Skip to content
Snippets Groups Projects
Commit 00696ae3 authored by Ivan Kondov's avatar Ivan Kondov
Browse files

removed non-covered and unused files and more gitignore

parent ded2c9b4
No related branches found
No related tags found
No related merge requests found
__pycache__
*.pyc
*.py~
.*.sw?
*.traj
*.pkl
__pycache__
*.pyc
*.py~
.*.sw?
import numpy as np
delta = 1.0
def lnqp(q, p, length):
""" apply the Liouville operator to (q, p), i.e. (iL)^n q and (iL)^n p """
lnq = np.zeros(length, dtype=complex)
lnp = np.zeros(length, dtype=complex)
A = np.zeros(length, dtype=complex)
B = np.zeros(length, dtype=complex)
A[1] = 2.*(q**3 - q)
A[2] = 2.*(3*q**2 - 1)
A[3] = 12.*q
A[4] = 12.
B[1] = p
B[2] = 1
lnq[0] = q
lnp[0] = p
lnq[1] = B[1]
lnp[1] = -A[1]
lnq[2] = -A[1]*B[2]
lnp[2] = -B[1]*A[2]
lnq[3] = A[1]**2*B[3] - A[2]*B[1]*B[2]
lnp[3] = -B[1]**2*A[3] + B[2]*A[1]*A[2]
lnq[4] = (3*A[1]*A[2]*B[1]*B[3] - A[3]*B[1]**2*B[2]
- A[1]**3*B[4] + A[1]*A[2]*B[2]**2)
lnp[4] = (3*B[1]*B[2]*A[1]*A[3] - B[3]*A[1]**2*A[2]
- B[1]**3*A[4] + B[1]*B[2]*A[2]**2)
lnq[5] = ((3*B[1]**2*B[3] + B[1]*B[2]**2)*(A[2]**2 + A[1]*A[3])
- A[4]*B[1]**3*B[2] - 3*A[1]**2*A[2]*B[1]*B[4]
- 5*A[1]**2*A[2]*B[2]*B[3] - 3*A[1]**2*A[2]*B[1]*B[4]
+ A[1]*A[3]*(2*B[1]*B[2]**2 + B[1]**2*B[3]) + A[1]**4*B[5])
lnp[5] = (-(3*A[1]**2*A[3] + A[1]*A[2]**2)*(B[2]**2 + B[1]*B[3])
+ B[4]*A[1]**3*A[2] + 3*B[1]**2*B[2]*A[1]*A[4]
+ 5*B[1]**2*B[2]*A[2]*A[3] + 3*B[1]**2*B[2]*A[1]*A[4]
- B[1]*B[3]*(2*A[1]*A[2]**2 + A[1]**2*A[3]) - B[1]**4*A[5])
return (lnq, lnp)
def force(q):
return -2.*(q**3 - q)
def energy(q, p):
return 0.5*p*p + 0.5*q*q*q*q - q*q
def solution(q0, p0, time):
pass
import numpy as np
# from the characterisic equation lambda^2 = 0, lambda = 0
cf = 1.0 # constant force
delta = 1.0
def lnqp(q, p, length):
""" apply the Liouville operator to (q, p), i.e. (iL)^n q and (iL)^n p """
lnq = np.zeros(length, dtype=complex)
lnp = np.zeros(length, dtype=complex)
lnq[0] = q
lnp[0] = p
lnq[1] = p
lnp[1] = -cf
lnq[2] = -cf
lnp[2] = cf*cf
return (lnq, lnp)
def force(q):
return -cf
def energy(q, p):
return 0.5*p*p + cf*q
def solution(q0, p0, time):
q_ref = -0.5*cf*time*time + p0*time + q0
p_ref = - cf*time + p0
return (q_ref, p_ref)
import numpy as np
from scipy.special import binom
delta = 1.0
omega = 1.0
lambda_min = -delta/2.0
def lnqp(q, p, length):
""" apply the Liouville operator to (q, p), i.e. (iL)^n q and (iL)^n p """
sqq = [1, 0, -1, 0]
sqp = [0, 1, 0, -1]
spq = [0, -1, 0, 1]
spp = [1, 0, -1, 0]
lnq = np.zeros(length, dtype=complex)
lnp = np.zeros(length, dtype=complex)
for k in range(length):
cyc = k % 4
lnq[k] = q * sqq[cyc] + p * sqp[cyc]
lnp[k] = q * spq[cyc] + p * spp[cyc]
# scaling the powers of the Liouville operator
a = 1./delta
if np.isclose(a, 1.0, atol=1e-08):
return (lnq, lnp)
else:
lnqsc = np.zeros(length, dtype=complex)
lnpsc = np.zeros(length, dtype=complex)
b = -a*(lambda_min + delta/2.0)
if np.isclose(b, 0.0, atol=1e-08):
for n in range(length):
lnqsc[n] = lnq[n] * a**n
lnpsc[n] = lnp[n] * a**n
else:
for n in range(length):
for k in range(n+1):
bnk = binom(n, k)
lnqsc[n] = lnqsc[n] + bnk * a**k * b**(n-k) * lnq[k]
lnpsc[n] = lnpsc[n] + bnk * a**k * b**(n-k) * lnp[k]
return (lnqsc, lnpsc)
def force(q):
return -q
def energy(q, p):
return 0.5*(p*p + q*q)
def solution(q0, p0, time):
q_ref = q0*np.exp(1.0j*omega*time)
p_ref = q0*(1.0j*omega)*np.exp(1.0j*omega*time)
return (q_ref, p_ref)
__pycache__
*.pyc
*.py~
.*.sw?
__pycache__
*.pyc
*.py~
.*.sw?
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment