Skip to content
Snippets Groups Projects
Commit 38defd4b authored by Daniel Yang's avatar Daniel Yang
Browse files

cleaned up code:

added import_data method for importing data, now using the given KDDTest+ and KDDTrain+ data for training instead of only KDDTrain+, a lot of refactoring
parent f7c64002
No related branches found
No related tags found
No related merge requests found
......@@ -5,7 +5,6 @@ import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
from scipy.io import arff
from sklearn.base import BaseEstimator
from sklearn.preprocessing import OrdinalEncoder
show_plots = False
......@@ -110,17 +109,19 @@ def plot_features(features, info_text: str = None, model_name=None):
def normalize(df_train, df_test, exclude, numerical_scaler, label_scaler):
scale_targets = df_train.select_dtypes(include=np.number).drop(columns=exclude).columns
df_train[scale_targets] = numerical_scaler.fit_transform(df_train[scale_targets])
df_temp = pd.concat([df_train, df_test])
scale_targets = df_temp.select_dtypes(include=np.number).drop(columns=exclude).columns
numerical_scaler.fit_transform(df_temp[scale_targets])
df_train[scale_targets] = numerical_scaler.transform(df_train[scale_targets])
df_test[scale_targets] = numerical_scaler.transform(df_test[scale_targets])
labels = df_train.select_dtypes(include=object, exclude=np.number).columns
for label in labels:
df_train[label] = label_scaler.fit_transform(df_train[label])
label_scaler.fit_transform(df_temp[label])
df_train[label] = label_scaler.transform(df_train[label])
df_test[label] = label_scaler.transform(df_test[label])
def plot_confusion_matrix(confusion_matrix: List[List[int]], accuracy: float, model_name=None) -> None:
if len(confusion_matrix) != 2 or any(len(row) != 2 for row in confusion_matrix):
raise ValueError("Confusion matrices must be 2x2")
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment