Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
AnnRG
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Lars Yström
AnnRG
Commits
484e1508
Commit
484e1508
authored
1 year ago
by
Lars Yström
Browse files
Options
Downloads
Patches
Plain Diff
Upload New File
parents
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
NRG.py
+218
-0
218 additions, 0 deletions
NRG.py
with
218 additions
and
0 deletions
NRG.py
0 → 100644
+
218
−
0
View file @
484e1508
# -*- coding: utf-8 -*-
"""
NRG - An artificial neural network solute geothermometer
FUNCTION:
- Version 0.03: M. Vollmer (KIT), L. H. Ystroem (KIT) - June 2023
An artificial neural network solute geothermometer trained by data from
the measured reservoir temperatures worldwide. Using a feedforward
multilayer perceptron to solve the regression analysis of fluid chemistry
and reservoir temperature.
INPUT:
- cvs-file:[
'
pH
'
,
'
Na
'
,
'
K
'
,
'
Ca
'
,
'
Mg
'
,
'
SiO2
'
,
'
Cl
'
,
'
Temperature
'
]
OUTPUT:
- graphical output of predicted vs. measured data plus error diagrams
- array of errors and predictions
PLEASE NOTE:
- The solute ANN geothermometer was programmed in Python 3.8 with
associated libraries: pandas, matplotlib, numpy, seaborn, tensorflow,
keras
INSTRUCTION:
- To use the geothermometer, Python (3.8) and associated libraries
must be installed
- Training data and new unknown data must be in the recommended csv-file
template: [
'
pH
'
,
'
Na
'
,
'
K
'
,
'
Ca
'
,
'
Mg
'
,
'
SiO2
'
,
'
Cl
'
,
'
T
'
]
- csv-input-files must be renamed within the code (lines 59 & 151)
- Start the ANN via the Run-button
- Results are visualised in
"
plots
"
and output text on the console
- Further results can be picked from the variables
"""
# Libraries
import
pandas
as
pd
import
matplotlib.pyplot
as
plt
import
numpy
as
np
import
seaborn
as
sns
from
numpy.random
import
seed
# Preprocessing
from
sklearn.model_selection
import
train_test_split
from
sklearn.preprocessing
import
StandardScaler
# Metrics
from
sklearn
import
metrics
from
sklearn.metrics
import
r2_score
from
sklearn.metrics
import
mean_squared_error
from
sklearn.metrics
import
mean_absolute_percentage_error
#Tensorflow & Keras
from
tensorflow.keras
import
Sequential
from
tensorflow.keras.layers
import
Dense
from
tensorflow.keras.callbacks
import
EarlyStopping
from
tensorflow.keras.callbacks
import
ModelCheckpoint
import
tensorflow
as
tf
# Reading the csv-inputfile and delet all nan/0 from data
data
=
pd
.
read_csv
(
"
Training.csv
"
,
delimiter
=
"
,
"
)
data
=
data
.
dropna
()
# Fixing up global and local seed
seed
(
0
)
tf
.
random
.
set_seed
(
0
)
# Splitting the input data
temp
,
test
=
train_test_split
(
data
,
test_size
=
0.2
)
train
,
val
=
train_test_split
(
temp
,
test_size
=
0.1
)
# Define input variables and output variable
X_train
=
train
[[
'
pH
'
,
'
Na
'
,
'
K
'
,
'
Ca
'
,
'
Mg
'
,
'
SiO2
'
,
'
Cl
'
]]
y_train
=
train
[[
'
T
'
]]
X_val
=
val
[[
'
pH
'
,
'
Na
'
,
'
K
'
,
'
Ca
'
,
'
Mg
'
,
'
SiO2
'
,
'
Cl
'
]]
y_val
=
val
[[
'
T
'
]]
X_test
=
test
[[
'
pH
'
,
'
Na
'
,
'
K
'
,
'
Ca
'
,
'
Mg
'
,
'
SiO2
'
,
'
Cl
'
]]
y_test
=
test
[[
'
T
'
]]
# Scale and centre data
scaler_input
,
scaler_target
=
StandardScaler
(),
StandardScaler
()
scaler_input
.
fit
(
X_train
)
scaler_target
.
fit
(
y_train
)
X_train
=
scaler_input
.
transform
(
X_train
)
y_train
=
scaler_target
.
transform
(
y_train
)
X_test
=
scaler_input
.
transform
(
X_test
)
y_test
=
scaler_target
.
transform
(
y_test
)
X_val
=
scaler_input
.
transform
(
X_val
)
y_val
=
scaler_target
.
transform
(
y_val
)
# Determine the input features
n_features
=
X_train
.
shape
[
1
]
# Set initializer with optimiser
kernel_initializer
=
'
normal
'
opt
=
tf
.
keras
.
optimizers
.
Adam
(
learning_rate
=
0.001
)
# Implementing Early Stopping
es
=
EarlyStopping
(
monitor
=
'
val_loss
'
,
mode
=
'
auto
'
,
verbose
=
1
,
patience
=
20
,
restore_best_weights
=
True
)
# Save the trained model
checkpoint_filepath
=
'
./checkpoint.hdf5
'
checkpoint
=
ModelCheckpoint
(
filepath
=
checkpoint_filepath
,
verbose
=
1
,
save_best_only
=
True
,
monitor
=
'
val_loss
'
,
save_weights_only
=
True
,
mode
=
"
auto
"
)
# Define model architecture
model
=
Sequential
()
model
.
add
(
Dense
(
80
,
activation
=
'
relu
'
,
kernel_initializer
=
kernel_initializer
,
input_shape
=
(
n_features
,)))
model
.
add
(
Dense
(
1
))
# Compile the model
model
.
compile
(
optimizer
=
opt
,
loss
=
'
mean_squared_error
'
)
# Hyperparameter optimisation
history
=
model
.
fit
(
X_train
,
y_train
,
epochs
=
300
,
batch_size
=
16
,
verbose
=
2
,
validation_data
=
(
X_val
,
y_val
),
callbacks
=
[
es
])
# Prediction of the test set
yhat
=
model
.
predict
(
X_test
)
X_train_p
=
model
.
predict
(
X_train
)
X_val
=
model
.
predict
(
X_val
)
# Plot learning curves
plt
.
xlabel
(
'
Epochs
'
)
plt
.
ylabel
(
'
Mean square error
'
)
plt
.
plot
(
history
.
history
[
'
loss
'
],
label
=
'
Training
'
)
plt
.
plot
(
history
.
history
[
'
val_loss
'
],
label
=
'
Validation
'
)
plt
.
legend
()
plt
.
title
(
'
Learning curves
'
)
plt
.
savefig
(
'
loss.png
'
)
plt
.
show
()
# Inverse transform scaled and centred data
y_test
=
scaler_target
.
inverse_transform
(
y_test
)
ypred
=
scaler_target
.
inverse_transform
(
yhat
)
X_train_p
=
scaler_target
.
inverse_transform
(
X_train_p
)
y_train
=
scaler_target
.
inverse_transform
(
y_train
)
X_val
=
scaler_target
.
inverse_transform
(
X_val
)
y_val
=
scaler_target
.
inverse_transform
(
y_val
)
X_train
=
scaler_input
.
inverse_transform
(
X_train
)
# Metric scores (change for other sets)
mse
=
mean_squared_error
(
y_test
,
ypred
)
rmse
=
np
.
sqrt
(
metrics
.
mean_squared_error
(
y_test
,
ypred
))
mape
=
mean_absolute_percentage_error
(
y_test
,
ypred
)
r2
=
r2_score
(
y_test
,
ypred
)
print
(
'
MAPE: %.3f
'
%
mape
)
print
(
'
MSE: %.3f
'
%
mse
)
print
(
'
RMSE: %.3f
'
%
np
.
sqrt
(
mse
))
print
(
'
R_squared: %.3f
'
%
r2
)
# Reading in csv-inputfile of new transferable data
extra
=
pd
.
read_csv
(
"
Transfer.csv
"
,
delimiter
=
"
,
"
)
x_a
=
extra
[[
'
pH
'
,
'
Na
'
,
'
K
'
,
'
Ca
'
,
'
Mg
'
,
'
SiO2
'
,
'
Cl
'
]]
y_a
=
extra
[[
'
T
'
]]
# Scale, centre, and predict new transferable centre data
scaler_x
=
StandardScaler
()
scaler_y
=
StandardScaler
()
scaler_x
.
fit
(
x_a
)
scaler_y
.
fit
(
y_a
)
Xnew
=
scaler_x
.
transform
(
x_a
)
y_pred_a
=
model
.
predict
(
Xnew
)
y_pred_a
=
scaler_y
.
inverse_transform
(
y_pred_a
)
y_true
=
y_a
# Polt of predicted temperature vs measured temperature plus transferred data
plt
.
figure
()
plt
.
plot
(
X_train_p
,
y_train
,
'
.b
'
,
label
=
'
Training
'
,
markersize
=
8
)
#color='#808080', marker='.', markersize=8, label='ANN', linewidth=0
plt
.
plot
(
X_val
,
y_val
,
'
.b
'
,
markersize
=
8
)
plt
.
plot
(
y_test
,
ypred
,
'
.r
'
,
label
=
'
Testing
'
,
markersize
=
8
)
plt
.
plot
(
y_true
,
y_pred_a
,
'
.g
'
,
label
=
'
Transfer
'
,
markersize
=
8
)
plt
.
plot
(
y_test
,
y_test
,
'
k
'
,
label
=
'
Regression
'
)
#color='#606060'
plt
.
xlabel
(
'
Measured bottom hole temperature [°C]
'
)
plt
.
ylabel
(
'
Predicted bottom hole temperature [°C]
'
)
plt
.
xlim
(
0
,
350
)
plt
.
ylim
(
0
,
350
)
plt
.
legend
(
loc
=
'
upper left
'
)
plt
.
title
(
'
R$^2$: %.3f
'
%
r2
)
plt
.
savefig
(
'
regression.png
'
)
plt
.
show
()
# Error histogram of test set
error
=
ypred
-
y_test
plt
.
hist
(
error
,
bins
=
20
)
plt
.
xlabel
(
'
Predicted temperature difference [K]
'
)
plt
.
ylabel
(
'
Quantity
'
)
plt
.
xlim
(
-
40
,
40
)
plt
.
ylim
(
0
,
6
)
plt
.
title
(
'
Error histogram of tested data
'
)
plt
.
savefig
(
'
histogram.png
'
)
plt
.
show
()
error_train
=
y_train
-
X_train_p
error_val
=
y_val
-
X_val
error_main
=
np
.
concatenate
([
error
,
error_val
,
error_train
])
# Violinplot of the error distribution
sns
.
violinplot
(
error_main
,
cut
=
1
)
plt
.
title
(
'
Error distribution
'
)
plt
.
ylabel
(
'
Dataset
'
)
plt
.
xlabel
(
'
Predicted temperature difference [K]
'
)
plt
.
xlim
(
-
40
,
40
)
plt
.
savefig
(
'
disribution.png
'
)
plt
.
show
()
# Plot of the outlier removal
abs_error_main
=
np
.
absolute
(
error_main
)
measured
=
np
.
concatenate
([
y_test
,
X_train_p
,
X_val
])
predict
=
np
.
concatenate
([
ypred
,
y_train
,
y_val
])
rmse_error
=
np
.
sqrt
(
metrics
.
mean_squared_error
(
measured
,
predict
))
plt
.
stem
(
abs_error_main
,
linefmt
=
'
:
'
)
plt
.
axhline
(
y
=
2
*
rmse_error
,
c
=
'
black
'
,
ls
=
'
:
'
)
plt
.
title
(
'
Outlier detection
'
)
plt
.
ylabel
(
'
RMSE
'
)
plt
.
xlabel
(
'
Datapoint
'
)
plt
.
ylim
(
-
5
,
75
)
plt
.
savefig
(
'
outlier removal.png
'
)
plt
.
show
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment