Skip to content
Snippets Groups Projects
Commit 551719db authored by Jonas Krimmer's avatar Jonas Krimmer
Browse files

cleanup: remove r0-less functions

parent 029ac6ce
No related branches found
No related tags found
No related merge requests found
......@@ -49,52 +49,6 @@ function screen_to_refraction_op(screen::AbstractArray{T,3}, r0::AbstractVector)
@. R = cis(R)
end
function turbulent_channel!(u::AbstractMatrix{Complex{T}}, domain::Domain{T}=Domain{T}(), channel::TurbulentChannel{T}=TurbulentChannel{T}(); λ=1.55e-6, uniform::Bool=false, fftplan=plan_fft!(u)) where {T<:Union{Float32,Float64}}
# fried parameter for each **partial** propagation
r0 = T(fried_pw(2π / λ, domain.dz, channel.Cn²))
# choose number of subharmonics Nsh such that 3^Nsh * domain.d ≥ L0
Nsh = round(Int, cld(log(channel.L0 / min(domain.Dx, domain.Dy)), log(3))) # we assume L0 > d
# we need Nz-1 screens since Nz takes the source plane into account
Ncplx = cld(domain.Nz - 1, 2)
# preallocate phase screen array
screen = similar(u, size(u)..., Ncplx)
# Uniform sampling with subharmonics / nonuniform sampling
uniform ? ft_phase_screen!(screen; r0, dx=domain.dx, dy=domain.dy, channel.l0, channel.L0, centered=false, Nsh, channel.model) :
nuft_phase_screen!(screen; r0, dx=domain.dx, dy=domain.dy, channel.l0, channel.L0, centered=false, nthreads=1, tol=1e-5, channel.model)
R = screen_to_refraction_op(screen)
split_step_sym!(u, λ, domain.dx, domain.dy, domain.z, R; fftplan)
end
function turbulent_channel!(u::AbstractMatrix{Complex{T}}, domain::Domain{T,<:AbstractVector}=Domain{T}(1e-3, 2e-3, 1e2, 256, 11), channel::TurbulentChannel{T}=TurbulentChannel{T}(s); λ=1.55e-6, uniform::Bool=false, fftplan=plan_fft!(u)) where {T<:Union{Float32,Float64}}
# preallocate refraction operator array
R = similar(u, domain.Nx, domain.Ny, domain.Nz - 1)
# complex-valued array to store phase screen generated with nu-ft (output always complex-valued)
screen = similar(u, domain.Nx, domain.Ny)
for m 1:domain.Nz-1
# fried parameter for each **partial** propagation
r0 = T(fried_pw(2π / λ, domain.dz, channel.Cn²))
# choose number of subharmonics Nsh such that 3^Nsh * domain.d ≥ L0
Nsh = round(Int, cld(log(channel.L0 / min(domain.Dx[m], domain.Dy[m])), log(3))) # we assume L0 > d
# Uniform sampling with subharmonics / nonuniform sampling
uniform ? ft_phase_screen!(screen; r0, dx=domain.dx[m], dy=domain.dy[m], channel.l0, channel.L0, centered=false, Nsh, channel.model) :
nuft_phase_screen!(screen; r0, dx=domain.dx[m], dy=domain.dy[m], channel.l0, channel.L0, centered=false, nthreads=1, tol=1e-5, channel.model)
@. R[:, :, m] = cis(real(screen))
end
split_step_asym!(u, λ, domain.dx, domain.z, R; fftplan)
end
function turbulent_channel!(u::AbstractMatrix{Complex{T}}, r0::AbstractVector, domain::Domain{T}=Domain{T}(), channel::TurbulentChannel{T}=TurbulentChannel{T}(); λ=1.55e-6, uniform::Bool=false, fftplan=plan_fft!(u)) where {T<:Union{Float32,Float64}}
# choose number of subharmonics Nsh such that 3^Nsh * domain.d ≥ L0
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment