Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
IDS PSE
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Daniel Yang
IDS PSE
Commits
11caccf8
Commit
11caccf8
authored
1 week ago
by
VladLub
Browse files
Options
Downloads
Patches
Plain Diff
simpl epush so i can continue on the pc
parent
384d401a
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
code/machine_learning_models/decision_tree.py
+27
-23
27 additions, 23 deletions
code/machine_learning_models/decision_tree.py
code/machine_learning_models/utilities.py
+3
-4
3 additions, 4 deletions
code/machine_learning_models/utilities.py
code/main.py
+18
-0
18 additions, 0 deletions
code/main.py
with
48 additions
and
27 deletions
code/machine_learning_models/decision_tree.py
+
27
−
23
View file @
11caccf8
...
...
@@ -2,41 +2,45 @@ import numpy as np
import
pandas
as
pd
import
seaborn
as
sns
import
warnings
import
sys
import
os
from
sklearn.metrics
import
classification_report
,
confusion_matrix
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
os
.
path
.
dirname
(
__file__
),
'
..
'
)))
from
sklearn.metrics
import
classification_report
,
confusion_matrix
from
sklearn.preprocessing
import
StandardScaler
,
LabelEncoder
from
sklearn.tree
import
DecisionTreeClassifier
from
utilities
import
plot_counts
from
utilities
import
plot_features
,
ordinal_encode
,
normalize
,
plot_confusion_matrix
,
print_high_confidence_samples
,
import_data
import
utilities
as
util
warnings
.
filterwarnings
(
"
ignore
"
)
# Constants
y_data
=
'
class
'
y_columns
=
[
'
normal
'
,
'
anomaly
'
]
df_train
,
df_test
,
model_name
=
import_data
(
train_file_path
=
"
nsl-kdd-dataset/
"
+
"
KDDTrain+.arff
"
,
test_file_path
=
"
nsl-kdd-dataset/
"
+
"
KDDTest+.arff
"
,
model_name
=
"
Decision Tree
"
)
train_file_path
=
os
.
path
.
abspath
(
os
.
path
.
join
(
os
.
path
.
dirname
(
__file__
),
'
..
'
,
'
nsl-kdd-dataset
'
,
'
KDDTrain+.arff
'
))
test_file_path
=
os
.
path
.
abspath
(
os
.
path
.
join
(
os
.
path
.
dirname
(
__file__
),
'
..
'
,
'
nsl-kdd-dataset
'
,
'
KDDTest+.arff
'
))
df_train
,
df_test
,
model_name
=
util
.
import_data
(
train_file_path
=
train_file_path
,
test_file_path
=
test_file_path
,
model_name
=
"
Decision Tree
"
)
sc
=
StandardScaler
()
enc
=
LabelEncoder
()
# Normalize data
ordinal_encode
(
df
=
df_train
,
categories
=
y_columns
,
target
=
y_data
)
ordinal_encode
(
df
=
df_test
,
categories
=
y_columns
,
target
=
y_data
)
util
.
ordinal_encode
(
df
=
df_train
,
categories
=
y_columns
,
target
=
y_data
)
util
.
ordinal_encode
(
df
=
df_test
,
categories
=
y_columns
,
target
=
y_data
)
normalize
(
df_train
,
df_test
,
y_data
,
sc
,
enc
)
util
.
normalize
(
df_train
,
df_test
,
y_data
,
sc
,
enc
)
# Plot absolute quantities of class 0 and class 1
sns
.
countplot
(
x
=
y_data
,
data
=
df_train
)
plot_counts
(
model_name
=
model_name
)
sns
.
countplot
(
x
=
y_data
,
data
=
df_train
)
util
.
plot_counts
(
model_name
=
model_name
)
# Separate X and y
X_train
=
df_train
.
select_dtypes
(
include
=
[
np
.
number
]).
drop
(
columns
=
[
y_data
])
X_test
=
df_test
.
select_dtypes
(
include
=
[
np
.
number
]).
drop
(
columns
=
[
y_data
])
X_train
=
df_train
.
select_dtypes
(
include
=
[
np
.
number
]).
drop
(
columns
=
[
y_data
])
X_test
=
df_test
.
select_dtypes
(
include
=
[
np
.
number
]).
drop
(
columns
=
[
y_data
])
y_train
=
df_train
[[
y_data
]]
y_test
=
df_test
[[
y_data
]]
...
...
