... | @@ -8,12 +8,71 @@ _C. Ates_ |
... | @@ -8,12 +8,71 @@ _C. Ates_ |
|
|
|
|
|
## Basics of CNNs
|
|
## Basics of CNNs
|
|
|
|
|
|
..
|
|
-[An introduction to Convolutional Neural Networks](https://towardsdatascience.com/an-introduction-to-convolutional-neural-networks-eb0b60b58fd7)
|
|
|
|
|
|
|
|
- [A Survey of the Recent Architectures of Deep Convolutional Neural Networks](https://arxiv.org/ftp/arxiv/papers/1901/1901.06032.pdf)
|
|
|
|
|
|
## How the kernel operation works?
|
|
## How the kernel operation works?
|
|
|
|
|
|
..
|
|
..
|
|
|
|
|
|
|
|
|
|
|
|
## Convolutional Autoencoders
|
|
|
|
|
|
|
|
-[Convolutional Autoencoders (CAE) with Tensorflow](https://ai.plainenglish.io/convolutional-autoencoders-cae-with-tensorflow-97e8d8859cbe)
|
|
|
|
|
|
|
|
- [Image Noise Reduction I](https://towardsdatascience.com/convolutional-autoencoders-for-image-noise-reduction-32fce9fc1763)
|
|
|
|
|
|
|
|
- [Keras - image denoising](https://keras.io/examples/vision/autoencoder/)
|
|
|
|
|
|
|
|
-[Pre-Training CNNs Using Convolutional Autoencoders](https://www.ni.tu-berlin.de/fileadmin/fg215/teaching/nnproject/cnn_pre_trainin_paper.pdf)
|
|
|
|
|
|
|
|
## Famous CNN Architectures
|
|
|
|
|
|
|
|
- [CNN Literature](https://paperswithcode.com/methods/category/convolutional-neural-networks)
|
|
|
|
|
|
|
|
-[Illustrated: 10 CNN Architectures I](https://towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d)
|
|
|
|
|
|
|
|
-[Illustrated: 10 CNN Architectures II](https://towardsdatascience.com/top-10-cnn-architectures-every-machine-learning-engineer-should-know-68e2b0e07201)
|
|
|
|
|
|
|
|
- [AlexNet to EfficientNet](https://theaisummer.com/cnn-architectures/)
|
|
|
|
|
|
|
|
- [DenseNet Literature](https://paperswithcode.com/method/densenet)
|
|
|
|
|
|
|
|
- [EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks](https://arxiv.org/abs/1905.11946)
|
|
|
|
|
|
|
|
- [HRNet](https://paperswithcode.com/method/hrnet)
|
|
|
|
|
|
|
|
## YOLO: You Only Look Once
|
|
|
|
|
|
|
|
- [What is YOLO?](https://jonathan-hui.medium.com/yolov4-c9901eaa8e61)
|
|
|
|
|
|
|
|
- [What is YOLO -- alternative](https://blog.roboflow.com/a-thorough-breakdown-of-yolov4/)
|
|
|
|
|
|
|
|
- [YOLO Paper](https://arxiv.org/abs/2004.10934)
|
|
|
|
|
|
|
|
- [Darknet Repo](https://github.com/AlexeyAB/darknet#how-to-use-on-the-command-line)
|
|
|
|
|
|
|
|
- [How to Perform Object Detection With YOLOv3 in Keras](https://machinelearningmastery.com/how-to-perform-object-detection-with-yolov3-in-keras/)
|
|
|
|
|
|
|
|
- [YOLO repo](https://github.com/hunglc007/tensorflow-yolov4-tflite)
|
|
|
|
|
|
|
|
- [YOLO v5](https://towardsdatascience.com/how-to-train-a-custom-object-detection-model-with-yolo-v5-917e9ce13208)
|
|
|
|
|
|
|
|
- [YOLO pypi.org](https://pypi.org/project/yolov4/)
|
|
|
|
|
|
|
|
- [YOLOv4 implementation with Tensorflow 2](https://pypi.org/project/tf-yolov4/)
|
|
|
|
|
|
|
|
- [Train a Custom Mobile Object Detection Model with YOLO](https://blog.roboflow.com/how-to-train-a-custom-mobile-object-detection-model/)
|
|
|
|
|
|
|
|
- [Anchor Boxes: why important?](https://towardsdatascience.com/anchor-boxes-the-key-to-quality-object-detection-ddf9d612d4f9)
|
|
|
|
|
|
|
|
- [Feature Pyramid Networks for Object Detection](https://arxiv.org/pdf/1612.03144.pdf)
|
|
|
|
|
|
|
|
## Image Databases and Benchmarks
|
|
|
|
|
|
|
|
- [Image Classification on ImageNet: 91% Top Accuracy - 2022](https://paperswithcode.com/sota/image-classification-on-imagenet)
|
|
|
|
|
|
## Selected CNN Applications
|
|
## Selected CNN Applications
|
|
|
|
|
|
\
|
|
\
|
... | @@ -60,4 +119,4 @@ Object localization in images using simple [CNNs ](https://awesomeopensource.com |
... | @@ -60,4 +119,4 @@ Object localization in images using simple [CNNs ](https://awesomeopensource.com |
|
|
|
|
|
## Additional links
|
|
## Additional links
|
|
|
|
|
|
.. |
|
- [Computer Vision Lecture](http://cs231n.stanford.edu/) |
|
\ No newline at end of file |
|
\ No newline at end of file |