Skip to content
Snippets Groups Projects
Commit f4c3e0fc authored by Ivan Kondov's avatar Ivan Kondov
Browse files

chebyshev scalar and shift tests

parent 2f906bb8
No related branches found
No related tags found
No related merge requests found
......@@ -7,11 +7,14 @@ from propagators import PolynomialPropagator
from liouville import LiouvillePowersQP
def cheb_coef(bf, nterms, alpha):
""" chebyshev expansion coefficients for the function exp(z*t) """
coef = bf(range(nterms), np.full(nterms, alpha))
coef[1:] = coef[1:]*2.
return coef
def besf(fpprec, signed, prec=None):
""" select the proper bessel function according to requested precision
and selected axis: if signed if True [-1, +1] otherwise [-i, +i] """
if fpprec == 'fixed':
bessel = iv if signed else jn
elif fpprec == 'multi':
......@@ -24,6 +27,31 @@ def besf(fpprec, signed, prec=None):
bessel = None
return bessel
def chebyshev_scalar(z, t, delta=None, lambda_min=None, nterms=None,
signed=False, fpprec='fixed', prec=None):
""" Chebyshev polynomial expansion of the scalar function exp(z*t) """
assert isinstance(z, np.ndarray)
delta = max(abs(z)) if delta is None else delta
alpha = delta*t/2.
lambda_min = -delta/2. if lambda_min is None else lambda_min
nterms = int(np.ceil(abs(alpha)))+1 if nterms is None else nterms
assert nterms > 1
scale = 2./delta
shift = -(2.*lambda_min/delta+1.)
sign = -1 if signed else 1
z = z*scale+shift
exp = np.exp if fpprec == 'fixed' else lambda x: sp.exp(x).evalf(prec)
scaling = exp((lambda_min+delta/2.)*t)
bessel_func = besf(fpprec, signed, prec=prec)
ch_coef = cheb_coef(bessel_func, nterms, alpha)*scaling
ch_poly = np.empty((nterms, len(z)), dtype=z.dtype)
ch_poly[0, :] = 1.
ch_poly[1, :] = z
for order in range(2, nterms):
ch_poly[order, :] = 2.*z*ch_poly[order-1, :]+sign*ch_poly[order-2, :]
return np.dot(ch_coef, ch_poly)
class Chebyshev(PolynomialPropagator):
""" Chebyshev propagator for classical particle dynamics """
......
......@@ -463,6 +463,18 @@ class SymplecticPropagatorTest(unittest.TestCase):
class ChebyshevAssessmentTest(unittest.TestCase):
""" Compare Chebyshev to velocity Verlet and analytical solution """
def chebyshev_scalar_test(self):
""" chebyshev expansion of the scalar function exp(z*t) """
from chebyshev import chebyshev_scalar
from itertools import product
sample_length = 10
lambdas = (np.random.rand((sample_length))-0.5)*6*np.random.rand()
for sign, fact in product((False, True), (1., 1.j)):
apr = chebyshev_scalar(lambdas*fact, 1.1, nterms=16, signed=sign)
ref = np.exp(lambdas*1.1*fact)
self.assertTrue(np.allclose(apr, ref))
def chebyshev_symplectic_1p_test(self):
""" with one-particle system: anharmonic oscillator """
params = {
......@@ -545,6 +557,19 @@ class ChebyshevAssessmentTest(unittest.TestCase):
self.assertTrue(np.allclose(pt, ptr, atol=1e-3))
self.assertLess(np.max(np.fabs(prop.er)), 1e-3)
def chebyshev_shift_test(self):
""" chebyshev propagator with scale and shift """
syst = Harmonic(q0=1., p0=0.)
params = {'delta': 3., 'lambda_min': -2., 'nterms': 16,
'signed': False, 'tstart': 0., 'tend': 10.0, 'tstep': 0.5}
prop = Chebyshev(syst=syst, **params)
prop.propagate()
prop.analyse()
t, q, p = prop.get_trajectory()
qr, pr = syst.solution(times=t)
self.assertTrue(np.allclose(q, qr))
self.assertLess(np.max(np.fabs(prop.er)), 1e-6)
def chebyshev_symplectic_2p_lj_test(self):
""" two particles in Lennard-Jones potential """
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment