Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • jonas.krimmer/turbulent-channel-model
1 result
Show changes
Commits on Source (3)
......@@ -156,21 +156,33 @@ function scintillation_index(fn; basedir=pwd(), debug=false, showplot=false)
λ = metadata["lambda"]
Dz = metadata["Dz"]
Cn² = metadata["Cn2"]
w0 = metadata["w0"]
l0 = metadata["l0"]
L0 = metadata["L0"]
# scintillation index along highest dimension, note that the dumped fields are not fftshifted!
SI = squeeze(scv(urx; dims=ndims(urx)))
SI0 = CUDA.@allowscalar first(SI) # without the fftshift, the first element is the on-axis one
if debug
# compute theoretical reference values
SI_pw = scintillation_index_pw(2π / λ, Dz, Cn², l0, L0)
SI_sw = scintillation_index_sw(2π / λ, Dz, Cn², l0, L0)
SI_gaussian = scintillation_index_gaussian(2π / λ, Dz, Cn², w0, l0, L0)
@info "Estimated on-axis scintillation index: " SI0
@info "Theoretical result (plane wave): " SI_pw
@info "Theoretical result (spherical wave): " SI_sw
@info "Theoretical result (gaussian beam): " SI_gaussian
# for weak fluctuations, the scintillation index leads to the Rytov variance
σ²ᵣ_pw = rytov_pw(2π / λ, Dz, Cn²)
@info "Rytov variance (plane wave): " σ²ᵣ_pw
σ²ᵣ_sw = rytov_sw(2π / λ, Dz, Cn²)
@info "Rytov variance (spherical wave): " σ²ᵣ_sw
# check convergence on axis
SI_evo = squeeze(cumscv(urx[1, 1, :]))
y = Adapt.adapt(Array, SI_evo)
p = plot.scatter(y=y)
p.layout.xaxis.title = "Number of iterations"
p.layout.yaxis.title = "Estimated scintillation index"
@info "Theoretical scintillation index (PW, Kolmogorov): " exp(0.49σ²ᵣ_pw / (1 + 1.11σ²ᵣ_pw^(6 // 5))^(7 // 6) + 0.51σ²ᵣ_pw / (1 + 0.69σ²ᵣ_pw^(6 // 5))^(5 // 6)) - 1
display(p)
end
if showplot
......
......@@ -107,17 +107,16 @@ function batch_scintillation_index(dirname)
# gather all hdf5 files in the given directory `dirname`
files = readdir(dirname, join=true)
csvidx = findfirst(contains("xvals.csv"), files)
h5files = filter(x -> splitext(x)[2] == ".hdf5", files)
Nf = length(h5files)
# gather xvals from corresponding csv if possible - otherwise 1:N
df = if isnothing(csvidx)
DataFrame(:File => range(1, Nf))
else
CSV.read(files[csvidx], DataFrame)
# gather xvals from corresponding csv if possible - otherwise generate xvals.csv and fill with 1:N
xvals_fn = joinpath(dirname, "xvals.csv")
!isfile(xvals_fn) && open(xvals_fn, "w") do fid
CSV.write(fid, DataFrame(:file => range(1, Nf)))
end
df = CSV.read(xvals_fn, DataFrame)
SI_est = zeros(Nf)
SI_pw = zeros(Nf)
......@@ -133,7 +132,9 @@ function batch_scintillation_index(dirname)
# make sure the order the files are read matches the xvals in the DataFrame
xname = first(names(df))
@assert df[k, xname] == metadata[string(xname)]
if xname != "file"
@assert df[k, xname] == metadata[string(xname)]
end
Cn² = metadata["Cn2"]
λ = metadata["lambda"]
......
......@@ -232,6 +232,12 @@ function scv(u::AbstractArray{T,N}; dims=:) where {T,N}
mean(abs2, I; dims) ./ mean(I; dims) .^ 2 .- 1 # it might be advantageous to not use `var` to avoid computing the mean twice
end
function cumscv(u::AbstractArray{T,N}; dims=N) where {T,N}
I = abs2.(u)
= I .^ 2
cumsum(; dims) .* (1:size(I, dims))./ cumsum(I; dims) .^ 2 .- 1
end
function estimate_ccdf(v)
# local ccdf
......