From f61c844324c4e17867af305b430200bdf9e68507 Mon Sep 17 00:00:00 2001
From: Roger Wolf <roger.wolf@kit.edu>
Date: Fri, 27 Oct 2023 23:43:44 +0200
Subject: [PATCH] doge out represetation issues

---
 Vorversuch/doc/Hinweise-Aufgabe-2-b.md | 10 +++++-----
 1 file changed, 5 insertions(+), 5 deletions(-)

diff --git a/Vorversuch/doc/Hinweise-Aufgabe-2-b.md b/Vorversuch/doc/Hinweise-Aufgabe-2-b.md
index 20df43a..ba3f0ad 100644
--- a/Vorversuch/doc/Hinweise-Aufgabe-2-b.md
+++ b/Vorversuch/doc/Hinweise-Aufgabe-2-b.md
@@ -21,11 +21,11 @@ $$
 \end{array}
 \end{equation*}
 $$
-Den Wert $\hat{z}$ bezeichnet man als **$\boldsymbol{\chi^{2}}$-Wert**. Die Aussagen zu $\hat{z}/n_{\mathrm{dof}}$ gelten mit mathematischer Strenge, d.h., führt eine (statistisch korrekt implementierte) Anpassung auf einen Wert von $\hat{z}/n_{\mathrm{dof}}\gg 1$, dann ist das zugrundeliegende Modell im Rahmen der angegebenen Unsicherheiten $\{\Delta r_{i}\}$ mit den Datenpunkten $\{r_{i}\}$ **nicht kompatibel**. 
+Den Wert $\hat{z}$ bezeichnet man als **$\boldsymbol{\chi^{2}}$-Wert**. Die Aussagen zu $\hat{z}/n_{\mathrm{dof}}$ gelten mit mathematischer Strenge, d.h., führt eine (statistisch korrekt implementierte) Anpassung auf einen Wert von $\hat{z}/n_{\mathrm{dof}}\gg 1$, dann ist das zugrundeliegende Modell im Rahmen der angegebenen Unsicherheiten $\{\Delta r_{i}\}$ mit den $\{r_{i}\}$ **nicht kompatibel**. 
 
-Das lässt sich wie folgt verstehen: Der $\chi^{2}$-Wert ist ein Maß für die mittlere Entfernung zwischen $\Omega$ und den $\{r_{i}\}$. Große $\chi^{2}$-Werte weisen auf eine schlechte und kleine $\chi^{2}$-Werte auf eine gute Übereinstimmung zwischen $\Omega$ und den $\{r_{i}\}$, innerhalb der Streuung ([Varianz](https://de.wikipedia.org/wiki/Varianz_(Stochastik))) der $\{r_{i}\}$, hin. 
+Dies lässt sich wie folgt verstehen: Der $\chi^{2}$-Wert ist ein Maß für die mittlere Entfernung zwischen $\Omega$ und den $\{r_{i}\}$. Große Werte weisen auf eine schlechte, kleine Werte auf eine gute Übereinstimmung zwischen $\Omega$ und den $\{r_{i}\}$, innerhalb der Streuung ([Varianz](https://de.wikipedia.org/wiki/Varianz_(Stochastik))) der $\{r_{i}\}$, hin. 
 
-Gehen wir davon aus, dass die $\{r_{i}\}$ im Fall wiederholter Messungen *normalverteilt* sind und ihre [Erwartungswerte](https://de.wikipedia.org/wiki/Erwartungswert) wirklich durch $\Omega$ beschrieben werden können, dann folgt $\hat{z}$ der $\chi^{2}(z, n_{\mathrm{dof}})$-Verteilung, deren Erwartungswert $E[\hspace{0.05cm}z\hspace{0.05cm}]=n_{\mathrm{dof}}$ ist. Ein Wert von $\hat{z}^{2}/n_{\mathrm{ndof}}\lesssim1$ deutet darauf hin, dass der Verlauf der Modellvorhersage im Mittel innerhalb der Varianz der $\{r_{i}\}$ liegt. Um diesen Umstand anschaulicher zu machen und weil die Grenzen noch akzeptabler $\chi^{2}$-Werte von $n_{\mathrm{dof}}$ abhängt, wird der $\chi^{2}$-Wert oft zusätzlich in einen ***p*-Wert** übersetzt. 
+Gehen wir davon aus, dass die $\{r_{i}\}$ im Fall wiederholter Messungen *normalverteilt* sind und ihre [Erwartungswerte](https://de.wikipedia.org/wiki/Erwartungswert) wirklich durch $\Omega$ beschrieben werden können, dann folgt $\hat{z}$ der $\chi^{2}(z, n_{\mathrm{dof}})$-Verteilung, deren Erwartungswert $E[\hspace{0.05cm}z\hspace{0.05cm}]=n_{\mathrm{dof}}$ ist. Ein Wert von $\hat{z}^{2}/n_{\mathrm{ndof}}\lesssim1$ deutet darauf hin, dass der Verlauf der Modellvorhersage im Mittel innerhalb der Varianzen der $\{r_{i}\}$ liegt. Um diesen Umstand anschaulicher zu machen, wird der $\chi^{2}$-Wert oft zusätzlich in einen ***p*-Wert** übersetzt. 
 
 Der *p*-Wert ist das Integral 
 $$
@@ -33,11 +33,11 @@ $$
 p = \int\limits_{\hat{z}}^{\infty}\chi^{2}(z, n_{\mathrm{ndof}})\,\mathrm{dz}.
 \end{equation*}
 $$
-Er entspricht damit, unter der Annahme, dass die Erwartungswerte der $\{r_{i}\}$ tatsächlich $\Omega$ folgen, der Wahrscheinlichkeit einen Wert von $z\geq\hat{z}$ und damit eine schlechtere Übereinstimmung des Modells mit den $\{r_{i}\}$ zu erhalten, als durch $\hat{z}$ beobachteten. Der *p*-Wert ist selbst wieder eine Zufallsvariable, die, wenn die zu seiner Berechnung gemachten Annahmen erfüllt sind, in ihrem Wertebereich zwischen 0 und 1 gleichverteilt ist. 
+Unter der Annahme, dass die Erwartungswerte der $\{r_{i}\}$ tatsächlich $\Omega$ folgen, entspricht er der Wahrscheinlichkeit einen Wert von $z\geq\hat{z}$ und damit eine schlechtere Übereinstimmung des Modells mit den $\{r_{i}\}$ zu erhalten, als durch $\hat{z}$ beobachtet. Der *p*-Wert ist selbst wieder eine Zufallsvariable, die, wenn die zu ihrer Berechnung gemachten Annahmen erfüllt sind, in ihrem Wertebereich (zwischen 0 und 1) gleichverteilt ist. 
 
 **Wir geben ein Beispiel:** Sie nehmen die Anpassung eines Modells $\Omega$ mit $k=5$ Parametern an $n=15$ Messpunkte $\{r_{i}\}$ vor, d.h. $n_{\mathrm{dof}}=10$. Nach Anpassung erhalten Sie einen $\chi^{2}$-Wert von 20, d.h. $\hat{z}^{2}/n_{\mathrm{dof}}=2$. Unter der Annahme, das die $\{r_{i}\}$ normalverteilt sind und ihre Erwartungswerte wirklich $\Omega$ folgen ist ein Ausgang des Experiments mit einem $\chi^{2}$-Wert $\geq20$ mit einer Wahrscheinlichkeit von 3% zu erwarten. Es bleibt Ihnen überlassen, basierend auf dieser Abschätzung die Aussage, dass die Erwartungswerte der $\{r_{i}\}$ tatsächlich $\Omega$ folgen zu verwerfen oder nicht. 
 
-Um für die Beziehung zwischen $\chi^{2}$-Wert und *p*-Wert ein etwas besseres Gefühl zu bekommen können Sie ein paar weitere Beispiele mit dieser [Web-Anwendung der University of Illinois](http://courses.atlas.illinois.edu/spring2016/STAT/STAT200/pchisq.html) durchspielen. 
+Um für die Beziehung zwischen $\chi^{2}$-Wert und *p*-Wert ein Gefühl zu bekommen können Sie dieses und ein paar weitere Beispiele mit dieser [Web-Anwendung der University of Illinois](http://courses.atlas.illinois.edu/spring2016/STAT/STAT200/pchisq.html) überprüfen. 
 
 Falls ein Modell wirklich Probleme bei der Beschreibung von Messpunkten hat kann der *p*-Wert rasch Werte $\mathcal{O}(10^{-3}-10^{-10})$ annehmen. Obwohl man sich manchmal aus pragmatischen Gründen dazu entscheidet, ist es grundsätzlich zweifelhaft die Ergebnisse der Anpassung mit sehr niedrigen *p*-Werten (unkommentiert) anzugeben oder weiter zu verarbeiten. 
 
-- 
GitLab