Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
IDS PSE
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Daniel Yang
IDS PSE
Commits
2dbcd144
Commit
2dbcd144
authored
1 month ago
by
Daniel Yang
Browse files
Options
Downloads
Patches
Plain Diff
removed pipeline (to keep it uniform), now using kddtrain+ and kddtest+
parent
52054a99
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
code/machine_learning_models/knn.py
+13
-25
13 additions, 25 deletions
code/machine_learning_models/knn.py
with
13 additions
and
25 deletions
code/machine_learning_models/knn.py
+
13
−
25
View file @
2dbcd144
...
...
@@ -5,8 +5,6 @@ import seaborn as sns
from
sklearn.metrics
import
classification_report
,
confusion_matrix
from
sklearn.neighbors
import
KNeighborsClassifier
from
sklearn.preprocessing
import
StandardScaler
,
LabelEncoder
from
sklearn.pipeline
import
Pipeline
from
sklearn.model_selection
import
train_test_split
from
utilities
import
ordinal_encode
,
normalize
,
plot_confusion_matrix
,
plot_counts
,
import_data
,
plot_roc_curve
...
...
@@ -14,6 +12,7 @@ warnings.filterwarnings("ignore")
# Constants
y_data
=
'
class
'
y_values
=
[
'
normal
'
,
'
anomaly
'
]
df_train
,
df_test
,
model_name
=
import_data
(
train_file_path
=
"
nsl-kdd-dataset/
"
+
"
KDDTrain+.arff
"
,
test_file_path
=
"
nsl-kdd-dataset/
"
+
"
KDDTest+.arff
"
,
...
...
@@ -22,13 +21,9 @@ df_train, df_test, model_name = import_data(
sc
=
StandardScaler
()
enc
=
LabelEncoder
()
is_threat
=
df_train
[
y_data
].
unique
()
if
len
(
is_threat
)
!=
2
:
raise
ValueError
(
"
Target must be a binary decision.
"
)
# Normalize data
ordinal_encode
(
df
=
df_train
,
categories
=
is_threat
,
target
=
y_data
)
ordinal_encode
(
df
=
df_test
,
categories
=
is_threat
,
target
=
y_data
)
ordinal_encode
(
df
=
df_train
,
categories
=
y_values
,
target
=
y_data
)
ordinal_encode
(
df
=
df_test
,
categories
=
y_values
,
target
=
y_data
)
normalize
(
df_train
,
df_test
,
y_data
,
sc
,
enc
)
...
...
@@ -37,33 +32,26 @@ sns.countplot(x=y_data, data=df_train)
plot_counts
(
model_name
=
model_name
)
# Separate X and y
X
=
df_train
.
select_dtypes
(
include
=
[
np
.
number
]).
drop
(
columns
=
[
y_data
])
y
=
df_train
[
y_data
]
# Split data into training and testing sets
X_train
,
X_test
,
y_train
,
y_test
=
train_test_split
(
X
,
y
,
test_size
=
0.2
,
random_state
=
42
)
# Create a pipeline for scaling and KNN
pipeline
=
Pipeline
([
(
'
scaler
'
,
StandardScaler
()),
(
'
knn
'
,
KNeighborsClassifier
())
])
X_train
=
df_train
.
select_dtypes
(
include
=
[
np
.
number
]).
drop
(
columns
=
[
y_data
])
X_test
=
df_test
.
select_dtypes
(
include
=
[
np
.
number
]).
drop
(
columns
=
[
y_data
])
y_train
=
df_train
[[
y_data
]]
y_test
=
df_test
[[
y_data
]]
# Training model
pipeline
.
fit
(
X_train
,
y_train
)
y_prediction
=
pipeline
.
predict
(
X_test
)
model
=
KNeighborsClassifier
()
model
.
fit
(
X_train
,
y_train
)
y_prediction
=
model
.
predict
(
X_test
)
print
(
"
Classification report:
\n
"
,
classification_report
(
y_test
,
y_prediction
))
plot_confusion_matrix
(
confusion_matrix
=
confusion_matrix
(
y_test
,
y_prediction
),
accuracy
=
pipeline
.
score
(
X_test
,
y_test
),
accuracy
=
model
.
score
(
X_test
,
y_test
),
model_name
=
model_name
)
# Calculate prediction probabilities for ROC curve
y_score
=
pipeline
.
predict_proba
(
X_test
)[:,
1
]
y_score
=
model
.
predict_proba
(
X_test
)[:,
1
]
plot_roc_curve
(
y_test
,
y_score
,
model_name
=
model_name
)
def
predict
(
prediction_input
):
if
len
(
prediction_input
)
==
0
:
return
input_data
=
pd
.
DataFrame
(
prediction_input
,
columns
=
X_train
.
columns
)
return
pipeline
.
predict
(
input_data
)
\ No newline at end of file
return
model
.
predict
(
input_data
)
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment