Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • jonas.krimmer/turbulent-channel-model
1 result
Show changes
Commits on Source (5)
......@@ -8,7 +8,7 @@ include(joinpath("..", "examples", "analyze_turbulent_channel_model.jl"))
xvals has to be a vector/range/any iterable
"""
function batch_scintillation_index(args=Dict(:Nz => 2:11, :dz => 1e3 ./ (1:10)); iters=100, λ=1.55e-6, showprogress=true, samplingcheck=false, kwargs...)
function batch_scintillation_index(args=Dict(:Nz => 4:16, :dz => 1e3 ./ (3:15)); iters=100, λ=1.55e-6, showprogress=true, samplingcheck=false, kwargs...)
# make sure, that all value arrays of the argument dict are of the same size
valuelen = length.(values(args))
......
include(joinpath("..", "examples", "repeated_wave_propagation.jl"))
function pointsrc(; Nx=256, dx1=1e-3, dz=1e1, λ=1.55e-6, dx2=λ * dz / (Nx * dx1), Nplt=256)
# The bandwidth of the point source is 1/dx1, i.e., the largest spatial frequency is 1/2dx1 which corresponds to cos(α) = kx / k0 = λ/2dx1. Accordingly, we find tan(α) = kz / kx. Hence, after traversing a distance dz, the spatial extent of the point source has increased by 2dz / tan(α) = 2dz / tan(arccos(λ / 2dx1)) = 2dz / √((2dx1 / λ)^2 - 1) ≈ dz * λ / dx1
D1 = dx1
D2 = 0.75dz * λ / dx1
@info "Observation plane aperture size D2=$D2"
# Check the angular spectrum method sampling
check_sampling(dz, Nx, dx1, D1, dx2, D2; λ, R=Inf, debug=true)
# Initialize the field with a point source at the origin
u = zeros(ComplexF64, Nx, Nx)
u[1] = 1
# Propagate the field using the two-step angular spectrum method
twostep_prop_ang!(u, dx1, dx2, 2π / λ, dz)
us = fftshift(u)
# Plot the result
x0 = (Nx > Nplt) ? -Nplt / 2 * dx2 : -Nx / 2 * dx2
uplt = (Nx > Nplt) ? center_extract(us, (Nplt, Nplt)) : us
Plot(complex_plot(; x0=x0, y0=x0, dx=dx2, dy=dx2, z=uplt))
end
\ No newline at end of file
include(joinpath("..", "src", "sampling_requirements.jl"))
include(joinpath("..", "src", "turbulent_channel.jl"))
include(joinpath("..", "src", "monte_carlo.jl"))
include(joinpath("..", "src", "source.jl"))
include("plot_results.jl")
......@@ -54,7 +55,7 @@ function repeated_wave_propagation(utx::AbstractArray{Complex{T}}, midx, domain:
fftplan = plan_fft!(utx[:, :, 1])
for (j, chunk) enumerate(Iterators.partition(1:iters, chunksize))
urx = maybe_cuda(zeros(ComplexF64, size(utx)..., length(chunk)))
urx = maybe_cuda(zeros(Complex{T}, size(utx)..., length(chunk)))
# monte carlo loop
mc_iterations!(urx, utx, r0, domain, channel, chunksize, j, nchunks; showprogress, λ, uniform, fftplan)
# receive power (within aperture)
......@@ -110,39 +111,34 @@ function repeated_wave_propagation(utx::AbstractArray{Complex{T}}, midx, domain:
nothing
end
function repeated_wave_propagation(iters; Nx::Int=128, λ=1.55e-6, w0=1e-2, dx1=1e-3, dxn=1e-3, dz=5e1, Nz::Int=21, m=0, n=0, kwargs...)
beam = Beam(m, n, λ, w0)
function repeated_wave_propagation(iters, T::DataType=Float64; Nx::Int=128, λ=1.55e-6, w0=1e-2, dx1=1e-3, dxn=1e-3, dz=5e1, Nz::Int=21, m=0, n=0, kwargs...)
beam = Beam{T}(m, n, λ, w0)
domain = if dx1 == dxn
Domain(dx1, dz, Nx, Nz)
Domain{T}(dx1, dz, Nx, Nz)
else
Domain(dx1, dxn, dz, Nx, Nz)
Domain{T}(dx1, dxn, dz, Nx, Nz)
end
midx = [(m, n)]
utx = gaussian_source(domain, w0, λ, midx...)
utx = maybe_cuda(broadcast(beam.fun, domain.x(1), domain.y(1) |> transpose, 0))
repeated_wave_propagation(utx, midx, domain, iters; beam.λ, beam.w0, kwargs...)
end
function repeated_wave_propagation_multi(iters; Nx::Int=128, λ=1.55e-6, w0=1e-2, dx1=1e-3, dxn=1e-3, dz=5e1, Nz::Int=21, ng=3, kwargs...)
function repeated_wave_propagation_multi(iters, T::DataType=Float64; Nx::Int=128, λ=1.55e-6, w0=1e-2, dx1=1e-3, dxn=1e-3, dz=5e1, Nz::Int=21, ng=3, kwargs...)
# simulation domain
domain = if dx1 == dxn
Domain(dx1, dz, Nx, Nz)
Domain{T}(dx1, dz, Nx, Nz)
else
Domain(dx1, dxn, dz, Nx, Nz)
Domain{T}(dx1, dxn, dz, Nx, Nz)
end
# we consider the modes from the first ng mode groups
midx = sort!([(m, n) for m range(0, ng - 1) for n range(0, ng - m - 1)], by=sum)
Nmodes = length(midx)
# set up transmit modes
lgfuns = Dict(m => lg_fun_cart(m[1], m[2], w0, λ) for m midx)
utx = maybe_cuda(zeros(ComplexF64, domain.Nx, domain.Ny, Nmodes))
for (k, m) enumerate(midx)
broadcast!(lgfuns[m], view(utx, :, :, k), domain.x(1), domain.y(1) |> transpose, 0)
end
utx = gaussian_source(domain, w0, λ, midx)
repeated_wave_propagation(utx, midx, domain, iters; λ, w0, kwargs...)
end
\ No newline at end of file
......@@ -89,18 +89,14 @@ end
"""
To properly represent the atmosphere, we have to find optimal r0s for each partial propagation such that the first few moments match.
"""
function partial_r0_pw(k0, z, Cn²; debug=false)
partial_r0_pw(k0, z, Cn²; debug=false) = partial_r0_pw!(zero(z), k0, z, Cn²; debug)
function partial_r0_pw!(r0s::AbstractVector{T}, k0, z::AbstractVector{T}, Cn²; debug=false) where {T}
Nz = length(z)
# define target values
r0 = fried_pw(k0, last(z), Cn²)
σ²χ = sigma_chi_pw(k0, last(z), Cn²)
# single propagation does not require any optimization
if isone(Nz)
return [r0]
end
# define A-matrix for plane wave, compare Schmidt (9.75)
A = zeros(2, Nz)
@. A[1, :] = 1
......@@ -129,17 +125,22 @@ function partial_r0_pw(k0, z, Cn²; debug=false)
X = Optim.minimizer(result)
# Convert optimization result to screen r0s
r0s = X .^ (-3 / 5)
@. r0s = X^(-3 / 5)
# check result
bp = A * X
r0res = bp[1]^(-3 / 5)
σ²χres = bp[2] * 1.33 * (z[end] / k0)^(5 / 6)
abs((r0res - r0) / r0) > 1e-3 && @warn "Total r0: $(r0res). Target r0: $(r0)."
abs((σ²χres - σ²χ) / σ²χ) > 1e-3 && @warn "Total σ²χ: $(σ²χres). Target σ²χ: $(σ²χ)."
abs((r0res - r0) / r0) > 1e-3 && @warn "Total r0: $(r0res). Target r0: $(r0)."
abs((σ²χres - σ²χ) / σ²χ) > 1e-3 && @warn "Total σ²χ: $(σ²χres). Target σ²χ: $(σ²χ)."
if debug
@info "Coefficient matrix:"
display(A)
@info "Lower limit for r0:"
display(x2 .^ (-3 / 5))
# Check resulting r0sw & rytov
bp = A * X
r0res = bp[1]^(-3 / 5)
......@@ -151,25 +152,20 @@ function partial_r0_pw(k0, z, Cn²; debug=false)
return r0s
end
function partial_r0_sw(k0, z, Cn²; debug=false)
partial_r0_sw(k0, z, Cn²; debug=false) = partial_r0_sw!(zero(z), k0, z, Cn²; debug)
function partial_r0_sw!(r0s::AbstractVector{T}, k0, z::AbstractVector{T}, Cn²; debug=false) where {T}
Nz = length(z)
# define target values
r0 = fried_sw(k0, last(z), Cn²)
σ²χ = sigma_chi_sw(k0, last(z), Cn²)
# single propagation does not require any optimization
if isone(Nz)
return [r0]
end
# define A-matrix for plane wave, compare Schmidt (9.75)
A = zeros(2, Nz)
@. A[1, :] = (z / z[end])^(5 / 3)
@views @. A[2, 1:end-1] = (1 - z[1:end-1] / z[end])^(5 / 6) * (z[1:end-1] / z[end])^(5 / 6)
A[2, end] = 0
# define target vector for plane wave
# define target vector for spherical wave
b = [r0^(-5 / 3); σ²χ / 1.33 * (k0 / z[end])^(5 / 6)]
# Objective function
......@@ -195,17 +191,22 @@ function partial_r0_sw(k0, z, Cn²; debug=false)
X = Optim.minimizer(result)
# Convert optimization result to screen r0s
r0s = X .^ (-3 / 5)
@. r0s = X^(-3 / 5)
# check result
bp = A * X
r0res = bp[1]^(-3 / 5)
σ²χres = bp[2] * 1.33 * (z[end] / k0)^(5 / 6)
abs((r0res - r0) / r0) > 1e-3 && @warn "Total r0: $(r0res). Target r0: $(r0)."
abs((σ²χres - σ²χ) / σ²χ) > 1e-3 && @warn "Total σ²χ: $(σ²χres). Target σ²χ: $(σ²χ)."
abs((r0res - r0) / r0) > 1e-3 && @warn "Total r0: $(r0res). Target r0: $(r0)."
abs((σ²χres - σ²χ) / σ²χ) > 1e-3 && @warn "Total σ²χ: $(σ²χres). Target σ²χ: $(σ²χ)."
if debug
@info "Coefficient matrix:"
display(A)
@info "Lower limit for r0:"
display(x2 .^ (-3 / 5))
# Check resulting r0sw & rytov
bp = A * X
r0res = bp[1]^(-3 / 5)
......
include("helpers.jl")
include("generate_lg.jl")
include("newtypes.jl")
function gaussian_source(domain::Domain{T}, w0, λ, midx=(0, 0)) where {T}
utx = zeros(Complex{T}, domain.Nx, domain.Ny)
broadcast!(lg_fun_cart(midx..., T(w0), T(λ)), utx, domain.x(1), transpose(domain.y(1)), zero(T))
maybe_cuda(utx)
end
function gaussian_source(domain::Domain{T}, w0, λ, midx::AbstractVector=[(0, 0)]) where {T}
utx = zeros(Complex{T}, domain.Nx, domain.Ny, length(midx))
for (k, m) enumerate(midx)
broadcast!(lg_fun_cart(m..., T(w0), T(λ)), view(utx, :, :, k), domain.x(1), transpose(domain.y(1)), zero(T))
end
maybe_cuda(utx)
end
"""
point_source(domain[, λ, ROI])
Combination of sinc and Gaussian point-source models according to Schmidt 2010 p. 111, i.e., listing 6.9
"""
function point_source(domain::Domain{T}, λ=1.55e-6, ROI=0.94domain.Dx[end]) where {T}
utx = maybe_cuda(zeros(Complex{T}, domain.Nx, domain.Ny))
x = domain.x(1)
yt = domain.y(1) |> transpose
arg = ROI / (λ * domain.Dz)
@. utx = λ * domain.Dz * cispi((x^2 + yt^2) / (λ * domain.Dz)) * arg^2 * sinc(arg * x) * sinc(arg * yt) * exp(-(arg / 4)^2 * (x^2 + yt^2))
end
function super_gaussian_source(domain::Domain{T}, w=0.25, N=8) where {T}
utx = maybe_cuda(zeros(Complex{T}, domain.Nx, domain.Ny))
x = domain.x(1)
yt = domain.y(1) |> transpose
@. utx = exp(-((x^2 + yt^2) / T(w)^2)^N)
end
function plane_source(domain::Domain{T}) where {T}
maybe_cuda(fill(one(Complex{T}), domain.Nx, domain.Ny))
end
\ No newline at end of file
......@@ -136,7 +136,7 @@ end
function turbulent_channel(T::DataType=Float64; domain::Domain=Domain{T}(0.3 / 256, 1e2, 256, 11), channel::Channel=Channel{T}(1e-14, 1e-2, 1e2, andrews), beam::Beam=Beam{T}(0, 0, 1.55e-6, 1e-2), kwargs...)
# generate Gaussian beam
u = broadcast(beam.fun, domain.x(1), domain.y(1) |> transpose, zero(T))
u = gaussian_source(domain, beam.w0, beam.λ, (beam.l, beam.m))
# estimate proper r0
r0 = partial_r0_pw(beam.k0, domain.z, channel.Cn²)
......