- Feb 26, 2025
-
-
Chris authored
-
Daniel Yang authored
-
Daniel Yang authored
-
Daniel Yang authored
-
Daniel Yang authored
-
Chris authored
-
Chris authored
-
Daniel Yang authored
-
Daniel Yang authored
-
- Feb 23, 2025
-
-
Timo authored
-
- Feb 22, 2025
-
-
Daniel Yang authored
added read_csv boolean, normalized data before feeding it to the model, removed regression curve plot (impractical for higher dimensional X), increased dimension of X, refactored a lot of code, added confusion matrix plot, accuracy now is being displayed with the confusion matrix plot, slightly improved the prediction method, now plotting logistic regression feature importances (here: coefficients), can now extract high confidence samples (ergo samples of >90% landing in class 1)
-
Daniel Yang authored
now normalizing data before feeding to model, refactored a lot of code like in logistic_regression.py
-
Daniel Yang authored
-
Daniel Yang authored
added read_csv boolean, normalized data before feeding it to the model, removed regression curve plot (impractical for higher dimensional X), increased dimension of X, refactored a lot of code, added confusion matrix plot, accuracy now is being displayed with the confusion matrix plot, slightly improved the prediction method, now plotting logistic regression feature importances (here: coefficients), can now extract high confidence samples (ergo samples of >90% landing in class 1)
-
Daniel Yang authored
-
- Feb 21, 2025
-
-
Daniel Yang authored
-
Daniel Yang authored
-
Daniel Yang authored
-
Daniel Yang authored
-
Daniel Yang authored
-
Daniel Yang authored
-
Daniel Yang authored
-
Daniel Yang authored
-
- Feb 19, 2025
-
-
Chris authored
-
Chris authored
-
Daniel Yang authored
-
Daniel Yang authored
-
- Jan 10, 2025
-
-
Daniel Yang authored
-
Daniel Yang authored
-
Daniel Yang authored
-
Daniel Yang authored
-
Chris authored
-
Chris authored
-
Daniel Yang authored
-
Chris authored
-
Chris authored
-
Chris authored
-
Chris authored
-
Chris authored
-
Chris authored
-