Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • jonas.krimmer/turbulent-channel-model
1 result
Show changes
Commits on Source (10)
......@@ -3,5 +3,13 @@
# committed for packages, but should be committed for applications that require a static
# environment.
Manifest.toml
# VSCode settings
.vscode/settings.json
.DS_Store
\ No newline at end of file
# Mac
.DS_Store
# Project-specific
*.hdf5
*.csv
\ No newline at end of file
......@@ -3,122 +3,153 @@ using CSV
include(joinpath("..", "examples", "repeated_wave_propagation.jl"))
include(joinpath("..", "examples", "analyze_turbulent_channel_model.jl"))
include(joinpath("..", "examples", "analyze_coupling_data.jl"))
include(joinpath("..", "examples", "batch_analysis.jl"))
include(joinpath("..", "examples", "from_dump.jl"))
function analyze_batch_scintillation_index(dirname; dfcol=1)
function plot_batch_scintillation_index(dirname; xcols=:, kwargs...)
# gather all hdf5 files in the given directory `dirname`
files = readdir(dirname, join=true)
csvidx = findfirst(contains("xvals.csv"), files)
h5files = filter(x -> splitext(x)[2] == ".hdf5", files)
Nf = length(h5files)
# gather xvals from corresponding csv if possible - otherwise 1:N
xval_df = if isnothing(csvidx)
DataFrame(:File => range(1, Nf))
xidx = findfirst(contains("xvals.csv"), files)
csvidx = findfirst(contains("scintillation_indices.csv"), files)
if isnothing(xidx)
throw(MissingException("File xvals.csv not found."))
end
if isnothing(csvidx)
throw(MissingException("File scintillation_indices.csv not found."))
end
# read files
xdf = CSV.read(files[xidx], DataFrame)
df = CSV.read(files[csvidx], DataFrame)
# gather all swept variables
xnames = names(xdf)
xnames_plt = if isone(length(xnames))
first(xnames)
else
CSV.read(files[csvidx], DataFrame)
xnames[xcols]
end
# choose column of xval if multiple parameters have been swept simultaneously
xname = names(xval_df)[dfcol]
xvals = xval_df[!, xname]
SI_est = zeros(Nf)
SI_pw = zeros(Nf)
SI_sw = zeros(Nf)
SI_gaussian = zeros(Nf)
# add columns for sampling requirements
req1 = falses(Nf)
req2 = falses(Nf)
req3 = falses(Nf)
req4 = falses(Nf)
plt = _plot_batch_scintillation_index(df, xnames, xnames_plt; kwargs...)
display(plt)
return
end
p = Progress(Nf; showspeed=true)
for (k, file) enumerate(h5files)
SI_est[k] = scintillation_index(file)
function _plot_batch_scintillation_index(df, xnames::AbstractVector{T}, xnames_plt::T; xscale="linear", yscale="linear", relative=false, reference="gaussian") where {T<:Union{Symbol,String}}
# get x-axis
x = df[!, xnames_plt]
yref = df[!, reference]
ye = df[!, "estimate"]
metadata = h5open(file, "r") do h5
Dict(attrs(h5))
end
if relative
plt = plot.scatter(x=x, y=100 * relrms(ye, yref, dims=()), name="Estimate", mode="markers", marker=Config(color="black"), showlegend=true)
Cn² = metadata["Cn2"]
λ = metadata["lambda"]
Dz = metadata["Dz"]
w0 = metadata["w0"]
# format y-axis
plt.layout.yaxis.title = "Rel. error w.r.t. reference / %"
plt.layout.yaxis.range = [0, 100]
else
plt = plot.scatter(x=x, y=yref, name="Reference ($reference)", mode="markers")
plt.scatter(x=x, y=ye, name="Estimate", mode="markers", marker=Config(color="black"))
l0 = metadata["l0"]
L0 = metadata["L0"]
# the transverse grid resolution is inherently an inner scale of turbulence
dxm = maximum(metadata["dx"])
l0 = max(l0, dxm)
SI_pw[k] = scintillation_index_pw(2π / λ, Dz, Cn², l0, L0)
SI_sw[k] = scintillation_index_sw(2π / λ, Dz, Cn², l0, L0)
SI_gaussian[k] = scintillation_index_gaussian(2π / λ, Dz, Cn², w0, l0, L0)
req1[k], req2[k], req3[k], req4[k] = post_dump_sampling_check(file; silent=true)
next!(p, showvalues = [("file", file)])
# format y-axis
plt.layout.yaxis.title = "Scintillation index"
plt.layout.yaxis.range = [0, 1.1 * maximum.(select(df, Not(xnames)) |> eachcol) |> maximum]
end
# dump results
df = DataFrame(xname => xvals, "pw" => SI_pw, "sw" => SI_sw, "gaussian" => SI_gaussian, "estimate" => SI_est, "req1" => req1, "req2" => req2, "req3" => req3, "req4" => req4)
open(joinpath(dirname, "scintillation_indices.csv"), "w") do fid
CSV.write(fid, df)
end
nothing
end
function plot_batch_scintillation_index(dirname; xscale="linear", yscale="linear")
# gather all hdf5 files in the given directory `dirname`
files = readdir(dirname, join=true)
csvidx = findfirst(contains("scintillation_indices.csv"), files)
# read file
df = CSV.read(files[csvidx], DataFrame)
xname = first(names(df))
xvals = df[!, xname]
# visualize results
plt = plot.scatter(x=xvals, y=df[!, "pw"], name="Plane wave")
plt.scatter(x=xvals, y=df[!, "sw"], name="Spherical wave")
plt.scatter(x=xvals, y=df[!, "gaussian"], name="Gaussian beam")
plt.scatter(x=xvals, y=df[!, "estimate"], name="Estimate", mode="markers", marker=Config(color="black"))
plt.layout.xaxis.title = string(xname)
plt.layout.yaxis.title = "Scintillation index"
# set lower yaxis limit to 0
yl = plt.layout.yaxis.range
yl[1] = 0
plt.layout.yaxis.range = yl
plt.layout.xaxis.title = string(xnames_plt)
# set x/y axis to logarithmic
plt.layout.xaxis.type = xscale
plt.layout.yaxis.type = yscale
display(plt)
return plt
end
# # visualize relative errors
# plte = plot.scatter(x=xvals, y=100 * relrms(df[!, "estimate"], df[!, "pw"], dims=()), name="Plane wave")
# plte.scatter(x=xvals, y=100 * relrms(df[!, "estimate"], df[!, "sw"], dims=()), name="Spherical wave")
# plte.scatter(x=xvals, y=100 * relrms(df[!, "estimate"], df[!, "gaussian"], dims=()), name="Gaussian beam")
function _plot_batch_scintillation_index(df, xnames::AbstractVector{T}, xnames_plt::AbstractVector{T}; xscale="linear", yscale="linear", relative=false, reference="gaussian") where {T<:Union{Symbol,String}}
# we do not support anything but two xnames in this function
@assert length(xnames_plt) == 2
# get z-data
z_df = unstack(df, xnames_plt..., "estimate")
# convert z-data to Matrix
z = Matrix(z_df[:, 2:end]) |> transpose
# detect dependent variables by checking whether the off-diagonals contain only NaNs
zv = vec(z) |> collect
offdiag = deleteat!(zv, diagind(z))
if all(ismissing, offdiag)
# we consider two dependent variables
ye = diag(z)
# gather corresponding reference values
zref_df = unstack(df, xnames_plt..., reference)
yref = diag(Matrix(zref_df[:, 2:end]))
# gather both x-axes
x1 = string.(z_df[!, xnames_plt[1]])
x2 = names(z_df)[2:end]
if relative
err = 100 * relrms(ye, yref, dims=())
plt = plot.scatter(x=x1, y=err, name="Estimate", mode="markers", marker=Config(color=err, cmin=0, cmax=100), showlegend=true)
plt.scatter(x=x2, y=fill(NaN, size(x2)), xaxis="x2", showlegend=false)
# format y-axis
plt.layout.yaxis.title = "Rel. error w.r.t. reference / %"
plt.layout.yaxis.range = [0, 100]
else
plt = plot.scatter(x=x1, y=yref, name="Reference ($reference)", mode="markers")
plt.scatter(x=x1, y=ye, name="Estimate", mode="markers", marker=Config(color="black"))
plt.scatter(x=x2, y=fill(NaN, size(x2)), xaxis="x2", showlegend=false)
# format y-axis
plt.layout.yaxis.title = "Scintillation index"
plt.layout.yaxis.range = [0, 1.1 * maximum.(select(df, Not(xnames)) |> eachcol) |> maximum]
end
# plte.layout.yaxis.range = [0, 200]
# plte.layout.xaxis.title = string(xname)
# plte.layout.yaxis.title = "Rel. error / %"
# # set x/y axis to logarithmic
# plte.layout.xaxis.type = xscale
# plte.layout.yaxis.type = yscale
# format primary xaxis
plt.layout.xaxis.title = string(xnames_plt[1])
# format second x-axis
plt.layout.xaxis2.position = 1.0
plt.layout.xaxis2.anchor = "free"
plt.layout.xaxis2.overlaying = "x"
plt.layout.xaxis2.side = "top"
plt.layout.xaxis2.title = string(xnames_plt[2])
# legend
plt.layout.legend.orientation = "h"
plt.layout.legend.xanchor = "center"
plt.layout.legend.x = 0.5
plt.layout.legend.y = 1.4
return plt
else
# get x-axis, should be categorical!
x = string.(z_df[!, xnames_plt[1]])
# get y-axis, should be categorical!
y = names(z_df)[2:end]
if relative
# get z-data
zref_df = unstack(df, xnames_plt..., reference)
# convert z-data to Matrix
zref = Matrix(zref_df[:, 2:end]) |> transpose
plt = plot.heatmap(x=x, y=y, z=100 * relrms(z, zref, dims=()), name="Estimate", zmin=0, zmax=100, colorscale="Reds")
plt.layout.title = "Rel. error w.r.t. reference / %"
else
plt = plot.heatmap(x=x, y=y, z=z, name="Estimate", zmin=0, zmax=1.1 * maximum.(select(df, Not(xnames)) |> eachcol) |> maximum)
plt.layout.title = "Scintillation index"
end
# display(plte)
plt.layout.xaxis.title = string(xnames_plt[1])
plt.layout.yaxis.title = string(xnames_plt[2])
return
# set x/y axis to logarithmic if needed
plt.layout.xaxis.type = xscale
plt.layout.yaxis.type = yscale
return plt
end
end
\ No newline at end of file
include("analyze_turbulent_channel_model.jl")
include("analyze_coupling_data.jl")
include("repeated_wave_propagation.jl")
function batch_repeated_wave_propagation(args=Dict(:Nz => 4:16, :dz => 1e3 ./ (3:15)); iters=100, λ=1.55e-6, showprogress=true, samplingcheck=false, kwargs...)
using CSV
# make sure, that all value arrays of the argument dict are of the same size
valuelen = length.(values(args))
Nv = minimum(valuelen)
@assert isone(length(unique(valuelen)))
dir = timeprefix(fmt="YYYY-mm-dd")
function outer_product_across_dicts(dicts...)
if isempty(dicts)
return []
end
# Make sure the value arrays of each dict are of the same size
for dict dicts
valuelen = length.(values(dict))
if !isone(length(unique(valuelen)))
@info "Length of values:" Dict(k => length(v) for (k, v) dict)
throw(ArgumentError("All values of an argument must have the same length."))
end
end
# Extract keys and vectors from each dictionary
dict_keys_vectors = [collect(pairs(dict)) for dict dicts]
# Calculate the number of combinations
dims = [length(first(kv)[2]) for kv dict_keys_vectors]
# Initialize the result array
result = Array{NamedTuple, length(dims)}(undef, dims...)
# Generate all combinations of indices
indices_combinations = Iterators.product(map(x -> 1:x, dims)...)
# Populate the result array, use an OrderedDict to maintain the order!
for indices indices_combinations
current_dict = OrderedDict{Symbol, Any}()
for (i, kv_pairs) enumerate(dict_keys_vectors)
for (key, vector) kv_pairs
current_dict[key] = vector[indices[i]]
end
end
result[indices...] = NamedTuple(current_dict)
end
return result
end
function batch_repeated_wave_propagation(arg1=Dict(:Nz => 4:16, :dz => 1e3 ./ (3:15)), additional...; showprogress=true, samplingcheck=false, kwargs...)
args = (arg1, additional...)
for (k, v) pairs(args)
vmin, vmax = extrema(v)
dir *= "$(k)_$(round(vmin,sigdigits=3))_$(round(vmax,sigdigits=3))"
dir = timeprefix(; fmt="YYYY-mm-dd", postfix="")
# Build name of target directory
for arg args
for (k, v) pairs(arg)
vmin, vmax = if eltype(v) <: Integer
extrema(v)
else
round.(extrema(v), sigdigits=3)
end
dir *= "_$(k)_$(vmin)_$(vmax)"
end
end
if isdir(dir)
if !isempty(readdir(dir))
@warn "Directory $dir already exists! Do you want to write into this directory anyway? (y/N)"
@warn "Directory $dir already exists and is not empty! Do you want to write into this directory anyway? (y/N)"
response = lowercase(strip(readline()))
if response == "y"
println("Continuing...")
......@@ -30,31 +81,21 @@ function batch_repeated_wave_propagation(args=Dict(:Nz => 4:16, :dz => 1e3 ./ (3
mkdir(dir)
end
p = Progress(Nv; showspeed=true, enabled=showprogress)
if :iters keys(args)
# assume no other parameter is swept
(length(args) > 1) && @warn "Other parameters besides iters are ignored..."
for i 1:Nv
# round! iters must take integer values
_iters = round(Int, args[:iters][i])
# we have to sort the outputs, why we prepend a number to the filenames | simply provide a namedtuple (; iters) to the kwarg meta
repeated_wave_propagation(_iters; λ, dir, fnprefix=lpad(i, ceil(Int, log10(Nv)), "0") * "_", showprogress=false, samplingcheck, meta=(; iters=_iters), kwargs...)
sleep(0.1)
next!(p, showvalues = [(string(k), v) for (k, v) pairs(xargs)])
end
else
for i 1:Nv
xargs = (; (k => v[i] for (k, v) pairs(args))...)
# we have to sort the outputs, why we prepend a number to the filenames
repeated_wave_propagation(iters; xargs..., λ, dir, fnprefix=lpad(i, ceil(Int, log10(Nv)), "0") * "_", showprogress=false, samplingcheck, meta=xargs, kwargs...)
sleep(0.1)
next!(p, showvalues = [(string(k), v) for (k, v) pairs(xargs)])
end
# Set up the array of NamedTuples for the iteration
itr = outer_product_across_dicts(args...)
Nv = length(itr)
p = Progress(length(itr); showspeed=true, enabled=showprogress)
for (i, xarg) enumerate(itr)
# we have to sort the outputs, why we prepend a number to the filenames
repeated_wave_propagation(; xarg..., dir, fnprefix=lpad(i, ceil(Int, log10(Nv + 1)), "0") * "_", showprogress=false, samplingcheck, meta=xarg, kwargs...)
sleep(0.1)
next!(p, showvalues=[(string(k), v) for (k, v) pairs(xarg)])
end
# Save to CSV
df = DataFrame(args)
df = DataFrame(itr |> vec)
open(joinpath(dir, "xvals.csv"), "w") do fid
CSV.write(fid, df)
end
......@@ -62,6 +103,71 @@ function batch_repeated_wave_propagation(args=Dict(:Nz => 4:16, :dz => 1e3 ./ (3
nothing
end
function batch_scintillation_index(dirname)
# gather all hdf5 files in the given directory `dirname`
files = readdir(dirname, join=true)
csvidx = findfirst(contains("xvals.csv"), files)
h5files = filter(x -> splitext(x)[2] == ".hdf5", files)
Nf = length(h5files)
# gather xvals from corresponding csv if possible - otherwise 1:N
df = if isnothing(csvidx)
DataFrame(:File => range(1, Nf))
else
CSV.read(files[csvidx], DataFrame)
end
SI_est = zeros(Nf)
SI_pw = zeros(Nf)
SI_sw = zeros(Nf)
SI_gaussian = zeros(Nf)
p = Progress(Nf; showspeed=true)
for (k, file) enumerate(h5files)
SI_est[k] = scintillation_index(file)
metadata = attributes_from_dump(file)
# make sure the order the files are read matches the xvals in the DataFrame
xname = first(names(df))
@assert df[k, xname] == metadata[string(xname)]
Cn² = metadata["Cn2"]
λ = metadata["lambda"]
Dz = metadata["Dz"]
w0 = metadata["w0"]
l0 = metadata["l0"]
L0 = metadata["L0"]
# the transverse grid resolution is inherently an inner scale of turbulence
dxm = maximum(metadata["dx"])
l0 = max(l0, dxm)
SI_pw[k] = scintillation_index_pw(2π / λ, Dz, Cn², l0, L0)
SI_sw[k] = scintillation_index_sw(2π / λ, Dz, Cn², l0, L0)
SI_gaussian[k] = scintillation_index_gaussian(2π / λ, Dz, Cn², w0, l0, L0)
next!(p, showvalues=[("file", file)])
end
# dump results
df[!, "pw"] = SI_pw
df[!, "sw"] = SI_sw
df[!, "gaussian"] = SI_gaussian
df[!, "estimate"] = SI_est
open(joinpath(dirname, "scintillation_indices.csv"), "w") do fid
CSV.write(fid, df)
end
nothing
end
function batch_coupling(; basedir=pwd())
fns = readdir(basedir, join=true)
filter!(contains(r"\d+\.hdf5"), fns)
......
......@@ -29,10 +29,13 @@ function plot_from_dump(fn; iter=1, mode=1, collimate=false)
Plot(tr, lt)
end
function attributes_from_dump(fn)
h5open(fn, "r") do fid
function attributes_from_dump(fn; disp=false)
meta = h5open(fn, "r") do fid
OrderedDict(attrs(fid))
end
disp && show(IOContext(stdout, :limit => false), "text/plain", meta)
return meta
end
function post_dump_sampling_check(fn; kwargs...)
......
......@@ -21,9 +21,9 @@ function repeated_wave_propagation(utx::AbstractArray{Complex{T}}, midx, domain:
# estimate Fried parameters for partial propagations
r0 = partial_r0_pw(2π / λ, domain.z, Cn²)
σr²eff = rytov_pw(2π / λ, domain.Dz, channel.Cn²)
# compute Rytov variance per step
σr² = rytov_pw(2π / λ, domain.dz, channel.Cn²)
(σr² >= 0.1) && @warn "Insufficient number of planes, not within weak fluctuation regime."
σr² = rytov_pw.(2π / λ, diff(domain.z), channel.Cn²)
# estimated beam waist radius at receiver
zr = 2π / λ * w0^2 / 2
......@@ -74,7 +74,7 @@ function repeated_wave_propagation(utx::AbstractArray{Complex{T}}, midx, domain:
attrs(fid)["modes"] = midx
attrs(fid)["iters"] = iters
attrs(fid)["nchunks"] = nchunks
attrs(fid)["chunksize"] = chunksize
attrs(fid)["chunksize"] = min(chunksize, iters)
attrs(fid)["dx"] = collect(domain.dx)
attrs(fid)["dy"] = collect(domain.dy)
attrs(fid)["dz"] = domain.dz
......@@ -84,6 +84,8 @@ function repeated_wave_propagation(utx::AbstractArray{Complex{T}}, midx, domain:
attrs(fid)["D_r0"] = D_r0
attrs(fid)["r0eff"] = r0eff
attrs(fid)["r0"] = r0
attrs(fid)["sigmaR2eff"] = σr²eff
attrs(fid)["sigmaR2"] = σr²
attrs(fid)["Cn2"] = channel.Cn²
attrs(fid)["l0"] = channel.l0
attrs(fid)["L0"] = channel.L0
......@@ -111,7 +113,7 @@ function repeated_wave_propagation(utx::AbstractArray{Complex{T}}, midx, domain:
nothing
end
function repeated_wave_propagation(iters, T::DataType=Float64; Nx::Int=128, λ=1.55e-6, w0=1e-2, dx1=1e-3, dxn=dx1, dz=5e1, Nz::Int=21, m=0, n=0, kwargs...)
function repeated_wave_propagation(T::DataType=Float64; iters=100, Nx::Int=128, λ=1.55e-6, w0=1e-2, dx1=1e-3, dxn=dx1, dz=5e1, Nz::Int=21, m=0, n=0, kwargs...)
beam = Beam{T}(m, n, λ, w0)
domain = if dx1 == dxn
......@@ -126,7 +128,7 @@ function repeated_wave_propagation(iters, T::DataType=Float64; Nx::Int=128, λ=1
repeated_wave_propagation(utx, midx, domain, iters; beam.λ, beam.w0, kwargs...)
end
function repeated_wave_propagation_multi(iters, T::DataType=Float64; Nx::Int=128, λ=1.55e-6, w0=1e-2, dx1=1e-3, dxn=dx1, dz=5e1, Nz::Int=21, ng=3, kwargs...)
function repeated_wave_propagation_multi(T::DataType=Float64; iters=100, Nx::Int=128, λ=1.55e-6, w0=1e-2, dx1=1e-3, dxn=dx1, dz=5e1, Nz::Int=21, ng=3, kwargs...)
# simulation domain
domain = if dx1 == dxn
Domain{T}(dx1, dz, Nx, Nz)
......
......@@ -167,6 +167,9 @@ function sdm_statistics(fn; ng=nothing, basedir=pwd(), Nopt=10, statfun=mdl, tar
if showplot
x, y = estimate_ccdf(stat)
plot.scatter(; x, y)
plt = plot.scatter(; x, y)
plt.layout.yaxis.type = "log"
display(plt)
end
end
\ No newline at end of file
......@@ -229,7 +229,7 @@ end
"""
function scv(u::AbstractArray{T,N}; dims=:) where {T,N}
I = abs2.(u)
var(I; dims, corrected=false) ./ mean(I; dims) .^ 2
mean(abs2, I; dims) ./ mean(I; dims) .^ 2 .- 1 # it might be advantageous to not use `var` to avoid computing the mean twice
end
......
......@@ -18,7 +18,7 @@ containertype(::T) where {T} = T.name.wrapper
# generate current time prefix
timeprefix(t::DateTime=now(); fmt="YYYY-mm-dd-HH-MM-SS") = "$(Dates.format(t, fmt))_"
timeprefix(t::DateTime=now(); fmt="YYYY-mm-dd-HH-MM-SS", postfix="_") = "$(Dates.format(t, fmt))" * postfix
function cartgrid(M, dx, N, dy)
x = fftfreq(M, M * dx)
......