Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
Maximal Projection GoF
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Jaroslav Borodavka
Maximal Projection GoF
Commits
61dd6d39
Commit
61dd6d39
authored
11 months ago
by
Jaroslav Borodavka
Browse files
Options
Downloads
Patches
Plain Diff
Superfluous script, hence removed.
parent
71fdd1b6
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
R/Powertest_LP_Alternative.R
+0
-266
0 additions, 266 deletions
R/Powertest_LP_Alternative.R
with
0 additions
and
266 deletions
R/Powertest_LP_Alternative.R
deleted
100644 → 0
+
0
−
266
View file @
71fdd1b6
library
(
Directional
)
library
(
MASS
)
library
(
MonteCarlo
)
library
(
data.table
)
library
(
zipfR
)
# incomplete Beta function Ibeta
setwd
(
"/Users/faik/Desktop/Mathematik/Masterarbeit/Ansatz_2/R-Codes"
)
source
(
"/Users/faik/Desktop/Mathematik/Masterarbeit/Ansatz_2/R-Codes/Legendre_Polynomial_Alternative.R"
)
#################################################################################################
## Funktionen und Teststatistik ##
# Erwartungswerte Psi_d
psi_d
<-
function
(
d
,
beta
){
return
(
if
(
beta
%%
2
==
0
)
gamma
((
beta
+1
)
/
2
)
*
gamma
(
d
/
2
)
/
(
sqrt
(
pi
)
*
gamma
((
beta
+
d
)
/
2
))
else
0
)
}
# Quadrierte und zentrierte Projektionen
projection
<-
function
(
unif_point_cover
,
data
,
beta
){
n
=
dim
(
data
)[
1
]
d
=
dim
(
data
)[
2
]
scalarproducts
=
data
%*%
t
(
unif_point_cover
)
summen
=
colSums
((
scalarproducts
)
^
beta
)
return
((
1
/
n
*
summen
-
psi_d
(
d
,
beta
))
^
2
)
}
# Teststatistik T_n,beta von Ebner, cover_n ist die Anzahl gleichverteilter Punkte auf der Sphäre
T_stat_value
<-
function
(
data
,
beta
){
n
=
dim
(
data
)[
1
]
d
=
dim
(
data
)[
2
]
cover_n
=
0
if
(
d
<
5
)
cover_n
=
5000
else
cover_n
=
20000
unif_points
=
rvmf
(
cover_n
,
rep
(
1
,
d
),
0
)
projections
=
projection
(
unif_point_cover
=
unif_points
,
data
=
data
,
beta
=
beta
)
return
(
n
*
max
(
projections
))
}
T_LP
<-
function
(
n
,
dim
,
m
,
kappa
,
beta
){
return
(
list
(
"Realisierung"
=
T_stat_value
(
data
=
rLP
(
n
,
m
,
c
(
1
,
rep
(
0
,
dim
-1
)),
kappa
/
sqrt
(
n
)),
beta
=
beta
)))
}
SpherComp_LP
<-
function
(
n
,
dim
,
m
,
kappa
,
index
){
return
(
list
(
"Realisierung"
=
SpherComp_stat_value
(
data
=
rLP
(
n
,
m
,
c
(
1
,
rep
(
0
,
dim
-1
)),
kappa
),
index
=
index
)))
}
# Ajne-Teststatistik
Ajne
<-
function
(
data
){
n
=
dim
(
data
)[
1
]
temp
=
data
%*%
t
(
data
)
Psi
=
acos
(
temp
[
upper.tri
(
temp
)])
return
(
n
/
4
-
1
/
(
n
*
pi
)
*
sum
(
Psi
))
}
# Rayleigh-Teststatistik basierend auf Directional-Paket
Rayleigh
<-
function
(
data
){
return
(
Directional
::
rayleigh
(
data
,
modif
=
TRUE
)[
1
])
}
# Bingham-Teststatistik
Bingham
<-
function
(
data
){
n
=
dim
(
data
)[
1
]
d
=
dim
(
data
)[
2
]
temp
=
matrix
(
0
,
d
,
d
)
for
(
i
in
1
:
n
)
{
temp
=
temp
+
data
[
i
,]
%*%
t
(
data
[
i
,])
}
S
=
1
/
n
*
temp
return
(
n
*
d
*
(
d
+2
)
/
2
*
(
sum
(
diag
(
S
%*%
S
))
-
1
/
d
))
}
# Gine-Teststatistik G
Gine_G
<-
function
(
data
){
n
=
dim
(
data
)[
1
]
d
=
dim
(
data
)[
2
]
temp
=
data
%*%
t
(
data
)
Psi
=
acos
(
temp
[
upper.tri
(
temp
)])
return
(
n
/
2
-
(
d
-1
)
*
gamma
((
d
-1
)
/
2
)
^
2
/
(
2
*
n
*
gamma
(
d
/
2
)
^
2
)
*
sum
(
sin
(
Psi
)))
}
# Cuesta-Albertos-Teststatistik
F_CA
<-
function
(
d
){
if
(
d
==
2
){
res
<-
function
(
t
)
1
-
acos
(
t
)
/
pi
}
else
if
(
d
==
3
){
res
<-
function
(
t
)
(
t
+1
)
/
2
}
else
{
res
<-
function
(
t
)
1
/
2
*
(
1
+
sign
(
t
)
*
Ibeta
(
t
^
2
,
a
=
1
/
2
,
b
=
(
d
-1
)
/
2
)
/
Cbeta
(
a
=
1
/
2
,
b
=
(
d
-1
)
/
2
))
}
return
(
res
)
}
Cuesta_Albertos_unique
<-
function
(
data
,
rdirection
){
d
=
dim
(
data
)[
2
]
cdf
=
F_CA
(
d
)
projected_data
=
data
%*%
rdirection
return
(
ks.test
(
projected_data
,
"cdf"
)
$
p.value
)
}
# 100 gleichverteilte Richtungen fuer die CA-Teststatistik
rdirections_2
<-
runif_sphere
(
25
,
2
)
rdirections_3
<-
runif_sphere
(
100
,
3
)
rdirections_5
<-
runif_sphere
(
100
,
5
)
rdirections_10
<-
runif_sphere
(
100
,
10
)
Cuesta_Albertos_multi
<-
function
(
data
){
d
=
dim
(
data
)[
2
]
if
(
d
==
2
){
rdirections
=
rdirections_2
}
else
if
(
d
==
3
){
rdirections
=
rdirections_3
}
else
if
(
d
==
5
){
rdirections
=
rdirections_5
}
else
{
rdirections
=
rdirections_10
}
p_values
=
apply
(
rdirections
,
1
,
Cuesta_Albertos_unique
,
data
=
data
)
return
(
min
(
p_values
))
}
# Cramér-von Mises-Teststatistik
integrand
<-
function
(
t
,
angle
,
dim
){
return
(
F_CA
(
dim
)(
t
)
*
F_CA
(
dim
-1
)(
t
*
tan
(
angle
/
2
)
/
sqrt
(
1
-
t
^
2
))
/
Cbeta
(
a
=
1
/
2
,
b
=
(
dim
-1
)
/
2
)
*
(
1
-
t
^
2
)
^
((
dim
-3
)
/
2
))
}
psi_CvM
<-
function
(
d
){
if
(
d
==
2
){
res
<-
function
(
theta
)
1
/
2
+
theta
/
(
2
*
pi
)
*
(
theta
/
(
2
*
pi
)
-
1
)
}
else
if
(
d
==
3
){
res
<-
function
(
theta
)
1
/
2
-
1
/
4
*
sin
(
theta
/
2
)
}
else
{
res
<-
function
(
theta
){
return
(
-3
/
4
+
theta
/
(
2
*
pi
)
+
2
*
(
F_CA
(
d
)(
cos
(
theta
/
2
)))
^
2
-
4
*
integrate
(
integrand
,
lower
=
0
,
upper
=
cos
(
theta
/
2
),
angle
=
theta
,
dim
=
d
)
$
value
)
}
}
return
(
res
)
}
CramerVonMises
<-
function
(
data
){
n
=
dim
(
data
)[
1
]
d
=
dim
(
data
)[
2
]
temp
=
data
%*%
t
(
data
)
func
=
psi_CvM
(
d
)
psi_q_acos
=
sapply
(
acos
(
temp
[
upper.tri
(
temp
)]),
func
)
return
(
2
/
n
*
sum
(
psi_q_acos
)
+
(
3-2
*
n
)
/
6
)
}
# Transformation von Einheitsvektoren in zirkuläre Daten via Bogenmaß (nur d = 2), siehe n-sphere auf Wiki
euclidtoangular
<-
function
(
unit_data
){
return
(
matrix
(
data
=
atan2
(
unit_data
[,
2
],
unit_data
[,
1
]),
ncol
=
1
))
}
# Kuiper-Teststatistik basierend auf Directional-Paket (nur d = 2)
Kuiper
<-
function
(
data
){
return
(
Directional
::
kuiper
(
euclidtoangular
(
data
),
rads
=
TRUE
)[
1
])
}
# Watson-Teststatistik basierend auf Directional-Paket (nur d = 2)
Watson
<-
function
(
data
){
return
(
Directional
::
watson
(
euclidtoangular
(
data
),
rads
=
TRUE
)[
1
])
}
# Alle Teststatistiken fuer MonteCarlo
ls_spher
<-
list
(
Ajne
,
Rayleigh
,
Bingham
,
Gine_G
,
Cuesta_Albertos_multi
,
CramerVonMises
)
# Alle Teststatistiken fuer MonteCarlo
ls_circ
<-
list
(
Kuiper
,
Watson
,
Ajne
,
Rayleigh
,
Cuesta_Albertos_multi
)
SpherComp_stat_value
<-
function
(
data
,
index
){
return
(
as.numeric
(
ls_spher
[[
index
]](
data
)))
}
CircComp_stat_value
<-
function
(
data
,
index
){
return
(
as.numeric
(
ls_circ
[[
index
]](
data
)))
}
T_LP
<-
function
(
n
,
dim
,
m
,
kappa
,
beta
){
return
(
list
(
"Realisierung"
=
T_stat_value
(
data
=
rLP
(
n
,
m
,
c
(
1
,
rep
(
0
,
dim
-1
)),
kappa
),
beta
=
beta
)))
}
SpherComp_LP
<-
function
(
n
,
dim
,
m
,
kappa
,
index
){
return
(
list
(
"Realisierung"
=
SpherComp_stat_value
(
data
=
rLP
(
n
,
m
,
c
(
1
,
rep
(
0
,
dim
-1
)),
kappa
),
index
=
index
)))
}
CircComp_LP
<-
function
(
n
,
dim
,
m
,
kappa
,
index
){
return
(
list
(
"Realisierung"
=
CircComp_stat_value
(
data
=
rLP
(
n
,
m
,
c
(
1
,
rep
(
0
,
dim
-1
)),
kappa
),
index
=
index
)))
}
#################################################################################################
## Berechnung kritischer Werte per Monte Carlo unter der Nullhypothese ##
# Parameter
a
=
5000
numCores
=
2
n_grid
=
c
(
20
,
50
,
100
,
500
)
dim_grid
=
c
(
2
,
3
,
5
,
10
)
beta_grid
=
seq
(
1
,
6
)
m_grid
=
seq
(
2
,
6
)
kappa_grid
=
c
(
0.1
,
0.5
,
1
)
parameter
=
list
(
"n"
=
n_grid
,
"dim"
=
dim_grid
,
"m"
=
m_grid
,
"kappa"
=
kappa_grid
,
"beta"
=
beta_grid
)
export_list
=
list
(
"functions"
=
c
(
"psi_d"
,
"projection"
,
"euclidtoangular"
,
"F_CA"
,
"Cuesta_Albertos_unique"
,
"integrand"
,
"psi_CvM"
),
"packages"
=
c
(
"MASS"
,
"Directional"
,
"zipfR"
),
"data"
=
c
(
"rdirections_2"
,
"rdirections_3"
,
"rdirections_5"
,
"rdirections_10"
,
"ls_circ"
,
"ls_spher"
))
# T_n,beta
parameter
=
list
(
"n"
=
n_grid
,
"dim"
=
dim_grid
,
"m"
=
m_grid
,
"kappa"
=
kappa_grid
,
"beta"
=
beta_grid
)
res_T_LP_neu
<-
MonteCarlo
::
MonteCarlo
(
T_LP
,
nrep
=
a
,
param_list
=
parameter
,
ncpus
=
numCores
,
max_grid
=
1500
,
time_n_test
=
TRUE
,
export_also
=
export_list
)
DF_T_LP_neu
<-
MonteCarlo
::
MakeFrame
(
res_T_LP_neu
)
summary
(
DF_T_LP_neu
)
DT_T_LP_neu
<-
setDT
(
DF_T_LP_neu
)
print
(
DT_T_LP_neu
)
DT_T_LP_neu
[,
grp
:=
.GRP
,
by
=
c
(
"n"
,
"dim"
,
"m"
,
"kappa"
,
"beta"
)]
DT_T_LP_neu
=
DT_T_LP_neu
[
order
(
grp
)]
DT_T_LP_neu
=
na.omit
(
DT_T_LP_neu
)
# Konkurrierende Teststatistiken, d > 2
dim_grid
=
c
(
3
,
5
,
10
)
index_grid
=
seq
(
1
,
6
)
parameter
=
list
(
"n"
=
n_grid
,
"dim"
=
dim_grid
,
"m"
=
m_grid
,
"kappa"
=
kappa_grid
,
"index"
=
index_grid
)
res_SpherComp_LP_neu
<-
MonteCarlo
::
MonteCarlo
(
SpherComp_LP
,
nrep
=
a
,
param_list
=
parameter
,
ncpus
=
numCores
,
max_grid
=
1500
,
export_also
=
export_list
)
DF_SpherComp_LP_neu
<-
MonteCarlo
::
MakeFrame
(
res_SpherComp_LP_neu
)
summary
(
DF_SpherComp_LP_neu
)
DT_SpherComp_LP_neu
<-
setDT
(
DF_SpherComp_LP_neu
)
print
(
DT_SpherComp_LP_neu
)
DT_SpherComp_LP_neu
[,
grp
:=
.GRP
,
by
=
c
(
"n"
,
"dim"
,
"m"
,
"kappa"
,
"index"
)]
DT_SpherComp_LP_neu
=
DT_SpherComp_LP_neu
[
order
(
grp
)]
DT_SpherComp_LP_neu
=
na.omit
(
DT_SpherComp_LP_neu
)
# Konkurrierende Teststatistiken, d = 2
dim_grid
=
c
(
2
)
index_grid
=
seq
(
1
,
5
)
parameter
=
list
(
"n"
=
n_grid
,
"dim"
=
dim_grid
,
"m"
=
m_grid
,
"kappa"
=
kappa_grid
,
"index"
=
index_grid
)
res_CircComp_LP_neu
<-
MonteCarlo
::
MonteCarlo
(
CircComp_LP
,
nrep
=
a
,
param_list
=
parameter
,
ncpus
=
numCores
,
export_also
=
export_list
)
DF_CircComp_LP_neu
<-
MonteCarlo
::
MakeFrame
(
res_CircComp_LP_neu
)
summary
(
DF_CircComp_LP_neu
)
DT_CircComp_LP_neu
<-
setDT
(
DF_CircComp_LP_neu
)
print
(
DT_CircComp_LP_neu
)
DT_CircComp_LP_neu
[,
grp
:=
.GRP
,
by
=
c
(
"n"
,
"dim"
,
"m"
,
"kappa"
,
"index"
)]
DT_CircComp_LP_neu
=
DT_CircComp_LP_neu
[
order
(
grp
)]
DT_CircComp_LP_neu
=
na.omit
(
DT_CircComp_LP_neu
)
save.image
(
file
=
"Powertest_LP_Alternative_Daten.RData"
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment