Skip to content
Snippets Groups Projects
Commit c2dc398b authored by Ivan Kondov's avatar Ivan Kondov
Browse files

two-step chebyshev propagator, an example and three one-particle tests

parent 918ce771
No related branches found
No related tags found
1 merge request!1Symmetric propagators
""" One particle in Morse potential - Chebyshev and two-step Chebyshev """
import numpy as np
import matplotlib.pyplot as plt
from rotagaporp.chebyshev import Chebyshev, TwoStepChebyshev
from rotagaporp.symplectic import Symplectic
from rotagaporp.systems import Morse
params = {'tstart': 0., 'tend': 500., 'tstep': 0.05, 'nterms': 4, 'tqdm': True}
syspar0 = {'q0': 3., 'p0': 0.}
system = Morse(**syspar0)
# find the initial values for the two step propagator
ini_params = params.copy()
ini_params['tend'] = params['tstart'] + params['tstep']
ini_params['tstep'] = 0.001
ini_params['nterms'] = 5
ini_prop = Chebyshev(syst=system, **ini_params)
ini_prop.propagate()
ini_prop.analyse()
print('energy drift of initializer', np.max(np.fabs(ini_prop.er)))
assert np.isclose(ini_prop.time[-1], params['tstart'] + params['tstep'])
assert len(ini_prop.sq) == len(ini_prop.time)
syspar = {'q0': ini_prop.sq[-1], 'p0': ini_prop.sp[-1]}
print(syspar)
system = Morse(**syspar)
# velocity Verlet
params_verlet = params.copy()
del params_verlet['nterms']
vv_prop = Symplectic(syst=system, **params_verlet)
vv_prop.propagate()
vv_prop.analyse()
edrift_vv = vv_prop.er
# one-step propagator
ch_prop = Chebyshev(syst=system, **params)
ch_prop.propagate()
time_ch, q_ch, p_ch = ch_prop.get_trajectory()
ch_prop.analyse()
edrift_ch = ch_prop.er
# two-step propagator
params['q_1'] = syspar0['q0']
params['p_1'] = syspar0['p0']
params['parity'] = 0
# params['signed'] = False
ts_prop = TwoStepChebyshev(syst=system, **params)
ts_prop.propagate()
time_ts, q_ts, p_ts = ts_prop.get_trajectory()
ts_prop.analyse()
edrift_ts = ts_prop.er
assert len(time_ts) == len(time_ch)
assert np.allclose(time_ts, time_ch)
q_an, p_an = system.solution(times=time_ts)
fig = plt.figure()
plot1 = fig.add_subplot(311)
plot1.plot(time_ch, np.maximum.accumulate(edrift_ch), label='Chebyshev')
plot1.plot(time_ts, np.maximum.accumulate(edrift_ts), label='Two-step Chebyshev')
plot1.plot(time_ts, np.maximum.accumulate(edrift_vv), label='Velocity Verlet')
plot1.set_ylabel('maximum energy drift')
plot1.set_yscale('log')
plot1.set_xscale('log')
plot1.legend()
plot2 = fig.add_subplot(312)
plot2.plot(time_ts, q_ch, label='Chebyshev')
plot2.plot(time_ts, q_ts, label='Two-step Chebyshev')
plot2.plot(time_ts, q_an, label='Analytic solution')
plot2.set_xlabel(r'$t$')
plot2.set_ylabel(r'$q(t)$')
plot2.set_xscale('log')
plot2.legend()
plot3 = fig.add_subplot(313)
plot3.plot(time_ts, p_ch, label='Chebyshev')
plot3.plot(time_ts, p_ts, label='Two-step Chebyshev')
plot3.plot(time_ts, p_an, label='Analytic solution')
plot3.set_xlabel(r'$t$')
plot3.set_ylabel(r'$p(t)$')
plot3.set_xscale('log')
plot3.legend()
plt.show()
......@@ -4,6 +4,7 @@ import numpy as np
import sympy as sp
from scipy.special import jn, iv
from propagators import PolynomialPropagator
from propagators import TwoStepPolynomialPropagator
def cheb_coef(bf, nterms, alpha):
......@@ -87,3 +88,35 @@ class Chebyshev(PolynomialPropagator):
self.set_polynomial(system=self.syst, scale=self.scale,
shift=self.shift, recursion='chebyshev',
sign=sign)
class TwoStepChebyshev(TwoStepPolynomialPropagator):
""" Two-step Chebyshev propagator for classical particle dynamics """
name = 'two-step chebyshev'
def __init__(self, delta=1., nterms=None, signed=False, **kwargs):
super().__init__(**kwargs)
self.delta = delta
alpha = self.delta*self.tstep/2.
