delta\omega_{i}$ auf die Messwerte $\omega_{i}$ entlang der $x$-Achse **unverzerrt**.
Aus $\kappa$ erhalten Sie $\theta_{z}'$ aus der Gleichung:
$$
\begin{equation*}
\theta_{z}' = \frac{M\,g\,d}{\kappa}.
\end{equation*}
$$
###### Schritt-3:
Mit dem Wissen um $\theta_{x}'$ und $\theta_{z}'$ können Sie nun $\theta_{y}'$ am einfachsten aus der zuvor bestimmten Steigung $m_{1}$ bestimmen:
**Beachten Sie, bei einer Berechnung der Trägheitsmomente auf diese Weise die Fortpflanzung der Unsicherheiten einschließlich der Bestimmung systematischer Unsicherheiten!**
##### Methode-2:
Für die Bestimmung von $\theta_{x}'$, $\theta_{y}'$ und $\theta_{z}'$ nach Methode-2 übergeben Sie die Datenpunkte aus den **Aufgaben 2.2** und **2.3** geeignet an die *Mutifit*-Funktion aus *kafe2* und definieren die Modelle direkt nach Gleichung (**(1)**[hier](https://gitlab.kit.edu/kit/etp-lehre/p1-praktikum/students/-/blob/main/Kreisel/doc/Hinweise-Aufgabe-2-a.md)) und Gleichung (**(3)**[hier](https://gitlab.kit.edu/kit/etp-lehre/p1-praktikum/students/-/blob/main/Kreisel/doc/Hinweise-Aufgabe-2-a.md)).
Nach erfolgreicher Implementierung erhalten Sie die Zentralwerte und Unsicherheiten auf $\theta_{x}'$, $\theta_{y}'$ und $\theta_{z}'$ aus der Anpassung.
##### Bestimmung der Masse des Rotors
Die Masse des Rotors können Sie aus der Annahme abschätzen, dass dieser in erster Näherung einem flachen Zylinder entspricht. Daraus besteht der folgende Zusammenhang
wobei $M_{\mathrm{Rotor}}$ der Masse und $d$ dem Durchmesser des Rotors entsprechen. aus der Kenntnis von $\theta_{z}'$ und $d$ lässt sich so $M_{\mathrm{Rotor}}$ abschätzen.
Die Trägheitsmomente $\theta_{x}'$, $\theta_{y}'$ und $\theta_{z}'$ lassen sich aus den Messungen der **Aufgaben 2.2** und **2.3** auf zweierlei Art und Weise bestimmen:
- Zum einen, indem an alle Messungen als unabhängig betrachtet und die gesuchten Größen daraus Schritt für Schritt extrahiert (**Methode-1**).
- Zum anderen, indem man, mit Hilfe der *Multifit* Methode aus *kafe2*, ein gemeinsames zugrundeliegendes Modell gleichzeitig an alle Messungen anpasst (**Methode-2**).
Methode-2 ist zwar technisch anspruchsvoller, es ist jedoch die bessere Methode, weil sie es erlaubt, alle Messpunkte gleichzeitig für die Bestimmung von drei gesuchten Parametern zu nutzen. Nach Methode-1 kann man immer nur einen Bruchteil der aufgezeichneten Messpunkte zur Bestimmung einzelner Parameter nutzen, deren individuelle statistische Unsicherheiten dadurch größer sind.
##### Methode-1
###### Schritt-1:
Hierbei nutzen Sie zunächst die Messung von $\omega_{N}$ als Funktion von $\omega$ zur Berechnung von $\theta_{x}'$ nach Gleichung (**(1)**[hier](https://gitlab.kit.edu/kit/etp-lehre/p1-praktikum/students/-/blob/main/Kreisel/doc/Hinweise-Aufgabe-2-a.md))
Dabei nutzen Sie die Messung **einmal mit** und **einmal ohne Zusatzgewichte**, um die Ambiguität zwischen $\theta_{x}'$, $\theta_{y}'$ und $\theta_{z}'$ in der Steigung der jeweiligen Ursprungsgeraden aufzuheben.
Zunächst bestimmen Sie die Steigungen $m_{1}$ und $m_{2}$ mit und ohne Zusatzgewichte:
wobei $m$ der Masse und und $r$ dem Radius der jeweils baugleichen Zusatzgewichte und $\ell$ dem Abstand der Schwerpunkte der Zusatzgewichte von der Symmetrieachse des Kreisels entsprechen.
Das Trägheitsmoment $\theta_{z}'$ lässt sich aus der Messung aus **Aufgabe 2.3** nach Gleichung (**(3)**[hier](https://gitlab.kit.edu/kit/etp-lehre/p1-praktikum/students/-/blob/main/Kreisel/doc/Hinweise-Aufgabe-2-a.md)) bestimmen:
wobei $M$ der Masse und und $s$ dem Abstand des Schwerpunkts des Stabs vom Schwerpunkt des Kreisels und $g$ der Erdbeschleunigung entsprechen. Sie können zur Bestimmung von $\kappa$ die Präzessionsfrequenz $\Omega$ gegen $1/\omega$ auftragen und $\kappa$ als Steigung einer Geraden bestimmen. Besser ist jedoch der Auftrag von $\Omega$ gegen $\omega$ und die direkte Anpassung der Hyperbelgleichung aus Gleichung **(2)**. Letzteres Vorgehen belässt die Grundannahme normalverteilter Unsicherheiten $\Delta\omega_{i}$ auf die Messwerte $\omega_{i}$ entlang der $x$-Achse **unverzerrt**.
Aus $\kappa$ erhalten Sie $\theta_{z}'$ aus der Gleichung:
$$
\begin{equation*}
\theta_{z}' = \frac{M\,g\,d}{\kappa}.
\end{equation*}
$$
###### Schritt-3:
Mit dem Wissen um $\theta_{x}'$ und $\theta_{z}'$ können Sie nun $\theta_{y}'$ am einfachsten aus der zuvor bestimmten Steigung $m_{1}$ bestimmen:
**Beachten Sie, bei einer Berechnung der Trägheitsmomente auf diese Weise die Fortpflanzung der Unsicherheiten einschließlich der Bestimmung systematischer Unsicherheiten!**
##### Methode-2:
Für die Bestimmung von $\theta_{x}'$, $\theta_{y}'$ und $\theta_{z}'$ nach Methode-2 übergeben Sie die Datenpunkte aus den **Aufgaben 2.2** und **2.3** geeignet an die *Mutifit*-Funktion aus *kafe2* und definieren die Modelle direkt nach Gleichung (**(1)**[hier](https://gitlab.kit.edu/kit/etp-lehre/p1-praktikum/students/-/blob/main/Kreisel/doc/Hinweise-Aufgabe-2-a.md)) und Gleichung (**(3)**[hier](https://gitlab.kit.edu/kit/etp-lehre/p1-praktikum/students/-/blob/main/Kreisel/doc/Hinweise-Aufgabe-2-a.md)).
Nach erfolgreicher Implementierung erhalten Sie die Zentralwerte und Unsicherheiten auf $\theta_{x}'$, $\theta_{y}'$ und $\theta_{z}'$ aus der Anpassung.
##### Bestimmung der Masse des Rotors
Die Masse des Rotors können Sie aus der Annahme abschätzen, dass dieser in erster Näherung einem flachen Zylinder entspricht. Daraus besteht der folgende Zusammenhang
wobei $M_{\mathrm{Rotor}}$ der Masse und $d$ dem Durchmesser des Rotors entsprechen. aus der Kenntnis von $\theta_{z}'$ und $d$ lässt sich so $M_{\mathrm{Rotor}}$ abschätzen.