A FULLY COUPLED MODEL IN CARDIAC ELECTROMECHANICS
AND ITS EFFICIENT NUMERICAL APPROXIMATION
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Abstract. We develop an efficient numerical realization of the monodomain model which describes
the basic electrophysiology in the human heart, coupled with cardiac electromechanics. Here we give
a comprehensive definition of all model components and the resulting coupled PDE and ODE system
and we summarize a full parameter set for realistic simulations. Numerical results for the coupled
model are presented and a detailed convergence study for the monodomain equation demonstrate the
approximation properties of our approach.
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1. INTRODUCTION

Depolarization waves in the heart are the fundamental electrophysiological phenomenon governing cardiac
function and are described by the basic model for the cardiac reaction-diffusion system: the bidomain equa-
tions for electrical potentials across the cell membrane governing the spread of the depolarization waves. The
cardiac electrophysiological system triggers mechanical contractions of the heart muscle, which is modeled as
a time-varying elastic body. The electrical cellular transmembrane voltages are given as solutions to nonlinear
reaction-diffusion equations on a manifold. This PDE system is coupled with an ODE system to determine the
transmembrane currents.

The full model approximates the electric potential, the concentration of various ions, several gating variables,
the deformation of the cardiac tissue, and further variables for the coupling to the circulatory system. For the
individual systems, thorough benchmarks have been conducted, see e.g. [Niederer et al., 2011] or [Land et al.,
2015]. Our purpose is to construct a system of differential equations and to collect a full parameter set, which
is able to describe all relevant mechanisms qualitatively and qualitatively correctly.

For the fully coupled model we present a discretization scheme based on a second order splitting of PDE
and ODE components and including asymptotically exact integrators for the very fast evolution of the gating
variables. For the momodomain subsystem, the convergence properties of the discretization scheme are studied
in detail, which shows that the overall model is efficient and accurate.

Remark. This document collects preliminary results of the PhD projects of L. Linder and J. Frohlich, and it
will be a basis for a joint publication with our partners in near future.
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2. A FULLY COUPLED MODEL IN CARDIAC ELECTROPHYSIOLGY

A mathematical model for depolarization waves and the contraction of the heart comprises a time-dependent
nonlinear PDE system for the electric potential and the mechanical deformation, coupled with ODEs for ion
concentrations and gating variables, several ODEs for the blood pressure in the cardiac chambers, and a sur-
rogate model for the interaction with the circulatory system. Our fully-coupled model describes the following
mechanisms:

e To initiate a heartbeat, an electric impulse is initiated in the sinus node cells. From there, the depolar-
ization wave is captured by and propagates through the cardiac tissue.
e Intracellular and extracellular electrical potentials, which influence the opening and closing of trans-
membrane ion channels and govern the concentration of ions in the cells.
e The increased calcium concentration activates the contraction of myofibrils in the cells, which results in
a contraction of the heart muscle.
e The contraction of the heart muscle increases the pressure in the chambers, which results in the blood
flow.
For a qualitatively correct and sufficiently accurate computational model, we numerically realize the following
coupled electromechanical system, determined by
e a reference domain 2 C R? consisting of subdomains Qv for the ventricles, Q4 for the atria, and Qr
for surrounding tissue;
the electric potential Vi, € C*([0,T7], L2(€2) N CO ([0, T], H'(Qv U Q4));
a vector of ion concentrations and gating variables w € C! ([O, T], Ly (v U Qy; RN));
the deformation vector ¢ € C?([0,7],L2(Q;R?)) N C([0, 7], WHP(Q; R?));
the stretch along the fibre and a vector of state variables describing the force developement (¢, g) €
CH([0, T], Lg (v U Qp; RITEY);
e the blood pressure in the cardiac chambers p € C1([0,T],R*%);
e a vector of variables z € C*([0, 7], R™) modeling the circulatory system

and solving the coupled PDE — ODE system

BCWOF Vi = V¥ - o (£9)V9 Vi — BLion(Vin, w, ¥¢) + Texs 5 (la
Ofw = Gy(w, Vin, ¥e) (1b
p@fcp:divP(Dcp,f‘P,’yf) , (1lc
f e = Gre (5, Do, £%, g, w) (1d

—_
@

0fg=Gy(g,7, Dp,w),
atp = Gp( 72:) )
atz - Gz<27p) 5

0= Gol(z [, 00k, 19501 192R])

~ o~~~

= =

= 0’

Rat NGNS NN N N NS

with total derivative in time 0f w = 9w+ V¥ - (wdyp) and the covariant gradient V¥, and where

e the equations (la) and (1b) couples the parabolic equation of the potential with the ODE system
describing the cell model which determined by (lion, Gw), Where the ion density ([ion, and the gating
mechanism G,, are specified in the next sections for the different models;

e the depolarization wave is initiated by an external impulse I.¢ located at predefined nodes or natural
cellular pacemakers with (Lion, G.y) not exhibiting a stable resting state;

e the electric potential is determined by the monodomain equation and the electric conductivity o (£¥)
depending on the fiber direction f¥ in the deformed configuration;

e the deformation is activated by a strain F,(f¥,~¢) or a stress P,(f®,~v¢) along the fiber direction f¥,
i.e., P = DW (D@F,(f?,7¢)!) or P = DW (D¢) + P, (f¥, g). The tension development is modeled by



a system of ODEs determined by (G,,G,) depending on the deformation gradient D¢ and the vector
of ion concentrations and gating variables w;

e the interaction with the circulatory system is determined by the evolution (1f) of the pressure p described
by G, depending on the parameters z of the circulatory system subject to the constraint (1g) that the
volume in the chambers [QF, |, [QF |, Q%L ], 25| evalutated from the deformation and the circulatory
system coincide;

e in this model where the blood flow is not evaluated explicitly, we assume that the pressure is spatially
constant in every chamber so the the circulatory system couples to the deformation by Pn = pn on the
inner boundary;

e we assume n - [p] = 0 along the pericardium.

The equations are complemented by initial values and boundary conditions.

The basic mathematical aspects of this electromechanical system are well understood as recently reviewed
[Cherry et al., 2017, Franzone et al., 2014, Quarteroni et al., 2017]. First results on the analysis of stability and
existence of the solution for the linearized electromechanical system are given in [Andreianov et al., 2015]. The
extension to nonlinear elastic models is more involved; a nonlinear analysis of a very specific model for cardiac
electromechanical activity is considered in [Pathmanathan et al., 2013]. A detailed numerical investigation of
bioelectrical effects of mechano-electrical feedback is included in [Colli Franzone et al., 2017]. More specific
considerations on fast parallel solvers for the solution of the discretized coupled system based on domain de-
composition and multigrid techniques are considered in [Augustin et al., 2016, Franzone et al., 2015, Pavarino
et al., 2017, Santiago et al., 2018].

3. THE MONODOMAIN EQUATION

In the first step, we only consider the monodomain model in the reference domain without deformation,
which describes the electrophysiology independently in the ventricles and atria.

Therefore, let Oy = Qv or Oy = Q4 be the domain and let (Lion, Go) the corresponding cell model in the
ventricles and atria, respectively. The cell model is described by the transmembrane current density Ijo, and
the evolution of ion concentrations and gating variable determined by G,,. The ten Tusscher cell model for the
ventricles is described in Sect. 5, and the Courtemanche cell model in Sect. 6.

In this section we only consider the electrophysiology on the fixed reference geometry, i.e., we have ¢ = id
and v¢ = 0.

The monodomain data. Depending on the fiber direction in the reference domain
f: Qn — 52,
the conductivity tensor is given by

of)=ofef+o(I-fof) RS
with conductivity parameters o; > 0 in longitudinal and oy > 0 in transversal direction.
In our model we use a prescribed pacing mechanism, the depolarization waves are initiated by an external
stimulus I € Lg((O,T);LQ(Q)) modeling the activation of the electric potential at the Purkinje Muscle
Junctions in the ventricles and the sinus node in the atria. Here we define

Aj te(tj,tj+T1), v €N

Iext(tax) — J ( VRIS + TJ) T Next (2)
0 else

at a subset of the finite element nodal points N, C N" C Qy, depending on the starting time t; > 0,

duration 7; > 0, and amplitude A; > 0. The values at the nodal points z € - h are interpolated by the nodal

basis functions ¢., which defines lexy € L2(0,75 M) by Lext(t, @) = . cpr, Lext(t, 2)$=(z). Nevertheless, in the



approximation only the values at the nodal points are used in the numerical scheme, cf. Fig. 1.

A second possibility to define the external stimulus is the use of a sigmoid function instead of the step function
defined above. Therefor we use the values A;, t;, 7; and additionaly a scaling factor for the steepness of the
sigmoid function denoted by s;. Then we define

TIoxt(t,x) = % ((1 + tanh(s;(t — tj))) — (1 + tanh(s;(t — (¢; + T]))))) (3)

for all nodal points € N*. For all nodal points z ¢ N, we set A; = 0 such that o (¢, z) = 0 Vt.

F1cUrE 1. Ilustration of the Purkinje fibers and the stimulus points at the end of each branch
are shown with their respective activation time. The external stimulus points of the sinus node
at ¢t = 0s is shown in green.

The monodomain evolution. We consider the coupled diffusion-reaction equation in (0,7") x Qy for the
electric potential V, and the vector of gating variables w

/BCmath = V.-oVV,— Blion(vma w) + Text (43)
ow = Gy(w, Vi, ) (4b)

subject to the initial values at t = 0 in Oy

and homogeneous Neumann boundary conditions on (0,7) x 99
n-oVVy, = 0. (4e)

4. A SPLITTING METHOD FOR THE MONODOMAIN EQUATION

The idea of the splitting methods for the coupled model (4a) and (4b) is a decoupling into a parabolic problem
without reaction term

5Cm8th = V.oVl



and independent ODEs for x € Q without the diffusion term

Crnatvm = _Iion(vrmw) + Iext ’
w = Gy(w, V).

Let V C H'(2) be a conforming finite element space corresponding to a tetrahedral mesh Q¥ = |J rexc, K
and let A" C Oy be associated nodal points. Here, we use linear elements in the tetrahedron K with linear
nodal basis functions ¢,, where x € N}, are the corner points.

Both, the electric potential V,, and the gating variables are approximated in the finite element space V" and
thus represented by the nodal values.

Let N € N be the number of time steps, and set t,, = nAt with time steps size At = T/N. Furthermore, let
M € N be the number of substeps for the approximation of the cell models. Then, starting with initial values
V0 = V0 and wh® = wy, the symmetric Strang splitting with substepping is defined for n = 1,2,..., N as
follows:

(1) Independently for every nodal point € N, compute in (t,_1,t,_1 /2) an approximation of the ODE

CundtViy = —Lion (Vi ") + Lexs ,
duwh = Gy, VI
with initial values V" (t,_1) = V"= and w"(t,_1) = w"" ™1 using M time steps of step size %;
then, set Vn]}’n_l/Q = Vnﬁ(tn_l/g) and w12 = U}h(tn_l/g).

(2) For given Vihn=1l/2 ¢ V", compute Vhn=1/2 ¢ v with the implicit Euler method, i.e., solve

/ (f/n’}’”*l/?qsh + 2L gpnmese. 0V¢h) da = / Van=1R2ghdz, ¢l e VI
Qm ﬁcm Qm

(3) Repeat the first step in (¢,—1/2,t,) starting with (Ag’n71/2,wh’"_1/2); this gives (Vo whm).

Time integration for the ODE system. To solve the ODE system

Cmatvrg _Iion(vrg» wh) + Iext )
dw" = Gu(w", VM

with initial values V' (¢,_1) = V;»"~1 and w"(t,_1) = w™"~! independently in every nodal point € N in
(tn—1,tn) we tested different time integration methods. The scheme for the second equation stays always the
same and is described in the sections where the different cell models are explained. For the first equation we
implemented the simple explicit Euler method and the two step Adams Bashforth method. For the explicit
Euler method we have

At

Vh,n _ Vh,n—l _
m m Cm

(Iion(vmhm_la wh,n—l) - Iext)~
For the twostep Adams Bashforth metod we compute the first two solutions with the explicit Euler method as
given in this section and for every further timestep we use the following:

At

Vrﬁ,n _ Vrgz,nfl o e

(S(Iion(vmh’nilv wh’nil) - cht) - (Iion(vrﬁ’n727 wh,n72) - cht)) .

Numerical results on the mesh in Fig. 2 are presented in Fig. 3.



(A) Tetrahedral mesh on level £ = 0. (B) Tetrahedral mesh on on level £ = 3 (zoomed).

FIGURE 2. Reference geometry approximating ventricles and atria on level £ = 0 and with
three uniform refinement steps.
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FiGURE 3. Evolution of a depolarization wave on the ventricles and atria: In this model,
the wave is initiated via external stimuli starting at the sinus node located in the wall of
the right atrium of the heart and then propagates by electrophysiologic mechanisms. The
electric potential is computed with conforming finite elements, which are coupled with an
abstract interface to the ODE system describing the electrophysiology of the cell membranes
at every nodal point. The time stepping is realized by a splitting scheme. The system is
computed in parallel and requires approximately 8.5 million tetrahedra to faithfully represent
a physiologically accurate propagation of the cardiac depolarization wave.

5. THE TEN TUSSCHER CELL MODEL

In the ventricles, we use the ten Tusscher cell model [ten Tusscher and Panfilov, 2006]. The model is extended
by a stretch-activated channel based on the formulation in [Kohl et al., 2001, Tavi et al., 1998].
Here, the model involves the ion concentration of calcium Ca, Cags, Cagr, sodium Na, and potassium K,

and 13 gating variables

w = (Caa CaSS) CaSR7Na7K7E767m7 hajv Tr1, Tr2, Ts, S, T, d7 f7 f27 fCa)
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and depending on the constants R, T, F, z, Nae, K¢, Cae, GNa; GcaL, Gks, Gto, Gkry GK1, Gpcas Gpk, GbNa,
GSA07 PKNa, Vm,CaL; Vm,pK7l ) Vm,pK,la kNaCaa v, &, KmNaw KmCa7 ksat7 PNaK; KmKa KmNaa KpCau ESA07 Re
and agac for ionic currents and the constants Vi, Vsr, Vss, Vieak, Vimaxups Kup> Vrels Vders k1, k2, k3, ka, for

the evolution of ion concentration all specified in Tab. 2.

In the equation for the potential Cy,,0:Viy = Tion(Vin, w, v¢) + Lext, the transmembrane current density Iioy, is

given by

Iion(Vm7 w, 'Vf) = INa(Vm7 Na, m, hv]) + ICaL(Vma d, fa f27 fCaa CaSS) + IKS(VI’H? K, Na, .’ES) + Ito(va K,r, 5)

+ IKr<Vm7 K7 Tr1, $r2) + IKI(Vma K) + INaCa(Vm7 Na, Ca) + INaK<Vm7 Na) + IpCa(Ca)

+ Ik (Vin, K) 4+ Inca(Vin, Ca) + Ipna(Vin, Na) + Isac(Via, 7e)

combines the contribution of different ions, where

Ina(Vin, Na,m, h, j) = Gnam®hj (Vi — Exa(Na)) ,
(Vin — Vin,car) F2 0.25Cags exp (2(Vin — Vin,caL) 27) — Cate
RT exp (2(Vin — Vm}CaL)%) -1
Ixs(Vin, K, Na, 25) = Ggs22 (Vin — Eis(K,Na)) ,
Lio(Vi, K, 1, 8) = Gtors Vm — EK(K))

ICaL(Vmada f7 f27 fCaa CaSS) =4

GCaLfofCada

IKr<Vm7Ka$r1;xr2 GKr

C”W
.,;;

e.’lﬁrll’rg V —EK(K>)

K.

I (Vi K) = G
Kl( K1 54

= TKl1,00 VmaK (Vm - EK(K)) B

exp ( Vmﬁ)NaﬁCae — exp (( Vi IfT)NasCaa

I aCa VmaNa7 Ca) =k aCa ;
Naca( )= e (g Na?) (Kncn + Cae) (L + homs 30 (7 = )Von 25))

; (Voo Na) = B K.Na
) m, Na) = ’
NaK (K + Kani) (Na + Ka) (14 0.1245 exp (= 0.1Viu ) + 00353 exp (= Vin o7
Ca
I a C - G ay- . o~
pCa(Ca) pC K,ca + Ca
Vm - EK(K)

Lok (Vin, K) = G ’
eV 1) = G (Vi — Vi) Vi)

Inca(Vin, Ca) = Goca(Vin — Eca(Ca)) ,
Tona(Vin, Na) = Gpna(Vin — Exa(Na)) ,

Vin — Esac
1+ keexp ( — asace)

Isac(Vin,ve) = Gsac



with the reverse potentials

RT Cae
ECa(Ca) - ﬁ lo Ca’
RT . Na,
Ena(Na) 7 lo Na ’
RT K.
Ex(K) = “F logf )
RT . K.+ pknaNae
E s K, N = 71 . T
s a) F %K + prnaNa
and
0.1
Vm7K - ’
ak ( ) 1+ exp (0.06(7200 4+ Vin — EK(K)))
Bicr (Vi K) = 2P (0.0002(100 + Vin — Bk (K))) + exp (0-1(~10 + Viu — Ek (K)))
K1{Vm, - 1+ exp ( - 0.5(Vm - EK(K))) 7

K1 (Vrm K)
o0 ‘/1'1'17 K - .
1o (Vi K) = S B (Vo K

For the evolution of ion concentrations and gating variables (4b) we specify every component of w independently.

The evolution of ion concentrations. We have

<INa(Vma Naa m, h7]) + IbNa(Vm7 Na') + 3INaK(Vm; Na) + 3INaCa(Vm> Na, Ca)) )

8tNa = — ‘/CF
1
atK - V F (IKI(Vm7 K) + INaCa(Vm7 Na” Ca’) + ItO(va K7 ra S) + IKr(Vm7 K7 xrl; xr2)
C
+ IKS(VIH’ K7 Na, xs) - 2INaK(Vm7 Na) + Ipca(ca) + Iext) ,
1
3tCa = —W (IbCa(Vma Ca) + IpCa(Ca,) — QINaCa(Vm, Na, Ca))
Vs
+ % (Ilcak(ca, CaSR) - Iup(ca) + Ixfcr(ca, CaSS)) ,
C
atcaSR = Iup(Ca) — Ircl(CaSR, Ca,ssjﬁ) _ Ilcak(ca, CaSR) ’
! Vsr Vo
= —— ] a m7d7 ) ) a 711“9 , , 77Ixer ’
atCaSS QVSSF C L(V f f2 fC )+ VSS I(CaSR CaSS R) VSS h (Ca CaSS)

with
Near(Ca, Caggr) = Vieak (Casgr — Ca),

Vmaxup

1+ K‘?‘p/Ca2 ’
Le1(Cagg, Cass, R) = V;e1O(Cags, R) (Cagr — Cags),
Ixfcr(cav CaSS) = focr (CaSS - Ca) )

I,p(Ca) =

where the proportion of open I, channels is given by
kl Ca%sﬁ

O(Cagg, R) =
(Cass, ) ki3 + iy Calg
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depending on the proportion of closed I i channels R, which is modeled by a Hodgkin-Huxley type equation
O.R = =agp(l- R) — ﬂR(CaSS)
with
ap = ka, Pr(Cags) = koCags .
The gating mechanism. Gating variables y are described by a Hodgkin-Huxley type equation

aty = ay(vm)(]- - y) - ﬁy(vm)ya (5)

where «a, and (3, are nonnegative functions of V;,, cf. [Cronin and Jane, 1987]. In case of constant coefficients
oy, and f3,, we obtain the solution of the linear ODE

v = =t = (g ) exp (= oy + )= taen)) s 1€ ot (6)

This expression is used in the time-stepping scheme, i.e, y™ is computed from y"~! with (6) by inserting
a1t =, (V1) and ﬁ;’_l = B, (V1.

Y
Thus, we specify directly

1 _ ay(Vin)
V) ¥ By V) U V) = B, V)

from which ay (Vi) and By(Vim) can be computed.

Ty(Vm) =

The gating evolution in the ten Tusscher model. In the following, all expressions depending on V,, are
given in mV, i.e., in exp ((35 +Vi)/ 5) the qualities 35 and 5 have the physical unit mV. The gating variables
Yy E {m, h,j, Tr1, Ty, s, S, 7, d, f, fg} are determined by

(Vi) 1 ( 0.1 n 0.1 )
T™Tm(Vm) =
1+exp ((—60 — Vim)/5) \1 +exp ((35+ Vim)/5) 1+ exp ((—50 + Vin)/200)
1
moo(vm) = 9
(1 +exp ((—56.86 — Vm)/9.03))
0.13(1+exp (—(Viu+10.66)/11.1) ) Vs a0
Th(Vin) = 0.77 . m = TV
(0.057 exp (= (Vin + 80)/6.8) + 2.7exp(0.079V,) + 3.1 - 10° eXp(0.3485Vm)) else,
1
hOO(Vm) = 2
(1 +exp ((71.55 + Vm)/7.43))
1tex (Ven+32))
0 GIpr 0.057Vim) ) Vi > —40,
—2.5428-10% exp(0.24444V,,,) —6.948-10 % exp(—0. 04391Vm)) (Vin+37.78) 0.02424 exp(—0.01052Viy )
T+oxp(0.311(Vin 179.23)) Ttexp(—0.1378(Vin 1 40.14)) else
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14

1+ exp ((—35 — V;n)/13
1

T 1+ exp ((—8 = Vin)/7.5)

1.4 1
) L+ exp ((5+ Vm)/5) i + exp ((50 — Vi) /20) ’

Ta(Vm) = ( ] +0.25

doo(Vin)

Vin + 27)2> N 200 N 180
15 1+exp (13 — Vin)/10) 1+ exp ((30 + V;)/10)

7¢(Vin) = 1102.5 exp ( - ( 490,

1

Foe V) = o (@04 Vi)/7)

(Vin + 25)2 31 16

752 (Vi) = 600exp ( 170 )+ 1+ oxp (25— Vin)/10) 1+ oxp (30 1 Vin)/10)

0.67

fQ,OO(Vm) = 1+ exp ((35 + Vm)/7)

+0.33,

_ 1400 1
\/1 +exp (5 — Vin)/6) 1+ exp ((—35+ Vin)/15)
1
T Tt exp (<5 — V)/14)

Tz, (Vi)

+ 80,

xs,oo(v;n)

4 )2
TT(Vm):9.5exp(f (40 + V) )+08,

1800
1
Too(Vin) = 1+ exp (20 — Vi) /6)
- (45 + Vin)? 5
7s(Vin) = 85 exp ( - 320 ) 14 exp ((—20 + Vm)/5) i
1
Soo(Vm) = 1+ exp ((20 —+ Vm>/5) ’
Wy 450 6
Ton V) = 770 exp ((—45 — Vin)/10) 1+ exp ((30 + V;,)/11.5) 7
V)= 1
Tr1,00(Vin) = 1+exp (=26 = Vin)/7)
v 3 1.12
e (V) = e (60— Vi) /20) 1+ exp (60 4 Vin)/20)
1
xr2,oo(‘/ﬂl)

T 1+ oxp ((88+ Vim)/24)
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The evolution of the gating variable fc, is also given by a Hodgkin-Huxley type equation, depending on Casgs.
We have

80 0.6
D) +2, fCa,oo(Cass) = 5 +0.4.

Tfea (Cags) = T a2 T Can?
1+ (552) 1+ (5g2)

Computing «a(Vy,) and S(Vin). In the cell model of ten Tusscher we have 11 variables to describe the gating
mechanism. For two of them we know «(V},) and 8(V},) from definition. For all others we have to compute the
values if we want to know them. For the implemented numerical method the exact integrators it is sufficient
to know 7, and x.. To use another numerical scheme we need the values of a(V;,) and 8(V4,). For a fixed
potential V' we have 7, := 7,,(V) and oo 1= Too (V). With those we want to compute a := (V') and g8 := (V).
To repeat shortly we know

1
Ty =
Y oa+p
«
Too = .
Then
Lo
Too = QT & a0 = —
T
and for 8 we have
L. (a+B)=1<p !
Ty = T\ = = — — Q.
a+p o

Inserting a gives

1 Too 1— 2

f=— -2 .

Tz Tx Tz

6. THE COURTEMANCHE CELL MODEL

In the atria, we the use the Courtemanche cell model [Courtemanche et al., 1998]. Here, the model involves
the ion concentration of calcium Ca, Cayp, Cayel , sodium Na, and potassium K, and 15 gating variables

w = (Cav Caup7 Carcla Na, Ka m, h»ja Oa, Oi, Ua, Ui, Ty, T, d, f, fca, u, v, wrcl) ;

and it depends on the constants 9Na, gCaL, VCaLa 9Ks; Gtos 9Kr, VKrla VKrZa JK1, VKla INaCa(rnax)7 Caea Naea
Km,Na(e), Km,Caa ksatv s Fv R7 T, INaK(max)v Km,Naa Ke, Km,Kea Ip,Ca(max)7 gbCa; KQlO and gbNa for ionic
currents and the constants Vi, Caup max; Fups Frel, Tup(max)s TrPDyay, Cmdiimax, Csqny,,, Km,csqns Km,Cmdns
K, Trpn, cf. Tab. 3.

In the equation for the potential C,0:Vin = Lion(Vin, W) + Iext, the transmembrane current density iy given
by

Iion(vm» w) = INa(Vm; Na, m, hv]) + ICaL(Vm, d, fa fCa) + IKS(VHH K, xs) + Ito(Vm, K; Oa, Oi)
+ IKr(Vrrn K7 xr) + IKur(Vm7 K7 Ua, ui) + IKI(Vm7 K) + INaCa(Vm7 Na, Ca)
+ [NaK(me Na) + IpCa(Ca) + IbCa<Vm7 Ca) + IbNa(Vma Na)



combines the contribution of different ions, where

Ina(Vin, Na,m, b, j) = gnam®hj (Vi — Exa(Na))
ICaL(Vma d, fa fCa) = gCaLdffCa(Vm - VCaL) )
Ixs(Vin, K, 25) = gisz? (Vin — Bx(K)) ,
)

Ito(Vm7 K7 Oa, 0i) = gtoozoi(

Vm - EK(K)) )

IKrZr (Vm - EK K)

IKI‘(‘/IIl7 Ka mr) =
14 exp

JgK1

(
((Vm + VKrl)/VKr2) 7
(Vm - EK(K)

IKl(Vnu K) =

14 exp(0.07(Vin + Vk1)) ’

IKur(Vma Kv Ug, ui) = gKuruiui (Vm - EK(K)) )

INaCa(max) ( eXp(’Y%))Nagcae - eXp((V B 1)%)1\13‘20&)

INaCa(Vnu Na, Ca) = (K3

m,Na(e

)

(e) + Na’g)(Km,Ca + Cae)(l + Kgat exp((fy _ 1)Vm%))
1 K,

INak (Vin, Na) = INaK (max a ’
Nak ( a) = INak (max) fNak | + (KmNa/Na)t9 Ke + K,

Ca

1 a C =1 a(max) Ny ~nnE L~ 0
pca(Ca) = Ip.cama) 55605 1 Ca
IbCa(Vma Ca) = gbCa(Vm - ECa(Ca)) )
IoNa(Vin, Na) = guNa (Vin — Ena(Na))

with the reverse potentials

Eca(Ca) = % log (éae ;
Ena(Na) = %1 1\;;: )
RT K
Ex(K) = ~F! Ee
The evolution of ion concentration. We have
0,Na = —# (o (Vins Na,m, B, ) + Tina (Vin, Na) + 3Inakc (Vin, Na) + 3xaca(Vin, Na, Ca) )
0K = *ﬁ (11 (Vi K) + 1o (Vi K. 00, 08) + Tice (Vi K. 1)

+ IKS(‘/;H; K, xs) - 2INaK(Vm7 Na) + IKur(Vm7 K; Ua, ui)) )

. IbCa(Vma Ca) + IpCa(Ca) + ICaL(Vm7 d7 f7 fCa) - 2INaCa(Vm7 Naa Ca)

8,Ca = (

2ViF

* Vi

Vup(Iup,leak - Iup) + Irel‘/rel) (1 Trpnmame,Trpn Cmdnmame,Cmdn

(Ca + Km,Trpn)2 (Ca + I<m,Cmdn)2
erel

8tcaup = Iup(ca) - Iup,leak(caup) - Itr(caupy Carel)vi )
up

qunmame,qun ) -1

atcarel = (Itr(caupa Carel) - Irel(ca7 Carela u, v, wrel)) (1 + (Carel + Km,qun)2

)"

13
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with

Tup(max
Lyp(Ca) = 2029

1+ g2
Ca
Iu Jeak Cau = -2 I max) »
pleak ( p) Caup max up(max)
Cayp, — Ca,
Itr(caupa Carel) = up]_WQI 5

2
Irel(caa Careh u,v, wrel) = krelu Uwrel(carel - Ca) .

The gating evolution in the Courtemanche model. For the evolution of the gating variables we specify
every component of w independently. Every gating variable y € {m, Ry J, 0a, 01y Ua, Uiy Tpy T, dy fy foa, U, U, wrel}
is described by a Hodgkin-Huxley type equation as given in (5), so that the evolution is determined by 7, and
Yoo, Cf. Sect. 5. As in the cell model of ten Tusscher all expressions depending on V;, are given in mV, i.e., in
exp ((Vin +80)/6.8) the qualities 80 and 6.8 have the physical unit mV.

Here, we use for the gating variables {m, h,j}

1
V) = V) 5, (V)
Yoo (Vin) = ay(Vin )by (Vin),

with
3.2 Vi = —47.13,
am,(‘/m) = 0.32 Vin+47.13 else
1—exp (—0.1(47.134 Vo) ) ’
b (Vi) = 0.08 exp ( - &)
11/°
O ‘/m Z _407
ah(Vm) =
0.135exp ( — (Vin +80)/6.8) else,
-1
. — . . > —
b (Vi) (0.13(1 +exp (= (10,66 + V) /11.1)) ) Vi = —40,
3.56 exp(0.079V;,) + 3.1 - 10° exp(0.35V;,)  else,
and
0 Vin > —40,

a;(Vin) = { (—127.14 exp(0.2444V;,) — 3.474 - 1075 exp(—0.04391V;,) ) (37.78 + V;)
1+ exp (0.311(79.23 + Vi) ’

exp(—2.535 - 107 "Vyy,)
1+ exp(—0.1(Viy + 32))

Vin > —40,

exp(—0.01052V},,)
1+ exp(—0.1378(Vyy + 40.14))

0.1212 else,
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For the gating variables {0aH 0iy Un, Ui, Ty, T, d, f, wrel} we use

0.65 n 0.65 ))_1
exp(—(10 + Vi) /8.5) + exp(—(—30 + Vi) /59) 2.5+ exp((82 + Vi) /17) ’

o, (Vin) = (Kauol

once(Vin) = (1 -+ exp(—(20.47 + V) /17.54))_1 ,

1 1 -1
18.53 + exp((113.7 + Vin)/10.95) | 35.56 + exp(—(L.26 + Vin)/7.44) )) ’

To; (Vi) = (KQw(

0100 (Vin) = (1 +exp((43.1 + vm)/5.3))_1 :

Tua(vm) = Toa(Vm) y

U oo (Vin) = (1 +exp(—(30.3 + Vm)/9.6)) -

1 -1
21 T oxp(— (=185 7 Vi) o8y T o198+ Vm)/m))) :

Tui(Vm) = (KQlo(
-1
Ui oo (Vin) = (1 + exp((—99.45 + Vm)/27.48)) ,
14.1 + Vi

—3.3328 4 V; -1
Vi) = (0.0003 7.3898-107° o ,
7. (Vin) ( 1 oxp(— (141 + Vi) /5) exp((—3.3328 + Vi) /5.1237) — 1)

1.0 (Vi) = (1 +exp(—(14.1 + 1/10[1)/6.5))_1 :

—19. —19. -1
T (Vi) = 05(4-107° 99+ Vin +35.10-5 9.9+ Vi "

1 —exp(—(—19.9 + V;,)/17) exp((—=19.9 + V;,)/9

2

Zero0(Vin) = (1 +exp(—(—19.9 + Vm)/12.7)) :

B 1 —exp(—(10+ V},)/6.24)
0.035(10 + Vin) (1 + exp(—(10 + V;) /6.24))

doe (Vi) = (1 exp (— (104 Vi) /8))

Td(vm)

9
~0.0197exp ( — 0.03372(10 + Vin)2) + 0.02”

Foo(Vin) = (1 +exp ((28 + Vm)/6.9))71 ,

7 (Vin)
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1—exp (= (=7.94 Vin)/5)
(=794 V) (1+03exp(— (=794 Vin)/5))’

Wretoo (Vin) = 1 — (1 +exp ( (40 + V}n)/17>)_1 .

Twyel (Vin) =6

For the gating variables {u, v} we use

Ty =8,

Fy(Vin, Na, d, f, fca) — 3.4175 - 10-13))—1

uoo(Vm,Na, d, f, fCa) = (l—i—exp ( 13.67 - 10—16

_ Fo(Vim,Na,d, f, fca) — 34175 - 10713\ 1
7oV, Na, d, f, fca) = 1.91 + 2.09(1 + exp ( - 2o Jon) =2 )) ’

Fy(Vim,Na, d, f, fca) — 6.835 - 10714 )) -1
13.67 - 1016 ’

voo(vmvNaa da fa fCa) =1~ (1 + exp (
with

5-10713

Fn(Vma Na7 d7 f> fCa) = 10_12‘/;e1—[rel - F

(0~5ICaL(VIna d7 fu fCa) - O~2INaCa(Vm7 Na, Ca’))

and the function

0.05
1+ exp(—(—15+ V) /13)°

gicur (Vin) = 0.005 +

Finally, the evolution of the gating variable fc, is also given by a Hodgkin-Huxley type equation, depending
on Ca. We have

Tfca = 2,

feane(Ca) = (1+

Ca >—1
0.00035 '
7. A MODEL FOR CARDIAC ELECTROMECHANICS

We consider the human heart to be a bounded reference domain €2, which is deformed into the current
configuration by a deformation ¢: [0,T] x Q@ — R3 during one heartbeat (T =~ 1s). We set Q; = (¢, Q).
The deformation ¢ is computed from the displacement u: [0,T] x Q — R? by

olt,z) = x +u(t,a).

the elastic response depends on the deformation gradient

9
F(t,z) := Dep(t,x) = <8x<pj(t,m)> .
i=1,..3

i

From the separation of ¢, we get F = I+ Du, and we set J = det(F).
We use the balance equation in the Lagrange configuration

00070 = div P (7a)
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FIGURE 4. Reference geometry approximating ventricles and atria on level £ = 0 and with

three uniform refinement steps.

with reference density gy and the stress P depending on F and an active strain or active stress model. This is
complemented by boundary conditions on 02 = T'p UT'p UT'y UTgry UT'La UT'grA with Dirichtlet boundary I'p,
pericardium I'p = 0Q1 N 9Ny, and boundaries 'ty = 002y NIy, 'Ry = 00y NOQRY, I'La = 00QaA NN,
I'pa = 004 NOQA of the left and right ventrical and atria chambers Qpy, Qrv, Qpa, Qra, see Fig. 4.

We use the boundary conditions

p=0, onIp, (7b)
[p] =0, onTp, (7c)
Pn = —pryn, on 'y, (7d)
Pn = —pgryn, on I'ry, (7e)
Pn= —ppan, on I't,a, (71)
Pn = —pgran, on I'gra . (7g)

Hyperelasticity. We assume cardiovascular tissue to be hyperelastic, i.e., there exists a stored energy function
W = W (F) which defines the stress response (in case of no active forces) by

P =DW(F).

Since the material is frame-indifferent, 1 exists such that W(F) = W(C), where C = F'F is left Cauchy
Green strain tensor. Alternatively, the energy functional is given in the form W (F) = W(E) for E = 3(C —1),

o

or W(F) = W(tc) depending on invariants tc of the strain tensor.
Anisotropy. In isotropic materials, the hyperelastic energy only depends on the invariants of C
11(C) = trace(C),

12(C) = trace (Cof(C)) , 13(C) = det(C) = J2.
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The cardiac tissue is stronlgy anisotropic. Depending on the fiber direction and the normal direction in the
reference domain

f: Q— 52,

n: Q— 5?2

with n - f = 0 we define s = f x n. This defines the anisotropic invariants

ty¢(C) = f-Cf,
t4n(C) = n-Cn,
t4s(C) = s-Cs,
ses(C) = |f-Csl.

Constitutive models. With the representation above, we now specify the hyperelastic energy For cardiac
tissue, several models are proposed to imitate its viscoelastic behaviour. Commonly used models are:

(1)

Neo-Hooke model. One of the simplest non-linear material models is given by

W(C) :g(trace(C) C3)4Ta(J), Ta(J)= %(J —1)2

with parameters p and A\. Though it is easy to implement, it does not capture the anisotropy of cardiac
tissue.

Guccione model. An early contribution to anisotropic material models was given in [Guccione et al.,
1991], defining the Guccione material

() = exp [Qra(E) — 1] + Ta(J)

with parameters Cy, ¢ and A and Qr s(E) defining the functional
—2 —2 -2 -2 2 92 2  —2 2
Qrs(E) == b1 71 + b2(Eoy + Egg + Eog + Egp) + b3(Eiy + By + Ei5+ Eyy),

where
E=f-Ef+s-Es+n-En

is the Green strain tensor oriented along the fibre direction. The parameters by, bo, b3 are determined
by experiments.

Holzapfel-Ogden model. We use the general energy proposed by [Holzapfel and Ogden, 2009] defining
a Holzapfel-Ogden material:

W(ie) = 2% lexp (b(11(C) — 3)) — 1] + ;T; [exp (be(4,6(C) — 1)?) — 1]

+ ;;S [exp (bs(4,5(C) —1)%) — 1] + ;bffss [exp (beats £ (C)?) — 1] + T (J)

with parameters a, b, ag, bg, as, bs, afs, bgs determined by physical experiments.
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The active strain decomposition. The conclusions above all rely on the assumption that soft tissue can be
modeled as elastic. In reality, cardiac cells have viscoelastic behaviour. While rapid and repeated stretching
causes a stiffing effect, the tissue loosens when exposed to prolonged elongation. Some of these effects are
permanent, meaning that the pullback into Lagrange configuration would actually lead to a different, interme-
diate configuration. To account for this plasticity, we use the active strain model described in [Ambrosi et al.,
2011, Rossi et al., 2012]. Separating the deformation gradient F into an elastic, passive part F, and an active
part F,, we write
F = F.F, (8)
The tensor F, accounts for the active deformation induced by the cells.
For each cell, we denote by V¢, Vs, Yn: [0,7] x £ — R their deformation into the respective direction f, s, n.
Setting
Fo=T+%f®@f+7%s®s+mnen, 9)
we can make the following assumptions:
e (Cardiac cells are transverse isotropic along f, i.e. 75 = Yn.
e The cells consist mostly of water and are therefore isochoric, i.e., their volume is constant, so that
Jo = det(F,) = 1.
From these two conditions follows directly that

det(Fo) = (s + (s +1)?> =1

1
and therefore v = ——= — 1. Hence we only need to compute y¢. We then set a new stress response

Ve +1
P =DgW(FF; 1),

which allows a pullback into the actual Lagrange configuration. An in-depth explanation of the evolution of ¢
is given in Sect. 8.
Within this active strain model, we need to recompute the invariants as they now depend on ~¢, i.e.

e e+ 2
17 =1+ — SR el
1 =1+ ((’Yf ’Yf(1+,yf)2> af

and
_ _1
=0 +7) e, he= 1 +70)us, s = (1+7) 2tags-

The active stress decomposition. An alternative approach to the multiplicative split of the deformation, as
described above, is to additively split the stress tensor

P= DFW(F) + TmaXTtot(w,g) fLP ® fLP s (10)
where Thax is a constant adjusting for the maximal active tension and Ti; the current tension generated by
cellular evolution model, cf. Sect. 8.

The Newmark method. Now that we know how to properly calculate P(D¢g, w), a proper time-integration
strategy is needed to solve the dynamic system (7). We implement a Newmark 3-scheme [Crisfield, 1997], where
at each time step n we solve for u(t,,x) = u”, approximating d?u ~ a” with

1-2
TﬁNan—l +ﬁNan> 7 (11&)

v =v" At (1 —n)a™ 4 yna”) (11b)

u” =u" 4 AT 4 (at)? <



20
and a® = 0. The approximated dynamic system is the given by
oo —divP(I+Du”) =0. (12)

Solving for a” in (11a) and replacing a™ and v™ in (12) gives us

1 1 1 1 1_25\] 1 .
n n — v - a" —divP(I+Du") =0. 1
Q0|:3 t( t(u u ) \ ) a dl ( 11) 0 (3)

The standard Newmark parameters are Sy = 0.25 and yn = 0.5. As these values dictate the damping of the
system, further combinations are being tested in our experiments.

The ventricle volume. The reference domains for each chamber C' are given by Quv, Qrv, Qra, Q2ga. The
volume of the deformed chambers are then denoted by [QF], Q& ], Q7 A], Q2% 4], and would be computed by

\Qg|=/ ldx, C€{LV,RV, LA, RA}.
(94

C

On the discrete geometry however, the chamber volumes are evaluated by the sum of volumes of all tetrahedrons
constructed by a surface triangle K C 9€Q2¢ and the center point x¢. By denoting the vectors of the vertices of
K by ak, bk, cx, we obtain

|Qg| ~ Z %(aK — Xc) . ((bK — aK) X (CK — aK)) .
KcCoQc

8. THE CELL-CONTRACTION MODEL

The cell-contraction model for the active strain approach used in Sect. 7 involves two parts: The stretch
model itself and a second model simulating an active tension depending on the current concentration of Calcium.
Together, it determines the stretch «¢ depending on the deformation, on the calcium concentration in the set
of variables w for the cell model, and on an additional set of gating variables g for the tension model.

The contraction model determines the stretch ¢ and involves a set of 9 gating variables

g= (Tr7B7UaVV757CWa<S7CS7Cd) .

The evolution of the stretch depends on the deformation gradient D¢, the fiber direction f, and the parameters
1oy lmin, lmax, Cos Ck, di, (kK = 1,2,3) [Ruiz-Baier et al., 2014], cf. Tab. 5. The gating mechanism determines the

total force Tho(w, g) and depends on the constants kry, nry, Cakay, kp, nms, kuw, kws, 'w, s, Tw, 7S, 6,
Aeff; ﬂOv Bl» Trefa cf. Tab. 4.

The Stretch Model. The stretch value ~¢ is determined a nonlinear ODE
9yt = Gy (e, Dep, £, g, w) (14a)

We use the model [Quarteroni et al., 2017] given by

1 ~ 20
G’Yf(’Yfa D‘Pa fvgaw) = |:(DL(1‘W(FC) + DLZfW(Fc)) <Fa(w,ga L4.,f77f) - ( L

depending on geometrical quantities and the calcium concentration Ca

Fa(w7 g,tlaf, ’Yf) = aTtot (wa g)RF—L<L47fa ,Yf) 5 (14b)
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where F, is the active tension created in the cardiac cells depending on the concentration of Ca2*-Ions and the
invariant of the their current deformation ¢4 ¢. Note that only the invariant along f is needed, as the cardiac
force mechanism is modeled in 1D. The evaluation of the resulting force Ti.; and the force-length relationship
Rg_1, depends on the used force model of the cells. The model for Ti.; is described in the next section, and Rg.1,
is approximated by fitted Taylor Series

Re-1.(44,6) = X[tmin lmax] (l0 + 7£)

3
Co . 1 zé€lab],
5 + ; (Ck sin(klota,f) + di Cos(klob4,f)>‘| y - Xla,b] (z) = { 0 x¢lab].

The Land Tension Cell Model. To model the tension generated by activated cardiac muscle cells, we use
the model described by Land et al. [Land et al., 2017]. It simulates cardiac myocytes using ion concentrations
of calcium (Ca) and troponin (Tr) as well as crossbridge binding of sarcomeres using a three-state crossbridge
cycle

Ca

Carso

0,Tr = kry K )nTr (1—Tr)—Tr (15)

Here, Tr represents the fraction of troponin units with calcium bond. This concentration drives the unblocking
of tropomyosin. The fraction of blocked binding sites (B) is given by

—"TrB NTrB

6tB:k‘B-TI' > U—ky-Tr 2 B (16)

The following crossbridge cycle containins an unbound (U), a pre-powerstroke (W) and a post-powerstroke (.S)
state. They are given by the relation

U=(1-B) —-S5—-W, (17a)
8tW = kUwU - kWUW - kWSW - ’}/WUW, (17b)
8tS = kwsw — k'SUS — ’}/SUS, (170)

with parameters kyw, kwu, kws, kws. The values of vy and sy are derived from the distortion-decay
model

8t<W = Awat)\f — ch“W 8t<5 = AS@t}\f — Cs(s (18&)
—s(Cs +1) if (s <1,

ywu = ywlCwl Ysu =4 7VsGs if (5 > 2, (18b)
0 otherwise.

Ay and Ag relate to the magnitude of the instantaneous distortion response while ¢y and cg represent decay
rates. The variable A¢ corresponds to the relative cell length, i.e. A\¢ = lo;rT’Yf As it is difficult to provide the
values for k, A and c directly, we define the steady-state ratios

S
= steady-state —————— 19
rs = steady-state 77—, (19a)

rw = steady-state i (19b)

+ W
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This allows for an easier parameter estimation and gives the following relations:

1
kwu = kuow ( - 1) —kws, (20a)
rw
1
kSU = kWSTW ( — 1) B (2Ob>
TS
TrnTrB
kp =k . 20
B Ul—rs—(l—rs)rw (20¢)
We further assume the magnitude of instantaneous distortion in W and S are equal, i.e.
As = Ay = Aeﬁ‘r—s (21)

(1—rs)rw +rs

Additionally, we view the distortion decay rates to be proportional to the steady-state crossbridge cycling rates:

(1 — 7‘5)(1 — Tw)

cw = ¢kuw W o kuw A= rs)rw (22a)
1—1rg)r
cg = ¢kws§ = ¢/€W57( s)rw : (22b)
rs
Tref
To = h(Xe) s ((Cs +1)S +CwW) (23)
where Tief is the maximal active tension at resting length and

h()\¢) = max {o, A (min{e, 1.2}) — 1} : (24a)

h(Ae) =1+ Bo (Af + min{ )¢, 0.87} — 1.87) (24b)

enforces a length-dependency on the tension. Such a dapendency is also introduced for the half-activation point
Carso used in equ. (15)

Carso = Calfsy + 1 (min{Ag, 1.2} —1). (25)
In the coupled model, we also need to account for a passive tension withing sarcomeres. A sufficient implemen-
tation of such a passive cell model is given by

_ o Cs o m if Os > O,
Cs — (>‘f - 1) - Cda 8tcd - k? ) n= { ns if Cs § 0. (26>
The passive tension is then calculated by
T, = akCy (27)
and the resulting tension of the force model is given by
Ttot = Ta + Tp- (28)

9. THE CIRCULARTORY SYSTEM

The heart interacts with the human vascular system, see [Quarteroni et al., 2019] for the mathematical
modelling of the human cardiovascular system, [Barbarotta et al., 2018] for a specific activation model for
ventricular contraction, [Fedele et al., 2017] for an aortic valve model, and [Tagliabue et al., 2017] for an
idealized blood flow model in the ventricle.
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Here we use a lumped parameter model of the closed-loop human vascular system to include more realistic
hemodynamic boundary conditions in our model of cardiac mechanics, This model is driven by the volume

changes of the four chambers |QF, |, [QFx|,1Q%. ], [Q%g|, where the deformation ¢ depends on the pressure
values of the right/left ventricular and right/left atrial chambers

p = (PVvR, PVL, PVR, PVL) -

The circulatory system is determines

z = (Usysvem USysArt; UPulVen; UPulArt; VVR, UVL, UVR, UVL)

describing the systemic venous, systemic arterial, pulmonary venous, pulmonary arterial, right/left ventricular,
and right/left atrial volumes, and depending on the parameters Rgysartvalve, RSysart, CSysArts USysArtUnstr

RSysPera RSysVena C’Sys\/'ena USysVenUnstr RRavValvm RPulArtValve> RPulAr'm CPulAr'm VUPulArtUnstr RPulPera RPulVena
CqulVena UPulVenUnstr) and RLavValve~

RA I

Cpuian Ppuiir Csysven
Psysven
Pr

Rpuiare - Reuiarvaive " RRavvaive

Rpyiper Reysper
R R §
PulVen Pra LavValve P,

Pputven

CPul Ven I I CSysArr

FIGURE 5. Schematic of the circulatory system model with the pressure values p, resistances
R, and compliances C.

In this closed loop system, the evolution of z is determined by

atUVL = max {m70} _ max{ PVL — PCSysArt 0} ’

)
RLavValve RSysArtValve + RSySArt
) _ DPCSysArt — PSysVen PSysVen — PVR
tUSysVen — -
RSysPer RSysVen
PVR — PVR PVR — PCPulArt
Oiwyr = maxq ——, 0 p — max ,0
RRravvalve Rpuiartvalve + Rpulart
PCPulArt — PPulVen PPulVen — PVL
atUPulVen = -
RPulPer RPulVen
S max { PVL — PCSysArt } DPCSysArt — PSysVen
tUSysArt = ) - )
RSysArtValve + RSysArt RSysPer
PSysven — PVR PVR — PVR
at’UVR = ————— — Inax 770 5
RSysVen RRavValve
Oy UPulAr = MAX { PVR — PCPulArt } PCPulArt — PPulVen
tUPulArt — ) - 9
Rpuartvalve + Rpulart Rpuiper

PPulVen — PVL PAL —PVL
Oypr, = ————— —maxy ———,0
RPulVen RLaVValve



24
subject to the relations for the pressure values

(pSysVen y PSysArts PPulVens pPulArt)

for the systemic venous, systemic arterial, pulmonary venous, and pulmonary arterial pressures given by

USysArt _ UsysVen
C ) PSysVen =
SysArt

PCSysArt = )
C(Sys\/en

DVL — PCSysArt 0}
b

)
RSysArtValve + RSysArt

UPulArt o UPulVen
~ > PPulVen = 5

PSysArt = PVL — RSysArtValve - max {

PCPulArt = )
CPulVen

PVR — PCPulArt
,0
RPulArtValvc + RPulArt

C’PulArt

PPulArt = PVR — RPulArtValve - max {

and subject to the constraints
VL = |Q$L| ) UVR = |Q\L¢R| ) VAL = |QiL| ) VAR = ‘QXR‘ ) (29)

where the deformation ¢ depends on p = (pVR, PVL; PVR, pVL).

The incremental realization. Withing one time step of the mechanical problem, we first find an approximated
pressure p through the closed-loop model. We either use a multistep method using previous pressure values, or
simply add a fixed amount in each chamber during the first initialization steps.

Next, we update the mechanical and circulatory models and compare the resulting chamber volumes if the
residuals r; = |Qf| — v; for i € {VL, VR, AL, AR} are below a threshold e,. If they are, the pressure p is
accepted and one moves to the next time step. Otherwise, we update p by a quasi Newton method:

pn — pn—l _ C—lrn’ (30)

n

where C,, is the compliance matriz determined by

T—1
A Pn Cn—l

cl=cl +(ap,—Clt ar,) —2—n1l
n n—1 ( n n—1 71) Ap;erT—Lil Arn

(31)

with A pr = pn —Pn—1, ATp =75 — Th_1.

APPENDIX A. MONODOMAIN PARAMETERS
The parameters and initial valuse for the monodomain model are given in Tab. 1.

TABLE 1. Parameters for the evolution of the electric potential in the monodomain equations.

surface-to-volume ratio B =140 mm~!

membrane capaticity Crm = 0.01 pFmm ™!

longitudinal conductivity oa,; = 556.9188 Smm‘ﬂav’l = 133.4177215 Smm~—! = AV-Imm~!
transversal conductivity ot = 251.0 Smm~!, oy = 17.60617761 Smm~*

initial potential ventricles V2 = —80.8887 mV
initial potential atrim V9 = —85.298 mV
external current ventricle V., = 0.582155 nA
external current atrium V. = 20 pApF~!
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For the ten Tuscher cell model, the parameters are given in Tab. 2, and initial values for the ion concentrations
and gating variables

0_ (1.0 .0 ~.0 7.0 71050 030 .0 .0 .0 .0 0.0 50 0 0 (0 AY
w —(Ca,CaSS,CaSR,Na,K,R,m Sh G Ty, g, g, 8T, A f >f27fCa?O)

s

at t = 0 and for all z € Qy are set to

Ca’ = 0.00011576, Caggq = 0.000233,  Calg = 4.1371, Na® = 9.4148  K° =136.0009, R = 0.98738,
m® = 0.0016901 , hY = 0.74684 79 =0.74622, 2% =0.00021327, 2% =0.4719, 20 =0.0033368,
=1, r0 =2.3886-10"8, d°=3.3409-107°,  f°=0.95972, f9=10.99949,  f2. = 0.99996,
—0
0 =0.

For the Courtemanche cell model, the parameters are given in Tab. 3, and initial values for the ion concentrations
and gating variables

0 _ 0 0 0 0 0 040 0 0 O, 0,0 0,0 70 0 0 o ,0 .0
w = (Ca 7caupvcare17Na 7K , I 7h )] 70a70i7uavui7xr7xsad 7f 7fCa7u U 7wre1)

at t = 0 and for all x € Q4 are set to

Ca’ =0.000112836, Cay, =1.52919,  Ca), = 1.10817, Na’ = 11.83 K’ =138.994, ,
m® = 0.00304588,  h® = 0.962696, 3% =0.975742, 0 =0.0309106, o = 0.999163,
ul = 0.00511314,  uf =0.986906, ¥ =0.00229885, ¥ =0.0196603, d° = 0.000141583,

f° =0.916064, fo, =0.75607, w®=15.60519-10"%, o0 =0.999994, w?, = 0.999185.
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TABLE 2. Parameters in the ten Tuscher cell model.

gas constant

temperature

Faraday constant

valence of the ionic species

Vm,CaL

Vm,pK,l

Vm,pK,2

Extracellular K concentration
Extracellular Nat concentration
Extracellular Ca?T concentration
cytoplasmic volume

maximal Iy, conductance

maximal Ic,r, conductance

maximal [k, conductance

maximal I, conductance

maximal Ik, conductance

maximal Ik, conductance

maximal I,k conductance

maximal Iy, conductance

maximal Ipc, conductance

maximal Ipc, conductance

maximal Ispc conductance

maximal Inaca

voltage dependencd parameter of Inaca
factor enhancing outward nature of Inaca
saturation factor for Inaca

Na half-saturation constant for Inaca
Ca half-saturation constant for Inaca
K, half-saturation constant for Inax
Na half-saturation constant for In.k
Ca half-saturation constant of I,ca
relative Ikg permeability to Na®

SAC reversal potential

SAC equilibrium constant

stretch sensitivity of Isac

subspace volume

sarcoplasmic reticulum volume
maximal Ije, conductance

maximal I,,;, conductance

half saturation constant of I,
maximal ., conductance

maximal I, conductance

R to O and RI to I I transition rate
O to I and R to RI I, transition rate
O to R and I to RI I, transition rate
Ito O and RI to I I, transition rate

R = 8314.472 mJK'mol !
T=310 K

F = 96485.3415 C/mol

z=1for Na and K, z = 2 for Ca
15 mV

25 mV

5.98 mV

K. = 5.4 mM

Na, = 140 mM

Cae = 2 mM

V. = 0.016404 mm?

GnNa = 14.838 nS/pF

Gear, = 3.98-107° cm3pF—1s~!
Gks =0.098 nS/pF

Gio = 0.294 nS/pF

Gk, = 0.153 nS/pF

GKl = 5.405 HS/pF

Gpk = 0.0146 nS/pF

GpNa = 0.00029 nS/pF
Gpcoa =0.000592 nS/pF
Gpca = 0.1238 nS/pF
Gsac = 0.0375 mS/cm?
kNaca =1.0 pA/pF

= 0.35
a=25
kst = 0.1

KuNa, = 87.5 mM
Kinca = 1.38 mM

KmK =1 mM
Koune = 40mM
Kpca = 0.0005 mM
PKNa = 0.03

ESAC =-20mV

ke = 100

asac = 3

Vss = 5.468¢~° mm?

Var = 0.001094 mm?3

Vieak = 0.00036 mM /ms
Vinaxup = 0.006375mM /ms
Kyp = 0.00025 mM

Viel = 0.102 mM /ms

foer = 0.0038

ki =0.15

ko = 0.045
ks = 0.06

ky = 0.005s71
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TABLE 3. Parameters in the Courtemanche cell model.

gas constant

temperature

Faraday constant

valence of the ionic species

intracellular volume

maximal Iy, conductance

maximal ki conductance

maximal I;, conductance

maximal Ik, conductance

maximal ks conductance

maximal Ic, 1, conductance

maximal I, ¢, conductance

maximal I, N, conductance

maximal In.k

maximal Inaca

maximal I ca

maximal I,

extracellular K™ concentration
extracellular Nat concentration
extracellular Ca?t concentration

Nat half saturation constant for In.x
Nal half saturation constant for Ixaca
Ca2™ half-saturation constant for Inaca
K half saturation constant for Inak
saturation factor for Inaca

voltage dependence parameter for Inaca
Ca?t half-saturation constant for Tup
maximal release rate for I,

total troponin concentration in myoplasm
total calmodulin concentration in myoplasm
total calsequestrin concentration in SR release compartement
Ca half-saturation constant for troponin
Ca half-saturation constant for calmodulin
Caye half-saturation constant for I,
temperatur scaling factor for Ik , and I,
maximal Ca?t concentration in NSR
VCaL

VKrl

Vir2

Vk1

R = 8314.472 mJK " 'mol !
T=310K

F = 96485.3415 C/mol

z =1 for Na and K, z = 2 for Ca
Vi = 13668

gNa = 7.8 nS/pF

gK1 = 0.09 DS/pF

Jto = 0.1652 nS/pF

gxr = 0.029411765 nS/pF

gks = 0.12941176 nS/pF

gca, = 0.12375 nS/pF

gb,ca = 0.001131 nS/pF

gb,Na = 0.000644375 nS/pF
INaK (max) = 0.59933874 pA /pF
INaCa(max) = 1600

IpCa(max) = 0.275 pA/pF
@ip(max) = 0.005 mMms~!

K. = 5.4 mM
Na, = 140 mM
Ca, = 1.8 mM

Km,Na =10 mM
Km,Na(e) = 87.5 mM

Km,ca = 1.38
Km,K(e) = 1.5 mM
ksat = 0.1

v =0.35

kup = 0.00092 mM
krel = 30 ms™?!
Trpn,, . = 0.07 mM
Cmdn,,x = 0.05 mM
Csqn,,« = 10 mM

K Trpn = 0.0005mM
K, ,cman = 0.00238 mM
Km,qun = 0.8 mM
KQIO =3

Cayp,max = 15 mM

65 mV

15 mV

22.4 mV

80 mV
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APPENDIX B. HYPERELASTIC PARAMETERS

In this section we present all parameters used in the mechanical models of the previous chapters. First, the
initial values of all parameters used in the Land force model are given in Tab. 4.

TABLE 4. Parameters in the Land cell model.

Unbinding rate kr, = 0.1 ms™!
Cooperativity of calcium-troponin binding rate ny = 2
Half-activation point concentration Caffy = 0.805 uM
kg = 0.1 ms ™!
Cooperativity of troponin and unblocked binding sites nyB = O

kyw = 0.182 ms~!
kws = 0.012 ms™!

Steady-state ration for state W rw = 0.50
Steady-state ration for state S rs = 0.25
yw = 0.615
vs = 0.0085
proportionality of steady-state crossbridge cycling rates o= 223
Instantaneous distortion magnitude Acg = 25
Bo = 2.3
6= —24
Maximal active tension at resting length Tt = 120 kPa

Next, the fitted parameters for the force-length-relationship Rp_1, are presented in Tab. 5.

TABLE 5. Parameters of the force-length relationship function

Sarcomere lengths | l,,;u = 0.00170 mm Imax = 0.00260 mm
lo 0.00195 mm
Fourier coefficients Co —4333.618335582119 do = —2051.827278991976

c1 = 2570.395355352195 di = 302.216784558222
cy = 1329.536116891330 dy = 218.375174229422
c3 = 104.943770305116

The values for the different passive material models are given in Tab. 6.

TABLE 6. Parameters of the passive material models

Guccione Model Co = 876 Pa b = 18.48
by = 3.58
bs =1.627

Holzapfel-Ogden Model a= 59 Pa b = 8.023

ag = 18472 Pa by =16.026

as = 2481 Pa by =11.120

afs = 216 Pa  bgs = 11.436
Volumetric Part I'y A= 2-10° Pa
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APPENDIX C. CIRCULATORY SYSTEM PARAMETERS

In this section we present all parameters and initial values that are used for the circulatory system model
introduced in the previous chapters. The parameters are given in Tab. 8, while the initial conditions are set to

the values shown in Tab. 7.

TABLE 7. Initial conditions of the circulatory system model.

total volume
systemic aortic volume

pulmonary arterial volume

pulmonary venous volume
left ventricular pressure
left atrial pressure

right ventricular pressure
reight atrial pressure

Viot = 5500 ml
Vaysart = 969.453 ml
Vhulare = 261.202 ml
Veulven = 281.373 ml
pLy = 1066.578923 Pa
pLa = 1066.578923 Pa
PRy = 533.289461 Pa
Pra = 533.289461 Pa

TABLE 8. Parameters in the circulatory system model.

systemic aortic valve resistance
systemic aortic resistance

systemic aortic compliance

systemic aortic unstressed Volume
systemic peripheral resistance
systemic venous resistance

systemic venous compliance

systemic venous unstressed volume
tricuspidal valve resistance
pulmonary arterial valve resistance
pulmonary arterial resistance
pulmonary arterial compliance
pulmonary arterial unstressed volume
pulmonary peripheral resistance
pulmonary venous resistance
pulmonary venous compliance
pulmonary venous unstressed volume
mitral valve resistance

Rsysartvalve = 0.799934 Pa-s-ml™!
Rgysary = 9.332566 Pa-s-ml~!
Csysars = 0.015001234039 ml-Pa~!
VSysArtUnstr = 800 ml

Rgysper = 119.990129 Pa-s-ml~!
Rsysven = 3.999671 Pa-s-ml~!
Csysven = 0.750062 ml-Pa—!
VSysVenUnstr = 2850 ml

RRavvalve = 0.399967 Pa-s-ml~!
Rpulartvaive = 0.399967 Pa-s-ml™!
Rpuiart = 2.666447 Pa-s-ml—!
Cpuart = 0.075006 ml-Pa~!
VeulArtUnstr = 150 ml

Rpuper = 9.332566 Pa-s-ml™!
Rpuven = 3.999671 Pa-s-ml~!
Cphuven = 0.112509255293 ml-Pa~*
VPulVenUnstr = 200 ml

Rpavvalve = 0.399967 Pa-s-ml~!
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