diff --git a/Vakuum/doc/Hinweise-Vakuum-a.md b/Vakuum/doc/Hinweise-Vakuum-a.md index b3e4cfacc8ae4b16640c5c79a5c0bb5e5250ab50..fcd7644ccd8d9ea4ee093e1212705ee92c79040a 100644 --- a/Vakuum/doc/Hinweise-Vakuum-a.md +++ b/Vakuum/doc/Hinweise-Vakuum-a.md @@ -2,7 +2,7 @@ ## Grundbegriffe der Vakuumtechnik -In der Vakuuumtechnik bezeichnet man den Volumendurchfluss ([Volumenstrom](https://de.wikipedia.org/wiki/Volumenstrom#Normvolumenstrom), siehe Gleichung **(3)**, für viskose Fluide) +In der Vakuuumtechnik bezeichnet man den Volumendurchfluss ([Volumenstrom](https://de.wikipedia.org/wiki/Volumenstrom#Normvolumenstrom), siehe Gleichung **(3)** [hier](https://gitlab.kit.edu/kit/etp-lehre/p2-praktikum/students/-/blob/main/Vakuum/doc/Hinweise-Vakuum.md), für viskose Fluide) $$ \begin{equation*} @@ -45,7 +45,7 @@ $$ q_{pV} = \left.\frac{\mathrm{d}(pV)}{\mathrm{d}t}\right|_{p=const.} = p\dot{V} = p\,S \end{equation*} $$ -(siehe Gleichung **(4)** für viskose Fluide). +(siehe Gleichung **(4)** [hier](https://gitlab.kit.edu/kit/etp-lehre/p2-praktikum/students/-/blob/main/Vakuum/doc/Hinweise-Vakuum.md) für viskose Fluide). Wenn wir beim Saugvorgang von einer adiabatischen Zustandsänderung des Gases ($\delta Q=0$) ausgehen erhalten wir: diff --git a/Vakuum/doc/Hinweise-Vakuum.md b/Vakuum/doc/Hinweise-Vakuum.md index dcc5cab6a505d7b8cd2788368cbbefbb90106cc0..d2197a2ddbf9d7c61dd2418664aa36b4d0bc34e4 100644 --- a/Vakuum/doc/Hinweise-Vakuum.md +++ b/Vakuum/doc/Hinweise-Vakuum.md @@ -68,6 +68,46 @@ $$ \end{split} \end{equation*} $$ +Für den Fluss eines Fluids durch ein zylindrisches Rohr mit Radius $R$ wählen wir die Randbedingung $v(R)=0$. Integriert man mit diesen Randbedingungen den obigen Ausdruck von $R$ bis $r$ erhält man das Geschwindigkeitsprofil des Fluids +$$ +\begin{equation} +v(r) = \int\limits_{R}^{r}\frac{r}{2\,\eta}\,\frac{\mathrm{d}p}{\mathrm{d}x}\,\mathrm{d}r = \frac{r^{2}-R^{2}}{4\,\eta}\frac{\mathrm{d}p}{\mathrm{d}x}, +\end{equation} +$$ +das eine $r^{2}$-Abhängigkeit aufweist. Eine laminare Strömung in kreiszylindrischen Rohren mit einer solchen Geschwindigkeitsverteilung nennt man [Poiseuille’sche Strömung](https://de.wikipedia.org/wiki/Gesetz_von_Hagen-Poiseuille). Integriert man das Geschwindigkeitsprofil aus Gleichung **(2)** zusätzlich über die Querschnittsfläche des Rohrs (in der $yz$-Ebene in **Abbildung 2**) erhält man den **Volumendurchfluss** durch das Rohr: +$$ +\begin{equation} +\dot{V} = \int\limits_{0}^{2\pi}\int\limits_{0}^{R}\frac{r^{2}-R^{2}}{4\,\eta}\frac{\mathrm{d}p}{\mathrm{d}x}\,r\,\mathrm{d}\varphi\,\mathrm{d}r = -\frac{\pi\,R^{4}}{8\,\eta}\,\frac{\mathrm{d}p}{\mathrm{d}x}. +\end{equation} +$$ +Das Minuszeichen in Gleichung **(3)** zeigt, dass $\dot{V}$ der Druckdifferenz entgegen gerichtet ist, d.h. "das Fluid fließt in Richtung des geringeren Drucks". Gleichung **(3)** bezeichnet man als das **Gesetzt von Hagen-Poisseuille**. Demnach gilt entlang der Stömungsrichtung $x$: +$$ +\begin{equation*} +\dot{V}\propto R^{4};\qquad \dot{V}\propto \frac{\mathrm{d}p}{\mathrm{d}x}. +\end{equation*} +$$ +Für strömdende Gase ist zwar der Massenfluss $\dot{m}$, nicht aber $\dot{V}$ konstant. Trotzdem ist Gleichung **(3)** differenziell anwendbar. Man verwendet es in diesem Fall oft in der Form +$$ +\begin{equation} +\begin{split} +& p\dot{V}\,\mathrm{d}x = -\frac{\pi\,R^{4}}{8\,\eta}\,p\,\mathrm{d}p; \\ +&\\ +&\text{Nach Separation der Variablen:}\\ +&\\ +&\int\limits_{0}^{\ell}p\dot{V}\,\mathrm{d}x = -\int\limits_{p_{\mathrm{ein}}}^{p_{\mathrm{aus}}}\frac{\pi\,R^{4}}{8\,\eta}\,p\,\mathrm{d}p; \\ +&\\ +&p\,\dot{V} = -\frac{\pi\,R^{4}}{8\,\eta\,\ell}\left(\frac{p_{\mathrm{aus}}^{2}}{2}-\frac{p_{\mathrm{ein}}^{2}}{2}\right) = +-\frac{\pi\,R^{4}}{8\,\eta\,\ell}\,\overline{p}\,\Delta p \\ +&\\ +&\text{mit:} \\ +&\\ +&\overline{p} = \frac{p_{\mathrm{aus}}+p_{\mathrm{ein}}}{2}; \qquad \Delta p = p_{\mathrm{aus}}-p_{\mathrm{ein}}, +\end{split} +\end{equation} +$$ + +wobei $\ell$ dem Abstand zwischen den Messpunkten von $p_{\mathrm{ein}}$ und $p_{\mathrm{aus}}$ entspricht. + # Navigation [Main](https://gitlab.kit.edu/kit/etp-lehre/p2-praktikum/students/-/tree/main/Vakuum) | [Weiter](https://gitlab.kit.edu/kit/etp-lehre/p2-praktikum/students/-/blob/main/Vakuum/doc/Hinweise-Vakuum-a.md)