Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
Maximal Projection GoF
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Jaroslav Borodavka
Maximal Projection GoF
Commits
0c3015dd
Commit
0c3015dd
authored
11 months ago
by
Jaroslav Borodavka
Browse files
Options
Downloads
Patches
Plain Diff
Translated to German and added a preamble.
parent
7f8f5def
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
R/Comp_Statistics.R
+23
-14
23 additions, 14 deletions
R/Comp_Statistics.R
with
23 additions
and
14 deletions
R/Comp_Statistics.R
+
23
−
14
View file @
0c3015dd
#################################################################################################
#################################################################################################
## This script collects all the competing test statistics that are used in the simulation study,
## cf. section 6 of the main manuscript. It is not specifically loaded in other scripts, but
## might serve useful for some toy example tests.
#################################################################################################
#################################################################################################
# required packages
library
(
tictoc
)
library
(
Directional
)
library
(
MASS
)
library
(
MonteCarlo
)
library
(
data.table
)
library
(
zipfR
)
# incomplete Beta function
library
(
zipfR
)
#
contains
incomplete Beta function
#################################################################################################
##
Konkurrierende T
eststatisti
ken
##
##
competing t
est
statisti
cs
##
#
T
ransformation
von Einhe
it
s
ve
k
tor
en
in
z
ir
k
ul
äre Daten via Bogenmaß (nur d = 2), siehe n-sphere auf Wiki
#
t
ransformation
of un
it
ve
c
tor
s
in
to c
ir
c
ul
ar data via radian (only d = 2)
euclidtoangular
<-
function
(
unit_data
){
return
(
matrix
(
data
=
atan2
(
unit_data
[,
2
],
unit_data
[,
1
]),
ncol
=
1
))
}
#
T
est
entscheid
#
t
est
decision
Decision
<-
function
(
teststatistic_value
,
critical
){
decision
<-
0
...
...
@@ -26,7 +35,7 @@ Decision <- function(teststatistic_value, critical){
return
(
decision
)
}
#
Gleichverteilung auf
S^(d-1)
#
uniformly distributed vectors on
S^(d-1)
runif_sphere
<-
function
(
n
,
d
){
X
=
mvrnorm
(
n
,
rep
(
0
,
d
),
diag
(
1
,
d
))
if
(
n
==
1
){
...
...
@@ -43,17 +52,17 @@ runif_sphere <- function(n, d){
return
(
U
)
}
# Kuiper
-T
est
statistik basierend auf Directional-Paket (nur d = 2)
# Kuiper
t
est
based on Directional package (only d = 2), data in form of unit vectors
Kuiper
<-
function
(
data
){
return
(
Directional
::
kuiper
(
euclidtoangular
(
data
),
rads
=
TRUE
)[
1
])
}
# Watson
-T
est
statistik basierend auf Directional-Paket (nur d = 2)
# Watson
t
est
based on Directional package (only d = 2), data in form of unit vectors
Watson
<-
function
(
data
){
return
(
Directional
::
watson
(
euclidtoangular
(
data
),
rads
=
TRUE
)[
1
])
}
# Cuesta-Albertos
-T
ests
tatistik
# Cuesta-Albertos
t
ests
(d=2 and d>2)
F_CA
<-
function
(
d
){
if
(
d
==
2
){
res
<-
function
(
t
)
1
-
acos
(
t
)
/
pi
...
...
@@ -72,7 +81,7 @@ Cuesta_Albertos_unique <- function(data, rdirection){
return
(
ks.test
(
projected_data
,
"cdf"
)
$
p.value
)
}
# 100
gleichverteilte Richtungen fuer die CA-Teststatistik
# 100
uniformly distributed directions
rdirections_2
<-
runif_sphere
(
100
,
2
)
rdirections_3
<-
runif_sphere
(
100
,
3
)
rdirections_5
<-
runif_sphere
(
100
,
5
)
...
...
@@ -93,12 +102,12 @@ Cuesta_Albertos_multi <- function(data){
return
(
min
(
p_values
))
}
# Rayleigh
-Teststatistik basierend auf
Directional
-Paket
# Rayleigh
test based on
Directional
package
Rayleigh
<-
function
(
data
){
return
(
Directional
::
rayleigh
(
data
,
modif
=
TRUE
)[
1
])
}
# Ajne
-T
est
statistik
# Ajne
t
est
Ajne
<-
function
(
data
){
n
=
dim
(
data
)[
1
]
temp
=
data
%*%
t
(
data
)
...
...
@@ -106,7 +115,7 @@ Ajne <- function(data){
return
(
n
/
4
-
1
/
(
n
*
pi
)
*
sum
(
Psi
))
}
# Bingham
-Teststatistik
# Bingham
test
Bingham
<-
function
(
data
){
n
=
dim
(
data
)[
1
]
d
=
dim
(
data
)[
2
]
...
...
@@ -118,7 +127,7 @@ Bingham <- function(data){
return
(
n
*
d
*
(
d
+2
)
/
2
*
(
sum
(
diag
(
S
%*%
S
))
-
1
/
d
))
}
# Giné
-T
est
statistik
# Giné
t
est
Gine_G
<-
function
(
data
){
n
=
dim
(
data
)[
1
]
d
=
dim
(
data
)[
2
]
...
...
@@ -127,7 +136,7 @@ Gine_G <- function(data){
return
(
n
/
2
-
(
d
-1
)
*
gamma
((
d
-1
)
/
2
)
^
2
/
(
2
*
n
*
gamma
(
d
/
2
)
^
2
)
*
sum
(
sin
(
Psi
)))
}
# Cramér-von Mises
-T
est
statistik
# Cramér-von Mises
t
est
integrand
<-
function
(
t
,
angle
,
dim
){
return
(
F_CA
(
dim
)(
t
)
*
F_CA
(
dim
-1
)(
t
*
tan
(
angle
/
2
)
/
sqrt
(
1
-
t
^
2
))
/
Cbeta
(
a
=
1
/
2
,
b
=
(
dim
-1
)
/
2
)
*
(
1
-
t
^
2
)
^
((
dim
-3
)
/
2
))
}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment