Skip to content
Snippets Groups Projects
Commit 62805dc7 authored by Jaroslav Borodavka's avatar Jaroslav Borodavka
Browse files

Added/changed comments.

parent 61dd6d39
No related branches found
No related tags found
No related merge requests found
#################################################################################################
#################################################################################################
## This script computes the local Bahadur ARE of T with respect to three different alternative
## classes which where considered and analyzed in the examples at the end of section 5 of the
## main manuscript. For each calculation a latex table via package 'xtable' is created.
#################################################################################################
#################################################################################################
# required packages
library(Directional)
library(MASS)
library(MonteCarlo)
library(data.table)
library(xtable) # creates tables in form of latex code
setwd("/Users/faik/Desktop/Mathematik/Masterarbeit/Ansatz_2/R-Codes")
setwd("/home/jaroslav-borodavka/Schreibtisch/Dissertation/Arbeit/Bernoulli Submission/codes/codes_git_project/R")
#################################################################################################
## Funktionen ##
## functions ##
# eigenvalues as in the end of section 2 of the main manuscript, beta <= 6
eigenvalue <- function(beta, d){
eigenvalue_list = switch (beta,
c(1/d^2 ),
......@@ -20,10 +31,12 @@ eigenvalue <- function(beta, d){
return(eigenvalue_list)
}
# dimension of the space of d-dimensional spherical harmonics of order k
dim_Har <- function(k, d){
return(if (k==0 & d==2) 1 else (2*k+d-2)/(k+d-2)*choose(k+d-2, d-2))
}
# local Bahadur ARE of T with respect to the von Mises-Fisher alternative
local_bahadur_ARE_vMF <- function(beta, d){
ev = eigenvalue(beta, d)
lambda_1 = ev[1]
......@@ -34,6 +47,7 @@ local_bahadur_ARE_vMF <- function(beta, d){
return(lambda_1*dim_Har(1, d)/summe)
}
# local Bahadur ARE of T with respect to the Watson alternative
local_bahadur_ARE_W <- function(beta, d){
ev = eigenvalue(beta, d)
lambda_2 = ev[2]
......@@ -49,6 +63,7 @@ local_bahadur_ARE_W <- function(beta, d){
}
}
# local Bahadur ARE of T with respect to the Legendre polynomial alternative
local_bahadur_ARE_LP <- function(beta, d, m){
ev = eigenvalue(beta, d)
lambda_m = ev[m]
......@@ -65,7 +80,7 @@ local_bahadur_ARE_LP <- function(beta, d, m){
}
#################################################################################################
## vMF Alternative ##
## vMF alternative ##
DT_Bahadur_ARE_vMF = data.table(Beta = rep(seq(1, 6), each = 4), dim = c(2,3,5,10))
DT_Bahadur_ARE_vMF[, grp := .GRP, by = c("Beta", "dim")][, ARE := round(local_bahadur_ARE_vMF(Beta, dim), digits = 2), by = grp][, grp := NULL][]
......@@ -92,7 +107,7 @@ print(mat_Bahadur_ARE_vMF)
print(xtable(mat_Bahadur_ARE_vMF, type = "latex"))
#################################################################################################
## W Alternative ##
## W alternative ##
DT_Bahadur_ARE_W = data.table(Beta = rep(seq(1, 6), each = 4), dim = c(2,3,5,10))
DT_Bahadur_ARE_W[, grp := .GRP, by = c("Beta", "dim")][, ARE := round(local_bahadur_ARE_W(Beta, dim), digits = 2), by = grp][, grp := NULL][]
......@@ -119,7 +134,7 @@ print(mat_Bahadur_ARE_W)
print(xtable(mat_Bahadur_ARE_W, type = "latex"))
#################################################################################################
## LP Alternative ##
## LP alternative ##
DT_Bahadur_ARE_LP = data.table(Beta = rep(seq(1, 6), each = 4), m = rep(seq(1, 6), each = 24), dim = c(2,3,5,10))
DT_Bahadur_ARE_LP[, grp := .GRP, by = c("Beta", "dim", "m")][, ARE := round(local_bahadur_ARE_LP(Beta, dim, m), digits = 2), by = grp][, grp := NULL][]
......
......@@ -40,7 +40,7 @@ surface_area <- function(d){
return(2*pi^(d/2)/gamma(d/2))
}
# eigenvalues as in the end of section 2 of the main manuscript
# eigenvalues as in the end of section 2 of the main manuscript, beta <= 6
eigenvalue <- function(beta, d){
eigenvalue_list = switch (beta,
c(0, 1/d^2 ),
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment