Skip to content
Snippets Groups Projects
Commit 776c8333 authored by Ivan Kondov's avatar Ivan Kondov
Browse files

test / timing removed

parent f3122aa2
No related branches found
No related tags found
No related merge requests found
""" Analysis of the terms of three-particle (iL)^n in three dimensions """
from itertools import combinations
import numpy as np
from mpliouville import MPLPDR, get_stats_expr, get_stats_repl
from systems import MPPS3D
import yaml
nprtcls = 3
numeric = {'tool': 'subs'}
symbols = [str(i)+'x:z' for i in range(nprtcls)]
indic = list(range(3*nprtcls))
pairs = list(combinations(zip(indic[0::3], indic[1::3], indic[2::3]), 2))
ffparams = [{'class': 'FFLennardJones', 'pair': p, 'params': {}} for p in pairs]
masses = np.full((nprtcls*3, ), 1)
qval = np.full((nprtcls*3, ), 1) # these are not valid
pval = np.full((nprtcls*3, ), 0)
system = MPPS3D(ffparams, symbols, masses, qval, pval, numeric=numeric)
nterms = 3
iln = MPLPDR(nterms, system, numeric=numeric)
print(yaml.dump(get_stats_expr(iln.ilnqexpr, details=True)))
print(yaml.dump(get_stats_expr(iln.ilnpexpr, details=True)))
print(yaml.dump(get_stats_repl(iln.repl, details=True)))
print(iln.get_val_float(qval, pval))
""" Scalability measurement of the construction of (iL)^n f expressions for a
N-particle 3D system """
from itertools import combinations
import numpy as np
from mpliouville import MPLPQP, MPLPAQ, MPLPVQ, MPLPDR, MPLPDV
from mpliouville import get_stats_expr, get_stats_repl
from pandas.io.json import json_normalize
from systems import MPPS3D
import time
def stats_summary(mplpobj):
stats = {}
stats['ilnqexpr'] = get_stats_expr(mplpobj.ilnqexpr)
stats['ilnpexpr'] = get_stats_expr(mplpobj.ilnpexpr)
if hasattr(mplpobj, 'repl'):
stats['ilnrepl'] = get_stats_repl(mplpobj.repl)
syms = sum(stats[key]['symbols'] for key in stats)
adds = sum(stats[key]['adds'] for key in stats)
muls = sum(stats[key]['multiplies'] for key in stats)
ops = sum(stats[key]['operations'] for key in stats)
stats['totals'] = {'symbols': syms, 'adds': adds, 'mutiplies': muls,
'storage': syms + adds + muls, 'operations': ops}
return stats
numeric = {'tool': 'subs'}
statistics = []
for nprtcls in range(2, 5):
print('nprtcls:', nprtcls)
symbols = [str(i)+'x:z' for i in range(nprtcls)]
indic = list(range(3*nprtcls))
pairs = list(combinations(zip(indic[0::3], indic[1::3], indic[2::3]), 2))
ffparams = [{'class': 'FFLennardJones', 'pair': p, 'params': {}} for p in pairs]
masses = np.full((nprtcls*3, ), 1)
qval = np.full((nprtcls*3, ), 1)
pval = np.full((nprtcls*3, ), 0)
for nterms in range(1, 6):
print('nterms:', nterms)
for mplp in (MPLPQP, MPLPAQ, MPLPVQ, MPLPDR, MPLPDV):
system = MPPS3D(ffparams, symbols, masses, qval, pval,
numeric=numeric)
print('class:', mplp.__name__)
ts = time.time()
mplpobj = mplp(nterms, system, numeric=numeric)
te = time.time()
stats = stats_summary(mplpobj)
stats['class'] = mplp.__name__
stats['variant'] = 'default'
stats['nterms'] = nterms
stats['nparticles'] = len(symbols)
stats['preparation time'] = te - ts
statistics.append(stats)
for mplp, var in zip((MPLPDR, MPLPDV), ('r', 'r')):
system = MPPS3D(ffparams, symbols, masses, qval, pval,
numeric=numeric)
print('class:', mplp.__name__)
ts = time.time()
mplpobj = mplp(nterms, system, numeric=numeric, variant=var)
te = time.time()
stats = stats_summary(mplpobj)
stats['class'] = mplp.__name__
stats['variant'] = var
stats['nterms'] = nterms
stats['nparticles'] = len(symbols)
stats['preparation time'] = te - ts
statistics.append(stats)
df = json_normalize(statistics)
df.to_json('exprstats.json')
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment