Skip to content
Snippets Groups Projects
Commit 604ed21f authored by Lisa Schätzle's avatar Lisa Schätzle
Browse files

Update evaluateFarfieldSecondOrder.m

parent 4f951151
No related branches found
No related tags found
No related merge requests found
......@@ -20,21 +20,17 @@ function [F] = evaluateFarfieldSecondOrder(k, sampling, objects, par, R, q)
% ************************************************************************************
kR = k * R;
% kz = k * z;
nd = sampling.nd; % number of illumination directions
nxhat = sampling.nxhat;
xhat = sampling.xhat; % number of detector positions on the sphere
nxhat = sampling.nxhat; % number of observation directions
xhat = sampling.xhat;
d = sampling.d;
doub = 8; % number of doublings for discretization
N = 2^doub; % number of discretizations in one dimension
h = 2*kR/N; % discretization step width
[X,Y] = meshgrid(-(N/2)*h:h:(N/2-1)*h,-(N/2)*h:h:(N/2-1)*h); % Discretization of supp(q), more precisely of [-R,R]^2
% x = reshape(X,[N^2,1]) + kz(1)*ones(N^2,1);
% y = reshape(Y,[N^2,1]) + kz(2)*ones(N^2,1);
[X,Y] = meshgrid(-(N/2)*h:h:(N/2-1)*h,-(N/2)*h:h:(N/2-1)*h); % Discretization of [-R,R]^2
x = reshape(X,[N^2,1]);
y = reshape(Y,[N^2,1]);
......@@ -44,9 +40,7 @@ Q1 = q(1) * reshape(q1,[N,N]);
q2 = qBorn(objects{2}, par(2,:), x/k, y/k);
Q2 = q(2) * reshape(q2,[N,N]);
%% Kernel Khat
% Kernel Khat:
Khat = zeros(N,N);
J0R1 = besselj(0,kR);
J1R1 = besselj(1,kR);
......@@ -69,25 +63,20 @@ for j1=1:N
end
end
Khat = 2*kR * ifftshift(Khat); % the factor 2R corrects an error in Vainikko's paper
%% Calculate part of far field operator that corresponds to second order scattering first on q1 then on q2:
Khat = 2*kR * ifftshift(Khat);
% Calculate part of far field operator corresponding to second order scattering first on q1 then on q2:
F = zeros(nxhat,nd);
for iteri = 1:nd
ui = uinc(x,y,d);
Ui = reshape(ui(:,iteri),[N,N]);
% Vs1 = fftshift(ifft2(Khat.*fft2(ifftshift(Q1.*Ui)))); % Born approximation of us by scattering on q1
Vs1 = ifft2(ifftshift(fftshift(Khat).*fftshift(fft2(Q1.*Ui))));% fftshift(ifft2(Khat.*fft2(ifftshift(Q1.*Ui))));
c = getc(N,h);
% Us1 = -h^2 * ToepPhi(c,Vs1);
Us1 = h^2 * ToepPhi(c,Q1.*Ui);
% F as Born approximation of far field of Us1:
% F as first order Born approximation of far field of Us1:
Vcol = reshape(Q2.*Us1,(N)^2,1);
Vhelp = repmat(Vcol,1,nxhat);
E = exp(-1i*[x,y]*[cos(xhat), sin(xhat)].');
......@@ -97,7 +86,7 @@ for iteri = 1:nd
end
F = 2*pi/nd * F; % weights of trapecoidal rule
F = 2*pi/nd * F; % adding weights of trapecoidal rule
end
......@@ -118,16 +107,6 @@ rot = par(5)*pi/180;
R = [ cos(-rot) -sin(-rot) ; sin(-rot) cos(-rot) ];
shift = repmat([par(3); par(4)],1,n);
% switch object
% case 'circle'
% al = par(1);
% be = par(2);
% y_mod = R*([y1.';y2.']-shift); % 2*n array
% q_value = lambda*double(sqrt((y_mod(1,:)/al).^2+(y_mod(2,:)/be).^2) <= 1);
% % q_value = double(and(abs(y_mod(1,:)) <= al, abs(y_mod(2,:)) <= be));
% q_value = q_value.';
% end
[x,~,~,~] = kurve(sqrt(n), object, par);
[x_phi,x_rad] = cart2pol(x(:,1)-par(3)*ones(sqrt(n),1),x(:,2)-par(4)*ones(sqrt(n),1));
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment