Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • jaroslav.borodavka/maximal-projection-gof
1 result
Show changes
Commits on Source (2)
......@@ -19,121 +19,7 @@ setwd("/home/jaroslav-borodavka/Schreibtisch/Dissertation/Arbeit/Bernoulli Submi
# load additionally required script
source("Legendre_Polynomial_Alternative.R")
#################################################################################################
## reuqired functions and test statistic ##
# test decision
Decision <- function(teststatistic_value, critical){
decision <- 0
if (teststatistic_value >= critical)
decision = 1
else
decision = 0
return(decision)
}
# uniformly distributed vectors on S^(d-1)
runif_sphere <- function(n, d){
X = mvrnorm(n, rep(0,d), diag(1,d))
if (n == 1){
temp = as.vector(crossprod(X))
U = X/sqrt(temp)
}
else{
temp = diag(X %*% t(X))
U = matrix(0, nrow = n, ncol = d)
for (j in 1:n){
U[j,] = X[j,]/sqrt(temp[j])
}
}
return(U)
}
# expectations Psi_d as per section 1
psi_d <- function(d, beta){
return(if (beta%%2 == 0) gamma((beta+1)/2)*gamma(d/2)/(sqrt(pi)*gamma((beta+d)/2)) else 0)
}
# squared and centered projections, used in T_stat_value
projection <- function(unif_point_cover, data, beta){
n = dim(data)[1]
d = dim(data)[2]
scalarproducts = data %*% t(unif_point_cover)
sums = colSums((scalarproducts)^beta)
return((1/n*sums - psi_d(d, beta))^2)
}
# test statistic T_n,beta, cover_n is the number of uniformly distributed points on the sphere
T_stat_value <- function(data, beta){
n = dim(data)[1]
d = dim(data)[2]
cover_n = 0
if (d < 5) cover_n = 5000 else cover_n = 20000
unif_points = runif_sphere(cover_n, d)
projections = projection(unif_point_cover = unif_points, data = data, beta = beta)
return(n*max(projections))
}
# uniformly distributed data
T_unif <- function(n, dim, beta){
return(list("realization" = T_stat_value(data = runif_sphere(n, dim),
beta = beta)))
}
# von Mises-Fisher alternative data
T_vMF <- function(n, dim, kappa, beta){
return(list("realization" = T_stat_value(data = rvmf(n, c(1,rep(0, dim-1)), kappa),
beta = beta)))
}
# other alternative data, cf. section 6
T_mixvmf_1 <- function(n, dim, p, beta){
U = runif(n, 0, 1)
sample = (U<p)*rvmf(n, c(-1,rep(0,dim-1)), 1) + (U>=p)*rvmf(n, c(1,rep(0,dim-1)), 1)
return(list("realization" = T_stat_value(data = sample,
beta = beta)))
}
T_mixvmf_2 <- function(n, dim, p, beta){
U = runif(n, 0, 1)
sample = (U<p)*rvmf(n, c(-1,rep(0,dim-1)), 1)+(U>=p)*rvmf(n, c(1,rep(0,dim-1)), 4)
return(list("realization" = T_stat_value(data = sample,
beta = beta)))
}
T_mixvmf_3 <- function(n, dim, beta){
p = 0.25
U = runif(n, 0, 1)
sample = (U<p)*rvmf(n, rep(-1,dim), 2) + (U>=p)*(U<2*p)*rvmf(n, c(-1,rep(1,dim-1)), 3) + (U>=2*p)*rvmf(n, c(1,rep(0,dim-1)), 3)
return(list("realization" = T_stat_value(data = sample,
beta = beta)))
}
T_mixvmf_4 <- function(n, dim, beta){
p = 1/3
U = runif(n, 0, 1)
sample = (U<p)*rvmf(n, rep(-1,dim), 2) + (U>=p)*(U<2*p)*rvmf(n, c(-1,rep(1,dim-1)), 3) + (U>=2*p)*rvmf(n, c(1,rep(0,dim-1)), 4)
return(list("realization" = T_stat_value(data = sample,
beta = beta)))
}
T_bing_1 <- function(n, dim, tau, beta){
A = tau*diag(seq(1,dim))
return(list("realization" = T_stat_value(data = rbingham(n, A), beta = beta)))
}
T_bing_2 <- function(n, dim, tau, beta){
A = tau*diag(c(-dim, rep(0, dim-2), dim))
return(list("realization" = T_stat_value(data = rbingham(n, A), beta = beta)))
}
T_LP <- function(n, dim, m, kappa, beta){
return(list("realization" = T_stat_value(data = rLP(n, m, c(1,rep(0,dim-1)), kappa), beta = beta)))
}
source("T_statistic_Functions.R")
#################################################################################################
## calculation of empirical critical values of T_n,beta under the null hypothesis ##
......@@ -179,7 +65,7 @@ print(DT_T_unif)
# replication number for all powertests
a = 5000
Test <- MonteCarlo::MonteCarlo(T_unif, nrep = a, param_list = parameter, ncpus = numCores, export_also = export_list)
Test <- MonteCarlo::MonteCarlo(T_unif, nrep = a, param_list = parameter, ncpus = numCores, export_also = export_list)
DF_Test <- MonteCarlo::MakeFrame(Test)
DT_Test <- setDT(DF_Test)
......
#################################################################################################
#################################################################################################
## This script contains relevant functions for the computation of the test statistic T_n,beta.
#################################################################################################
#################################################################################################
# required packages
#library(Directional)
library(MASS)
library(MonteCarlo)
library(data.table)
setwd("/home/jaroslav-borodavka/Schreibtisch/Dissertation/Arbeit/Bernoulli Submission/codes/codes_git_project/R")
#################################################################################################
## required functions and test statistic ##
# test decision
Decision <- function(teststatistic_value, critical){
decision <- 0
if (teststatistic_value >= critical)
decision = 1
else
decision = 0
return(decision)
}
# uniformly distributed vectors on S^(d-1)
runif_sphere <- function(n, d){
X = mvrnorm(n, rep(0,d), diag(1,d))
if (n == 1){
temp = as.vector(crossprod(X))
U = X/sqrt(temp)
}
else{
temp = diag(X %*% t(X))
U = matrix(0, nrow = n, ncol = d)
for (j in 1:n){
U[j,] = X[j,]/sqrt(temp[j])
}
}
return(U)
}
# expectations Psi_d as per section 1
psi_d <- function(d, beta){
return(if (beta%%2 == 0) gamma((beta+1)/2)*gamma(d/2)/(sqrt(pi)*gamma((beta+d)/2)) else 0)
}
# squared and centered projections, used in T_stat_value
projection <- function(unif_point_cover, data, beta){
n = dim(data)[1]
d = dim(data)[2]
scalarproducts = data %*% t(unif_point_cover)
sums = colSums((scalarproducts)^beta)
return((1/n*sums - psi_d(d, beta))^2)
}
# test statistic T_n,beta, cover_n is the number of uniformly distributed points on the sphere
T_stat_value <- function(data, beta){
n = dim(data)[1]
d = dim(data)[2]
cover_n = 0
if (d < 5) cover_n = 5000 else cover_n = 20000
unif_points = runif_sphere(cover_n, d)
projections = projection(unif_point_cover = unif_points, data = data, beta = beta)
return(n*max(projections))
}
# uniformly distributed data
T_unif <- function(n, dim, beta){
return(list("realization" = T_stat_value(data = runif_sphere(n, dim),
beta = beta)))
}
# von Mises-Fisher alternative data
T_vMF <- function(n, dim, kappa, beta){
return(list("realization" = T_stat_value(data = rvmf(n, c(1,rep(0, dim-1)), kappa),
beta = beta)))
}
# other alternative data, cf. section 6
T_mixvmf_1 <- function(n, dim, p, beta){
U = runif(n, 0, 1)
sample = (U<p)*rvmf(n, c(-1,rep(0,dim-1)), 1) + (U>=p)*rvmf(n, c(1,rep(0,dim-1)), 1)
return(list("realization" = T_stat_value(data = sample,
beta = beta)))
}
T_mixvmf_2 <- function(n, dim, p, beta){
U = runif(n, 0, 1)
sample = (U<p)*rvmf(n, c(-1,rep(0,dim-1)), 1)+(U>=p)*rvmf(n, c(1,rep(0,dim-1)), 4)
return(list("realization" = T_stat_value(data = sample,
beta = beta)))
}
T_mixvmf_3 <- function(n, dim, beta){
p = 0.25
U = runif(n, 0, 1)
sample = (U<p)*rvmf(n, rep(-1,dim), 2) + (U>=p)*(U<2*p)*rvmf(n, c(-1,rep(1,dim-1)), 3) + (U>=2*p)*rvmf(n, c(1,rep(0,dim-1)), 3)
return(list("realization" = T_stat_value(data = sample,
beta = beta)))
}
T_mixvmf_4 <- function(n, dim, beta){
p = 1/3
U = runif(n, 0, 1)
sample = (U<p)*rvmf(n, rep(-1,dim), 2) + (U>=p)*(U<2*p)*rvmf(n, c(-1,rep(1,dim-1)), 3) + (U>=2*p)*rvmf(n, c(1,rep(0,dim-1)), 4)
return(list("realization" = T_stat_value(data = sample,
beta = beta)))
}
T_bing_1 <- function(n, dim, tau, beta){
A = tau*diag(seq(1,dim))
return(list("realization" = T_stat_value(data = rbingham(n, A), beta = beta)))
}
T_bing_2 <- function(n, dim, tau, beta){
A = tau*diag(c(-dim, rep(0, dim-2), dim))
return(list("realization" = T_stat_value(data = rbingham(n, A), beta = beta)))
}
T_LP <- function(n, dim, m, kappa, beta){
return(list("realization" = T_stat_value(data = rLP(n, m, c(1,rep(0,dim-1)), kappa), beta = beta)))
}
\ No newline at end of file
#################################################################################################
#################################################################################################
## This script calculates running times of a test result with T_n,beta under the null hypothesis
## with the R benchmarking tool microbenchmarking.
#################################################################################################
#################################################################################################
# required packages
library(microbenchmark)
library(MASS)
library(MonteCarlo)
library(data.table)
library(tikzDevice)
library(ggplot2)
setwd("/home/jaroslav-borodavka/Schreibtisch/Dissertation/Arbeit/Bernoulli Submission/codes/codes_git_project/R")
# load additionally required script
source("T_statistic_Functions.R")
# benchmark tests
n = 100
d = 3
benchmark_res_d3 <- microbenchmark(T_unif(n, d, 1), T_unif(n, d, 2), T_unif(n, d, 3), T_unif(n, d, 4), T_unif(n, d, 5), T_unif(n, d, 6), times=100, unit="ms")
d = 5
benchmark_res_d5 <- microbenchmark(T_unif(n, d, 1), T_unif(n, d, 2), T_unif(n, d, 3), T_unif(n, d, 4), T_unif(n, d, 5), T_unif(n, d, 6), times=100, unit="ms")
print(benchmark_res_d3)
print(benchmark_res_d5)
# convert to milliseconds
benchmark_res_d3$time = benchmark_res_d3$time/10^6
benchmark_res_d5$time = benchmark_res_d5$time/10^6
# concatenate data
df_3 <- data.frame(dim = rep(3, length(benchmark_res_d3$expr)), benchmark_res_d3)
df_5 <- data.frame(dim = rep(5, length(benchmark_res_d5$expr)), benchmark_res_d5)
df <- rbind(df_3, df_5)
# Create box plot
p <- ggplot(df, aes(x=expr, y=time, fill = factor(dim))) +
geom_boxplot(outlier.colour="black", outlier.shape=23, outlier.size=1,
size = 0.5,
width=0.5) +
scale_x_discrete(name = expression(beta), labels = seq(1,6)) +
scale_y_continuous(name = paste(expression(t), "[ms]"), breaks = seq(0, 1100, 100), limits = c(0, 1100)) +
scale_fill_brewer(name = "Dimension", palette="Blues")
p
#ggsave("running_times_boxplot.pdf")