self.nterms = int(np.ceil(alpha)) if nterms is None else nterms
self.efficiency = alpha/self.nterms
bf = besself(self.fpprec, signed, prec=self.prec)
sign = -1 if signed else 1
assert self.substep is None, 'substep not implemented'
self.coeffs = 2.*cheb_coef(bf, self.nterms, alpha)[self.parity::2]
self.set_polynomial(system=self.syst, scale=2./self.delta,
recursion='chebyshev', sign=sign)
def step_nopbc(self, time, q, p):
""" perform a time step with initial coordinate and momentum """
# the get_val_float() method has to be adapted to evaluate only
# either the odd or the even powers
qvecaux, pvecaux = self.iln.get_val_float(q, p)
qvec = qvecaux[self.parity::2]
pvec = pvecaux[self.parity::2]
#
qt = np.dot(self.coeffs, qvec) + self.prefact*self.q_1
pt = np.dot(self.coeffs, pvec) + self.prefact*self.p_1
self.q_1 = q
self.p_1 = p
return (qt, pt)
......@@ -148,3 +148,17 @@ class PolynomialPropagator(Propagator):
import cloudpickle as pkl
with open(filename, 'wb') as fh:
pkl.dump(self, fh)
class TwoStepPolynomialPropagator(PolynomialPropagator):
""" Base class for two-step polynomial classical propagators """
name = 'two-step polynomial'
def __init__(self, q_1, p_1, parity=0, **kwargs):
assert parity in (0, 1)
super().__init__(**kwargs)
self.parity = parity
self.prefact = 2*parity-1
self.q_1 = q_1
self.p_1 = p_1
......@@ -5,7 +5,7 @@ import sympy as sp
from rotagaporp.liouville import q, p
from rotagaporp.liouville import LiouvillePowers, LiouvillePowersQP, LiouvillePowersNR
from rotagaporp.symplectic import Symplectic
from rotagaporp.chebyshev import Chebyshev
from rotagaporp.chebyshev import Chebyshev, TwoStepChebyshev
from rotagaporp.newtonian import Newtonian
from rotagaporp.newtonian import leja_points_ga, leja_points_jb
from rotagaporp.newtonian import chebyshev_points
......@@ -24,6 +24,8 @@ from rotagaporp.combinatorics import cnk_chebyshev_T3
from rotagaporp.combinatorics import cnk_chebyshev_U1, cnk_chebyshev_U2
from rotagaporp.combinatorics import cnk_chebyshev_U3
atol32 = np.finfo(np.float32).resolution
class LiouvillePowersTest(unittest.TestCase):
""" Test of the one-particle Liouville powers class """
......@@ -283,7 +285,6 @@ class ChebyshevPropagatorTest(unittest.TestCase):
(ti, qt, pt) = prop.get_trajectory()
(qr, pr) = syst.solution(self.syspar['q0'], self.syspar['p0'], ti)
self.assertTrue(np.allclose(qt, qr, rtol=1e-7))
atol32 = np.finfo(np.float32).resolution
self.assertTrue(np.allclose(pt, pr, atol=atol32))
def chebyshev_propagator_signed_test(self):
......@@ -322,6 +323,75 @@ class ChebyshevPropagatorTest(unittest.TestCase):
self.assertTrue(np.allclose(pt, pr, rtol=1e-7))
class TwoStepChebyshevPropagatorTest(unittest.TestCase):
""" Tests for the two-step Chebyshev polynomial propagator """
params = {'tstart': 0.0, 'tend': 5.0, 'tstep': 0.2, 'nterms': 8}
syspar = {'q0': 1.1, 'p0': 0.0}
def chebyshev_propagator_ballistic_and_harmonic_test(self):
""" test with ballistic motion and harmonic oscillator """
for potential in (Harmonic, Ballistic):
sys = potential(**self.syspar)
t_1 = self.params['tstart'] - self.params['tstep']
q_1, p_1 = sys.solution(self.syspar['q0'], self.syspar['p0'], t_1)
prop = TwoStepChebyshev(syst=sys, q_1=q_1, p_1=p_1, **self.params)
prop.propagate()
prop.analyse()
self.assertLess(np.max(np.fabs(prop.er)), 1e-8)
(ti, qt, pt) = prop.get_trajectory()
(qr, pr) = sys.solution(self.syspar['q0'], self.syspar['p0'], ti)
self.assertTrue(np.allclose(qt, qr, rtol=1e-8))
self.assertTrue(np.allclose(pt, pr, rtol=1e-8))
def chebyshev_propagator_morse_test(self):
""" test with Morse oscillator """
syst = Morse(**self.syspar)
init_params = self.params.copy()
init_params['tend'] = self.params['tstart'] + self.params['tstep']
init_times = [init_params['tstart'], init_params['tend']]
qinit, pinit = syst.solution(times=init_times)
syst = Morse(q0=qinit[1], p0=pinit[1])
params = self.params.copy()
params['q_1'] = qinit[0]
params['p_1'] = pinit[0]
for parity in (0, 1):
for signed in (True, False):
prop = TwoStepChebyshev(syst=syst, parity=parity,
signed=signed, **params)
prop.propagate()
prop.analyse()
self.assertLess(np.max(np.fabs(prop.er)), 1e-8)
ti, qt, pt = prop.get_trajectory()
qr, pr = syst.solution(times=ti)
self.assertTrue(np.allclose(qt, qr, rtol=1e-8))
self.assertTrue(np.allclose(pt, pr, atol=atol32))
def chebyshev_propagator_lj_test(self):
""" test with a particle in Lennard-Jones potential """
syspar = {'p0': -1.0, 'q0': 2}
params = {'tstart': 0.0, 'tend': 1.8, 'tstep': 0.02, 'nterms': 6}
syst = LennardJones(**syspar)
ref_prop = Chebyshev(syst=syst, **params)
ref_prop.propagate()
time_ref, q_ref, p_ref = ref_prop.get_trajectory()
syst = LennardJones(q0=q_ref[1], p0=p_ref[1])
params['q_1'] = q_ref[0]
params['p_1'] = p_ref[0]
params['tstart'] = params['tstart'] + params['tstep']
for parity in (0, 1):
for signed in (False, True):
prop = TwoStepChebyshev(syst=syst, parity=parity,
signed=signed, **params)
prop.propagate()
prop.analyse()
self.assertLess(np.max(np.fabs(prop.er)), 1e-3)
time, qt, pt = prop.get_trajectory()
assert len(time) == len(time_ref[1:])
self.assertTrue(np.allclose(qt, q_ref[1:], rtol=1e-3))
self.assertTrue(np.allclose(pt, p_ref[1:], rtol=1e-2))
class PropagatorRestartTest(unittest.TestCase):
""" Tests with restarting polynomial propagators """
......@@ -500,7 +570,6 @@ class NewtonianPropagatorTest(unittest.TestCase):
(ti, qt, pt) = prop.get_trajectory()
qr, pr = syst.solution(self.syspar['q0'], self.syspar['p0'], ti)
self.assertTrue(np.allclose(qt, qr, rtol=1e-7))
atol32 = np.finfo(np.float32).resolution
self.assertTrue(np.allclose(pt, pr, atol=atol32))
......@@ -547,7 +616,6 @@ class SymplecticPropagatorTest(unittest.TestCase):
(ti, qt, pt) = prop.get_trajectory()
qr, pr = syst.solution(self.syspar['q0'], self.syspar['p0'], ti)
self.assertTrue(np.allclose(qt, qr, rtol=1e-2))
atol32 = np.finfo(np.float32).resolution
self.assertTrue(np.allclose(pt, pr, atol=atol32))
......@@ -661,7 +729,7 @@ class ChebyshevAssessmentTest(unittest.TestCase):
prop.analyse()
t, q, p = prop.get_trajectory()
qr, pr = syst.solution(times=t)
self.assertTrue(np.allclose(q, qr))
self.assertTrue(np.allclose(q, qr))
self.assertLess(np.max(np.fabs(prop.er)), 1e-6)
def chebyshev_symplectic_2p_lj_test(self):
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment