Skip to content
Snippets Groups Projects
Commit 22b8727d authored by Roland Griesmaier's avatar Roland Griesmaier
Browse files

Upload New File

parent 615db9cf
No related branches found
No related tags found
No related merge requests found
kurve.m 0 → 100644
%***********************************************************************
%
% File_name : KURVE.M
%
% Dieses Programm bestimmt die Kurvenwerte
% n2 und lab und par muessen bekannt sein
% lab = 1 : Ellipse
% lab = 2 : gerun2etes Rechteck
% lab = 3 : Drachen
% lab = 4 : Erdnuss
% Fuer jede Figuration wird zunaechst die Standardform berechnet.
% Hierfuer werden die Parameter par(1), par(2) benutzt. Danach kann
% um par(5) (in Grad, mathematisch positiv) gedreht und um Vektor
% (par(3),par(4)) verschoben werden.
%***********************************************************************
function [x,dx,ddx,dddx] = kurve(n2, object, par)
pin = 2*pi/n2;
Ix = [0:n2-1]'*pin;
rot = par(5)*pi/180;
R = [ cos(rot) -sin(rot) ; sin(rot) cos(rot) ];
switch object
case 'circle'
%******************************************************
% Ellipse mit Halbachsen al=par(1) un2 be=par(2)
%******************************************************
al = par(1);
be = par(2);
x(:,1) = al*cos(Ix);
x(:,2) = be*sin(Ix);
dx(:,1) = -al*sin(Ix);
dx(:,2) = be*cos(Ix);
ddx(:,1) = -x(:,1);
ddx(:,2) = -x(:,2);
dddx(:,1) = -dx(:,1);
dddx(:,2) = -dx(:,2);
case 'rectangle'
%*****************************************************************
% gerundetes Rechteck mit Halbachsen al=par(1) und be=par(2)
%*****************************************************************
al = par(1);
be = par(2);
nr = 10;
cs = cos(Ix)/al;
sn = sin(Ix)/be;
h1 = cs.^nr + sn.^nr;
f = h1.^(1/nr);
h2 = ( sn.^(nr-2)/(be*be) - cs.^(nr-2)/(al*al) )./h1;
s2 = sin(2*Ix);
df = -f/2.*s2.*h2;
h3 = ( sn.^(nr-4)/(be^4) + cs.^(nr-4)/(al^4) )./h1;
ddf = -( 5.5*df.*s2 + f.*cos(2*Ix) ).*h2 - 2*f.*s2.*s2.*h3;
cs = cs*al;
sn = sn*be;
x(:,1) = f.*cs;
x(:,2) = f.*sn;
dx(:,1) = df.*cs - x(:,2);
dx(:,2) = df.*sn + x(:,1);
ddx(:,1) = ddf.*cs - df.*sn - dx(:,2);
ddx(:,2) = ddf.*sn + df.*cs + dx(:,1);
case 'kite'
%-------------------------------------------------------------------
% Berechnet die Daten eines Drachens (kite) mit Parameter
% al=par(1) und be=par(2) (in Colton/kress: al=1.5, be=0.65)
%-------------------------------------------------------------------
al = par(1);
be = par(2);
x(:,1) = cos(Ix) + be*( cos(2*Ix) - 1 );
x(:,2) = al*sin(Ix);
dx(:,1) = -sin(Ix) - 2*be*sin(2*Ix);
dx(:,2) = al*cos(Ix);
ddx(:,1) = -cos(Ix) - 4*be*cos(2*Ix);
ddx(:,2) = -x(:,2);
dddx(:,1) = sin(Ix) + 8*be*sin(2*Ix);
dddx(:,2) = -dx(:,2);
case 'nut'
%------------------------------------------------------------------
% Berechnet die Daten einer Erdnuss (peanut) mit Parameter
% al=par(1) und be=par(2)
%------------------------------------------------------------------
al = par(1);
be = par(2);
f0 = sqrt( al*cos(Ix).^2 + be*sin(Ix).^2 );
x(:,1) = f0.*cos(Ix);
x(:,2) = f0.*sin(Ix);
f1 = .5*(be-al)*sin(2*Ix)./f0;
dx(:,1) = f1.*cos(Ix) - x(:,2);
dx(:,2) = f1.*sin(Ix) + x(:,1);
f2 = ( (be-al)*cos(2*Ix) - f1.*f1 ) ./ f0;
ddx(:,1) = ( f2-f0).*cos(Ix) - 2*f1.*sin(Ix);
ddx(:,2) = ( f2-f0).*sin(Ix) + 2*f1.*cos(Ix);
f3 = ( 2*f1.*(f1.*sin(2*Ix) - 2*f0.*cos(2*Ix)) ) ./ f0.^3;
f3 = f3 - ( f2.*sin(2*Ix) + 4*f0.*sin(2*Ix) ) ./ f0.^2;
f3 = f3 * (be-al)/2;
dddx(:,1) = f3.*cos(Ix) - 3*f2.*sin(Ix) - 2*f1.*cos(Ix) - dx(:,1);
dddx(:,2) = f3.*sin(Ix) + 3*f2.*cos(Ix) - 2*f1.*sin(Ix) - dx(:,2);
end
scaling = par(6);
x = scaling * (R*x')' + ones(n2,1)*[par(3) par(4)];
dx = scaling * (R*dx')';
ddx = scaling * (R*ddx')';
dddx = scaling * (R*dddx')';
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment