Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
Maximal Projection GoF
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Jaroslav Borodavka
Maximal Projection GoF
Commits
fda26fb1
Commit
fda26fb1
authored
11 months ago
by
Jaroslav Borodavka
Browse files
Options
Downloads
Patches
Plain Diff
Translated to German and added a preamble.
parent
a1abc750
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
R/T_Statistic_GP.R
+51
-25
51 additions, 25 deletions
R/T_Statistic_GP.R
with
51 additions
and
25 deletions
R/T_Statistic_GP.R
+
51
−
25
View file @
fda26fb1
#################################################################################################
#################################################################################################
##
#################################################################################################
#################################################################################################
# required packages
library
(
Directional
)
library
(
MASS
)
library
(
MonteCarlo
)
library
(
data.table
)
setwd
(
"/
Users/faik/Desktop/Mathematik/Masterarbeit/Ansatz_2/R-Codes
"
)
setwd
(
"/
home/jaroslav-borodavka/Schreibtisch/Dissertation/Arbeit/Bernoulli Submission/codes/codes_git_project/R
"
)
#################################################################################################
##
F
un
k
tion
en
##
##
f
un
c
tion
s
##
#
K
ovarian
z
kern
#
c
ovarian
ce
kern
el formulas as per section 2 of the main manuscript
rho_beta
<-
function
(
b
,
c
,
beta
){
d
=
dim
(
b
)[
2
]
res
=
switch
(
beta
,
...
...
@@ -22,51 +29,70 @@ rho_beta <- function(b, c, beta){
return
(
res
)
}
# uniformly distributed vectors on S^(d-1)
runif_sphere
<-
function
(
n
,
d
){
X
=
mvrnorm
(
n
,
rep
(
0
,
d
),
diag
(
1
,
d
))
if
(
n
==
1
){
temp
=
as.vector
(
crossprod
(
X
))
U
=
X
/
sqrt
(
temp
)
}
else
{
temp
=
diag
(
X
%*%
t
(
X
))
U
=
matrix
(
0
,
nrow
=
n
,
ncol
=
d
)
for
(
j
in
1
:
n
){
U
[
j
,]
=
X
[
j
,]
/
sqrt
(
temp
[
j
])
}
}
return
(
U
)
}
T_asymptotic_stat_value
<-
function
(
d
,
beta
){
m
=
0
if
(
d
<
5
)
m
=
3000
else
m
=
10000
runif_cover
=
rvmf
(
m
,
rep
(
1
,
d
),
0
)
# Kovarianzmatrix
if
(
d
<
5
)
m
=
1000
else
m
=
5000
runif_cover
=
runif_sphere
(
m
,
d
)
# covariance matrix
Sigma_beta
=
rho_beta
(
runif_cover
,
runif_cover
,
beta
)
Z_beta
=
mvrnorm
(
1
,
rep
(
0
,
m
),
Sigma_beta
)
return
(
list
(
"
R
eali
sierung
"
=
max
(
Z_beta
^
2
)))
return
(
list
(
"
r
eali
zation
"
=
max
(
Z_beta
^
2
)))
}
#################################################################################################
##
Berechnung kritischer Werte der Grenzverteilung von T per
Monte Carlo ##
##
calculation of critical values of the asymptotic distribution of T via
Monte Carlo ##
#
Umlaeufe
l
=
10000
#
P
arameter
numCores
=
2
#
replication number l (cf. main manuscript, section 6) for critical values
l
=
10000
0
#
hyperp
arameter
s
numCores
=
18
dim_grid
=
c
(
2
,
3
,
5
,
10
)
beta_grid
=
seq
(
1
,
6
)
grp_number
=
length
(
dim_grid
)
*
length
(
beta_grid
)
#
P
arameter
k
onstellation
en fue
r Monte
Carlo
#
p
arameter
c
onstellation
fo
r MonteCarlo
package
parameter
=
list
(
"d"
=
dim_grid
,
"beta"
=
beta_grid
)
#
E
xport
benötigter Daten, Pakete u
nd
F
un
k
tion
en
#
e
xport
of required data, packages a
nd
f
un
c
tion
s
export_list
=
list
(
"functions"
=
"rho_beta"
,
"packages"
=
c
(
"MASS"
,
"Directional"
))
# Monte Carlo
L
oops
# Monte Carlo
l
oops
res_T_asy
<-
MonteCarlo
::
MonteCarlo
(
T_asymptotic_stat_value
,
nrep
=
l
,
param_list
=
parameter
,
ncpus
=
numCores
,
export_also
=
export_list
)
#
Erstellung eines D
ataframe
s der Realisierungen
#
producing a d
ata
.
frame
with all realizations
DF_T_asy
<-
MonteCarlo
::
MakeFrame
(
res_T_asy
)
summary
(
DF_T_asy
)
#
In
data.table
umwandeln
#
converting to a
data.table
DT_T_asy
<-
setDT
(
DF_T_asy
)
#
Gruppen bilden
#
creating groups
DT_T_asy
[,
grp
:=
.GRP
,
by
=
c
(
"d"
,
"beta"
)]
DT_T_asy
=
DT_T_asy
[
order
(
grp
,
R
eali
sierung
)]
DT_T_asy
=
DT_T_asy
[,
list
(
"
D
imension"
=
d
,
"
B
eta"
=
beta
,
"
R
eali
sierung
"
=
R
eali
sierung
,
"
Quanti
l_
9
0"
=
lapply
(
.SD
,
quantile
,
probs
=
0.90
),
"
Quanti
l_
9
5"
=
lapply
(
.SD
,
quantile
,
probs
=
0.95
),
"
Quantil_99
"
=
lapply
(
.SD
,
quantile
,
probs
=
0.99
)),
by
=
grp
,
.SDcols
=
c
(
"
R
eali
sierung
"
)]
DT_T_asy
=
DT_T_asy
[
order
(
grp
,
r
eali
zation
)]
DT_T_asy
=
DT_T_asy
[,
list
(
"
d
imension"
=
d
,
"
b
eta"
=
beta
,
"
r
eali
zation
"
=
r
eali
zation
,
"
leve
l_
1
0"
=
lapply
(
.SD
,
quantile
,
probs
=
0.90
),
"
leve
l_5"
=
lapply
(
.SD
,
quantile
,
probs
=
0.95
),
"
level_1
"
=
lapply
(
.SD
,
quantile
,
probs
=
0.99
)),
by
=
grp
,
.SDcols
=
c
(
"
r
eali
zation
"
)]
print
(
DT_T_asy
)
save.image
(
file
=
"T_Statistic_GP_
D
at
en
.Rdata"
)
save.image
(
file
=
"T_Statistic_GP_
d
at
a
.Rdata"
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment