| ... | @@ -6,6 +6,11 @@ _C. Ates_ |
... | @@ -6,6 +6,11 @@ _C. Ates_ |
|
|
|
|
|
|
|
...
|
|
...
|
|
|
|
|
|
|
|
|
|
|
|
|
### VAE Examples
|
|
|
|
|
|
|
|
* [Density Estimation: Variational Autoencoders](http://ruishu.io/2018/03/14/vae/)
|
|
|
|
|
|
|
## Generative Adversarial Networks (GANs)
|
|
## Generative Adversarial Networks (GANs)
|
|
|
|
|
|
|
|
...
|
|
...
|
| ... | @@ -29,6 +34,10 @@ _C. Ates_ |
... | @@ -29,6 +34,10 @@ _C. Ates_ |
|
|
* [GANs with Keras and TensorFlow](https://www.pyimagesearch.com/2020/11/16/gans-with-keras-and-tensorflow/)
|
|
* [GANs with Keras and TensorFlow](https://www.pyimagesearch.com/2020/11/16/gans-with-keras-and-tensorflow/)
|
|
|
* [GANs with Python: Number generator](https://stackabuse.com/introduction-to-gans-with-python-and-tensorflow/)
|
|
* [GANs with Python: Number generator](https://stackabuse.com/introduction-to-gans-with-python-and-tensorflow/)
|
|
|
* [Image-to-Image Translation](https://phillipi.github.io/pix2pix/)
|
|
* [Image-to-Image Translation](https://phillipi.github.io/pix2pix/)
|
|
|
|
* [Collection of Keras implementations](https://github.com/eriklindernoren/Keras-GAN)
|
|
|
|
* [Fantastic GANs and where to find them](https://guimperarnau.com/blog/2017/03/Fantastic-GANs-and-where-to-find-them)
|
|
|
|
* [GAN applications and code demonstrations](https://github.com/nashory/gans-awesome-applications)
|
|
|
|
|
|
|
|
|
|
|
|
#### Music related
|
|
#### Music related
|
|
|
|
|
|
| ... | @@ -39,7 +48,7 @@ _C. Ates_ |
... | @@ -39,7 +48,7 @@ _C. Ates_ |
|
|
* [Using TensorFlow 2.0 to Compose Music](https://www.datacamp.com/community/tutorials/using-tensorflow-to-compose-music)
|
|
* [Using TensorFlow 2.0 to Compose Music](https://www.datacamp.com/community/tutorials/using-tensorflow-to-compose-music)
|
|
|
|
|
|
|
|
|
|
|
|
|
#### Colab notebooks:
|
|
#### Tutorials and Colab notebooks:
|
|
|
|
|
|
|
|
* [Making music with Magenta](https://colab.research.google.com/notebooks/magenta/hello_magenta/hello_magenta.ipynb)
|
|
* [Making music with Magenta](https://colab.research.google.com/notebooks/magenta/hello_magenta/hello_magenta.ipynb)
|
|
|
* [style gan](https://github.com/jeffheaton/present/blob/master/youtube/style_gan.ipynb)
|
|
* [style gan](https://github.com/jeffheaton/present/blob/master/youtube/style_gan.ipynb)
|
| ... | @@ -48,7 +57,12 @@ _C. Ates_ |
... | @@ -48,7 +57,12 @@ _C. Ates_ |
|
|
* [TF DCGAN](https://www.tensorflow.org/tutorials/generative/dcgan)
|
|
* [TF DCGAN](https://www.tensorflow.org/tutorials/generative/dcgan)
|
|
|
* [pix2pix](https://github.com/bnsreenu/python_for_microscopists/blob/master/252_generating_realistic_scientific_images_using_pix2pix/pix2pix_model.py)
|
|
* [pix2pix](https://github.com/bnsreenu/python_for_microscopists/blob/master/252_generating_realistic_scientific_images_using_pix2pix/pix2pix_model.py)
|
|
|
* [248-cifar_GAN](https://github.com/bnsreenu/python_for_microscopists/blob/master/248_keras_implementation_of_GAN/248-cifar_GAN.py)
|
|
* [248-cifar_GAN](https://github.com/bnsreenu/python_for_microscopists/blob/master/248_keras_implementation_of_GAN/248-cifar_GAN.py)
|
|
|
|
|
* [Pix2Pix GAN for Image-to-Image Translation](https://machinelearningmastery.com/how-to-develop-a-pix2pix-gan-for-image-to-image-translation/)
|
|
|
|
* [How to Develop a CycleGAN for Image-to-Image Translation with Keras](https://machinelearningmastery.com/cyclegan-tutorial-with-keras/)
|
|
|
|
* [Wasserstein Generative Adversarial Network (WGAN)](https://machinelearningmastery.com/how-to-code-a-wasserstein-generative-adversarial-network-wgan-from-scratch/)
|
|
|
|
* [Tensorflow implementation of WassersteinGan paper](https://github.com/Mohammad-Rahmdel/WassersteinGAN-Tensorflow)
|
|
|
|
* [Application to Image Deblurring](https://medium.com/sicara/keras-generative-adversarial-networks-image-deblurring-45e3ab6977b5)
|
|
|
|
* [Applications of GAN](https://jonathan-hui.medium.com/gan-some-cool-applications-of-gans-4c9ecca35900)
|
|
|
|
|
|
|
|
## Research papers:
|
|
## Research papers:
|
|
|
|
|
|
| ... | @@ -63,6 +77,13 @@ _C. Ates_ |
... | @@ -63,6 +77,13 @@ _C. Ates_ |
|
|
* [1D Generative Adversarial Network From Scratch](https://machinelearningmastery.com/how-to-develop-a-generative-adversarial-network-for-a-1-dimensional-function-from-scratch-in-keras/)
|
|
* [1D Generative Adversarial Network From Scratch](https://machinelearningmastery.com/how-to-develop-a-generative-adversarial-network-for-a-1-dimensional-function-from-scratch-in-keras/)
|
|
|
* []()
|
|
* []()
|
|
|
|
|
|
|
|
|
### Time series examples
|
|
|
|
|
|
|
|
* [Time Series Generation with Recurrent Conditional GANs](https://arxiv.org/abs/1706.02633)
|
|
|
|
* [Real-valued (Medical) Time Series Generation with Recurrent Conditional GANs](https://github.com/ratschlab/RGAN)
|
|
|
|
* [Anomaly Detection for Time Series Data with GAN](https://arxiv.org/pdf/1901.04997.pdf); [code](https://github.com/LiDan456/MAD-GANs)
|
|
|
|
* [Synthetic Time Series Data - Trading](https://stefan-jansen.github.io/machine-learning-for-trading/21_gans_for_synthetic_time_series/#implementing-timegan-using-tensorflow-2)
|
|
|
|
|
|
|
### Science applications
|
|
### Science applications
|
|
|
|
|
|
|
|
* [Failure Prediction](https://arxiv.org/abs/1910.02034)
|
|
* [Failure Prediction](https://arxiv.org/abs/1910.02034)
|
| ... | |
... | |
| ... | | ... | |