Skip to content
Snippets Groups Projects
Name Last commit Last update
.idea
code
.gitignore
README.md

Intrusion Detection System with Machine Learning

It is important to launch this project with the python virtual environment (.venv). If your python interpreter

## Packages needed to be installed:
- `scapy`
- `duckdb`
- `sklearn`
- `seaborn`
- `matplotlib`
- `numpy`
- `scikit-learn`
- `pandas`
- `tkinter`
- `os`
- `sys`

## Modules Roadmap:
- [X] Module 1: Package capture
- [X] Module 2: Rule-based detection
    - [X] 1. Checksom Verification
    - [X] 2. Payload Pattern Matching
    - [X] 3. Rate-Based Anomaly Detection
    - [X] 4. Malformed Packet Detection
    - [X] 5. ICMP Flood Detection
    - [X] 6. DNS Spoofing Detection
    - [X] 7. ARP Spoofing Detection
    - [X] 8. Protocol-Specific Anomalies
        - [X] 8.1 Fragment checks
        - [X] 8.2 Valid Handshake Check
    - [X] 9. Content-Learning Mismatch
    - [X] Additional checks:
        - IP Spoofing Detection
        - SYN FIN Combination Detection
        - null Packet Detection
        - Malicious Ports Detection
        - More DNS Spoofing Detection
        - Destination Checks
        - TCP reset Detection
- [X] Module 3: Anomaly-based detection
    - [X] Logistic Regression
    - [X] Decision Tree Classifier
    - [X] KNN
    - [X] Random Forest