@@ -71,20 +75,20 @@ dtc = DecisionTreeClassifier()
dtc
.
fit
(
X_train
,
y_train
)
y_prediction
=
dtc
.
predict
(
X_test
)
print
(
"
Classification report:
\n
"
,
classification_report
(
y_test
,
y_prediction
))
plot_confusion_matrix
(
confusion_matrix
=
confusion_matrix
(
y_test
,
y_prediction
),
accuracy
=
dtc
.
score
(
X_test
,
y_test
),
model_name
=
model_name
)
util
.
plot_confusion_matrix
(
confusion_matrix
=
confusion_matrix
(
y_test
,
y_prediction
),
accuracy
=
dtc
.
score
(
X_test
,
y_test
),
model_name
=
model_name
)
# Determine feature importance
features
=
pd
.
DataFrame
(
dtc
.
feature_importances_
,
index
=
X_train
.
columns
,
index
=
X_train
.
columns
,
columns
=
[
'
Importance
'
]).
sort_values
(
by
=
'
Importance
'
,
ascending
=
False
)
plot_features
(
features
,
model_name
=
model_name
)
util
.
plot_features
(
features
,
model_name
=
model_name
)
def
predict
(
prediction_input
):
if
len
(
prediction_input
)
==
0
:
return
input_data
=
pd
.
DataFrame
(
prediction_input
,
columns
=
X_train
.
columns
)
input_data
=
pd
.
DataFrame
(
prediction_input
,
columns
=
X_train
.
columns
)
return
dtc
.
predict
(
input_data
)
print_high_confidence_samples
(
model
=
dtc
,
x
=
X_train
)
util
.
print_high_confidence_samples
(
model
=
dtc
,
x
=
X_train
)
\ No newline at end of file
This diff is collapsed.
Click to expand it.
code/machine_learning_models/utilities.py
+
3
−
4
View file @
11caccf8
...
...
@@ -179,15 +179,14 @@ def save_plot(name):
# Data processing
def
import_data
(
train_file_path
:
str
,
test_file_path
:
str
,
model_name
:
str
):
def
import_data
(
train_file_path
,
test_file_path
,
model_name
):
data
,
meta
=
arff
.
loadarff
(
train_file_path
)
df_train
=
pd
.
DataFrame
(
data
)
df_train
=
df_train
.
apply
map
(
lambda
x
:
x
.
decode
(
'
utf-8
'
)
if
isinstance
(
x
,
bytes
)
else
x
)
df_train
=
df_train
.
map
(
lambda
x
:
x
.
decode
(
'
utf-8
'
)
if
isinstance
(
x
,
bytes
)
else
x
)
# Importing test data set
data
,
meta
=
arff
.
loadarff
(
test_file_path
)
df_test
=
pd
.
DataFrame
(
data
)
df_test
=
df_test
.
apply
map
(
lambda
x
:
x
.
decode
(
'
utf-8
'
)
if
isinstance
(
x
,
bytes
)
else
x
)
df_test
=
df_test
.
map
(
lambda
x
:
x
.
decode
(
'
utf-8
'
)
if
isinstance
(
x
,
bytes
)
else
x
)
return
df_train
,
df_test
,
model_name
...
...
This diff is collapsed.
Click to expand it.
code/
gui/gui
.py
→
code/
main
.py
+
18
−
0
View file @
11caccf8
...
...
@@ -3,6 +3,24 @@ from tkinter import scrolledtext, ttk, Menu
import
subprocess
import
threading
import
os
import
sys
sys
.
path
.
append
(
os
.
path
.
abspath
(
os
.
path
.
join
(
os
.
path
.
dirname
(
__file__
),
'
machine_learning_models
'
)))
from
machine_learning_models
import
utilities
as
util
train_file_path
=
os
.
path
.
abspath
(
os
.
path
.
join
(
os
.
path
.
dirname
(
__file__
),
'
machine_learning_models
'
,
'
nsl-kdd-dataset
'
,
'
KDDTrain+.arff
'
))
test_file_path
=
os
.
path
.
abspath
(
os
.
path
.
join
(
os
.
path
.
dirname
(
__file__
),
'
machine_learning_models
'
,
'
nsl-kdd-dataset
'
,
'
KDDTest+.arff
'
))
# Import data using the correct paths
df_train
,
df_test
,
model_name
=
util
.
import_data
(
train_file_path
=
train_file_path
,
test_file_path
=
test_file_path
,
model_name
=
None
)
from
machine_learning_models
import
decision_tree
,
random_forest
,
knn
,
logistic_regression
from
matplotlib
import
pyplot
as
plt
from
matplotlib.backends.backend_tkagg
import
FigureCanvasTkAgg
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment