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Abstract. We develop an efficient numerical realization of the monodomain model which describes
the basic electrophysiology in the human heart, coupled with cardiac electromechanics. Here we give
a comprehensive definition of all model components and the resulting coupled PDE and ODE system
and we summarize a full parameter set for realistic simulations. Numerical results for the coupled
model are presented and a detailed convergence study for the monodomain equation demonstrate the
approximation properties of our approach.
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1. Introduction

Depolarization waves in the heart are the fundamental electrophysiological phenomenon governing cardiac
function and are described by the basic model for the cardiac reaction-diffusion system: the bidomain equa-
tions for electrical potentials across the cell membrane governing the spread of the depolarization waves. The
cardiac electrophysiological system triggers mechanical contractions of the heart muscle, which is modeled as
a time-varying elastic body. The electrical cellular transmembrane voltages are given as solutions to nonlinear
reaction-diffusion equations on a manifold. This PDE system is coupled with an ODE system to determine the
transmembrane currents.

The full model approximates the electric potential, the concentration of various ions, several gating variables,
the deformation of the cardiac tissue, and further variables for the coupling to the circulatory system. For the
individual systems, thorough benchmarks have been conducted, see e.g. [Niederer et al., 2011] or [Land et al.,
2015]. Our purpose is to construct a system of differential equations and to collect a full parameter set, which
is able to describe all relevant mechanisms qualitatively and qualitatively correctly.

For the fully coupled model we present a discretization scheme based on a second order splitting of PDE
and ODE components and including asymptotically exact integrators for the very fast evolution of the gating
variables. For the momodomain subsystem, the convergence properties of the discretization scheme are studied
in detail, which shows that the overall model is efficient and accurate.
Remark. This document collects preliminary results of the PhD projects of L. Linder and J. Fröhlich, and it
will be a basis for a joint publication with our partners in near future.
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2. A fully coupled model in cardiac electrophysiolgy

A mathematical model for depolarization waves and the contraction of the heart comprises a time-dependent
nonlinear PDE system for the electric potential and the mechanical deformation, coupled with ODEs for ion
concentrations and gating variables, several ODEs for the blood pressure in the cardiac chambers, and a sur-
rogate model for the interaction with the circulatory system. Our fully-coupled model describes the following
mechanisms:

• To initiate a heartbeat, an electric impulse is initiated in the sinus node cells. From there, the depolar-
ization wave is captured by and propagates through the cardiac tissue.

• Intracellular and extracellular electrical potentials, which influence the opening and closing of trans-
membrane ion channels and govern the concentration of ions in the cells.

• The increased calcium concentration activates the contraction of myofibrils in the cells, which results in
a contraction of the heart muscle.

• The contraction of the heart muscle increases the pressure in the chambers, which results in the blood
flow.

For a qualitatively correct and sufficiently accurate computational model, we numerically realize the following
coupled electromechanical system, determined by

• a reference domain Ω ⊂ R3 consisting of subdomains ΩV for the ventricles, ΩA for the atria, and ΩT

for surrounding tissue;
• the electric potential Vm ∈ C1([0, T ],L2(Ω) ∩ C0

(
[0, T ],H1(ΩV ∪ ΩA)

)
;

• a vector of ion concentrations and gating variables w ∈ C1
(
[0, T ],Lq(ΩV ∪ ΩA;RN )

)
;

• the deformation vector ϕ ∈ C2
(
[0, T ],L2(Ω;R3)

)
∩ C0

(
[0, T ],W1,p(Ω;R3)

)
;

• the stretch along the fibre and a vector of state variables describing the force developement (γf , g) ∈
C1
(
[0, T ],Lq(ΩV ∪ ΩA;R1+K)

)
;

• the blood pressure in the cardiac chambers p ∈ C1([0, T ],R4);
• a vector of variables z ∈ C1([0, T ],RM ) modeling the circulatory system

and solving the coupled PDE – ODE system

βCm∂
ϕ
t Vm = ∇ϕ · σ(fϕ)∇ϕVm − βIion(Vm, w, γf ) + Iext , (1a)

∂ϕt w = Gw(w, Vm, γf ) , (1b)

ρ∂2
tϕ = div P

(
Dϕ, fϕ, γf

)
, (1c)

∂ϕt γf = Gγf (γf ,Dϕ, f
ϕ, g, w) , (1d)

∂ϕt g = Gg(g, γf ,Dϕ, w) , (1e)

∂tp = Gp(p, z) , (1f)

∂tz = Gz(z, p) , (1g)

0 = GC(z, |Ωϕ
VL|, |Ω

ϕ
VR|, |Ω

ϕ
AL|, |Ω

ϕ
AR|) (1h)

with total derivative in time ∂ϕt w = ∂tw+∇ϕ ·(w∂tϕ) and the covariant gradient ∇ϕ, and where

• the equations (1a) and (1b) couples the parabolic equation of the potential with the ODE system
describing the cell model which determined by (Iion, Gw), where the ion density (Iion and the gating
mechanism Gw are specified in the next sections for the different models;

• the depolarization wave is initiated by an external impulse Iext located at predefined nodes or natural
cellular pacemakers with (Iion, Gw) not exhibiting a stable resting state;

• the electric potential is determined by the monodomain equation and the electric conductivity σ(fϕ)
depending on the fiber direction fϕ in the deformed configuration;

• the deformation is activated by a strain Fa(fϕ, γf ) or a stress Pa(fϕ, γf ) along the fiber direction fϕ,
i.e., P = DW

(
DϕFa(fϕ, γf )

−1
)

or P = DW
(
Dϕ) + Pa(fϕ, g). The tension development is modeled by
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a system of ODEs determined by (Gγf , Gg) depending on the deformation gradient Dϕ and the vector
of ion concentrations and gating variables w;

• the interaction with the circulatory system is determined by the evolution (1f) of the pressure p described
by Gp depending on the parameters z of the circulatory system subject to the constraint (1g) that the
volume in the chambers |Ωϕ

VL|, |Ω
ϕ
VR|, |Ω

ϕ
AL|, |Ω

ϕ
AR| evalutated from the deformation and the circulatory

system coincide;
• in this model where the blood flow is not evaluated explicitly, we assume that the pressure is spatially

constant in every chamber so the the circulatory system couples to the deformation by Pn = pn on the
inner boundary;

• we assume n · [ϕ] = 0 along the pericardium.

The equations are complemented by initial values and boundary conditions.
The basic mathematical aspects of this electromechanical system are well understood as recently reviewed

[Cherry et al., 2017,Franzone et al., 2014,Quarteroni et al., 2017]. First results on the analysis of stability and
existence of the solution for the linearized electromechanical system are given in [Andreianov et al., 2015]. The
extension to nonlinear elastic models is more involved; a nonlinear analysis of a very specific model for cardiac
electromechanical activity is considered in [Pathmanathan et al., 2013]. A detailed numerical investigation of
bioelectrical effects of mechano-electrical feedback is included in [Colli Franzone et al., 2017]. More specific
considerations on fast parallel solvers for the solution of the discretized coupled system based on domain de-
composition and multigrid techniques are considered in [Augustin et al., 2016, Franzone et al., 2015, Pavarino
et al., 2017,Santiago et al., 2018].

3. The monodomain equation

In the first step, we only consider the monodomain model in the reference domain without deformation,
which describes the electrophysiology independently in the ventricles and atria.

Therefore, let ΩM = ΩV or ΩM = ΩA be the domain and let (Iion, Gw) the corresponding cell model in the
ventricles and atria, respectively. The cell model is described by the transmembrane current density Iion and
the evolution of ion concentrations and gating variable determined by Gw. The ten Tusscher cell model for the
ventricles is described in Sect. 5, and the Courtemanche cell model in Sect. 6.

In this section we only consider the electrophysiology on the fixed reference geometry, i.e., we have ϕ = id
and γf = 0.

The monodomain data. Depending on the fiber direction in the reference domain

f : ΩM −→ S2 ,

the conductivity tensor is given by

σ(f) = σl f ⊗ f + σt

(
I− f ⊗ f

)
∈ R3×3

sym

with conductivity parameters σl ≥ 0 in longitudinal and σt ≥ 0 in transversal direction.
In our model we use a prescribed pacing mechanism, the depolarization waves are initiated by an external

stimulus Iext ∈ L2

(
(0, T ); L2(Ω)

)
modeling the activation of the electric potential at the Purkinje Muscle

Junctions in the ventricles and the sinus node in the atria. Here we define

Iext(t, x) =

{
Aj t ∈ (tj , tj + τj) , x ∈ N h

ext

0 else
(2)

at a subset of the finite element nodal points N h
ext ⊂ N h ⊂ ΩM, depending on the starting time tj ≥ 0,

duration τj > 0, and amplitude Aj > 0. The values at the nodal points z ∈ N h are interpolated by the nodal
basis functions φz, which defines Iext ∈ L2(0, T ; ΩM) by Iext(t, x) =

∑
z∈Nh

Iext(t, z)φz(x). Nevertheless, in the
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approximation only the values at the nodal points are used in the numerical scheme, cf. Fig. 1.
A second possibility to define the external stimulus is the use of a sigmoid function instead of the step function
defined above. Therefor we use the values Aj , tj , τj and additionaly a scaling factor for the steepness of the
sigmoid function denoted by sj . Then we define

Iext(t, x) =
Aj
2

((
1 + tanh(sj(t− tj))

)
−
(
1 + tanh(sj(t− (tj + τj)))

))
(3)

for all nodal points x ∈ N h. For all nodal points x /∈ N h
ext we set Aj = 0 such that Iext(t, x) = 0 ∀t.

Figure 1. Illustration of the Purkinje fibers and the stimulus points at the end of each branch
are shown with their respective activation time. The external stimulus points of the sinus node
at t = 0 s is shown in green.

The monodomain evolution. We consider the coupled diffusion-reaction equation in (0, T ) × ΩM for the
electric potential Vm and the vector of gating variables w

βCm∂tVm = ∇ · σ∇Vm − βIion(Vm, w) + Iext , (4a)

∂tw = Gw(w, Vm, γf ) (4b)

subject to the initial values at t = 0 in ΩM

Vm(0) = V 0
m , (4c)

w(0) = w0 , (4d)

and homogeneous Neumann boundary conditions on (0, T )× ∂Ω

n · σ∇Vm = 0 . (4e)

4. A splitting method for the monodomain equation

The idea of the splitting methods for the coupled model (4a) and (4b) is a decoupling into a parabolic problem
without reaction term

βCm∂tVm = ∇ · σ∇Vm
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and independent ODEs for x ∈ Ω without the diffusion term

Cm∂tVm = −Iion(Vm, w) + Iext ,

∂tw = Gw(w, Vm) .

Let Vh ⊂ H1(Ω) be a conforming finite element space corresponding to a tetrahedral mesh ΩhM =
⋃
K∈Kh

K,

and let N h ⊂ ΩM be associated nodal points. Here, we use linear elements in the tetrahedron K with linear
nodal basis functions φx, where x ∈ Nh are the corner points.

Both, the electric potential Vm and the gating variables are approximated in the finite element space Vh and
thus represented by the nodal values.

Let N ∈ N be the number of time steps, and set tn = nMt with time steps size Mt = T/N . Furthermore, let
M ∈ N be the number of substeps for the approximation of the cell models. Then, starting with initial values
V h,0m = V 0

m and wh,0 = w0, the symmetric Strang splitting with substepping is defined for n = 1, 2, ..., N as
follows:

(1) Independently for every nodal point x ∈ N h, compute in (tn−1, tn−1/2) an approximation of the ODE

Cm∂tV
h
m = −Iion(V hm , w

h) + Iext ,

∂tw
h = Gw(wh, V hm)

with initial values V hm(tn−1) = V h,n−1
m and wh(tn−1) = wh,n−1 using M time steps of step size

Mt
2M

;

then, set V
h,n−1/2
m = V hm(tn−1/2) and wh,n−1/2 = wh(tn−1/2).

(2) For given V
h,n−1/2
m ∈ Vh, compute V̂

h,n−1/2
m ∈ Vh with the implicit Euler method, i.e., solve∫

ΩM

(
V̂ h,n−1/2

m φh +
Mt
βCm

∇V̂ h,n−1/2
m · σ∇φh

)
dx =

∫
ΩM

V h,n−1/2
m φh dx , φh ∈ Vh .

(3) Repeat the first step in (tn−1/2, tn) starting with (V̂
h,n−1/2
m , wh,n−1/2); this gives (V h,nm , wh,n).

Time integration for the ODE system. To solve the ODE system

Cm∂tV
h
m = −Iion(V hm , w

h) + Iext ,

∂tw
h = Gw(wh, V hm)

with initial values V hm(tn−1) = V h,n−1
m and wh(tn−1) = wh,n−1 independently in every nodal point x ∈ N h in

(tn−1, tn) we tested different time integration methods. The scheme for the second equation stays always the
same and is described in the sections where the different cell models are explained. For the first equation we
implemented the simple explicit Euler method and the two step Adams Bashforth method. For the explicit
Euler method we have

V h,nm = V h,n−1
m − Mt

Cm
(Iion(V h,n−1

m , wh,n−1)− Iext).

For the twostep Adams Bashforth metod we compute the first two solutions with the explicit Euler method as
given in this section and for every further timestep we use the following:

V h,nm = V h,n−1
m − Mt

2Cm

(
3(Iion(V h,n−1

m , wh,n−1)− Iext)− (Iion(V h,n−2
m , wh,n−2)− Iext)

)
.

Numerical results on the mesh in Fig. 2 are presented in Fig. 3.
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(a) Tetrahedral mesh on level ` = 0. (b) Tetrahedral mesh on on level ` = 3 (zoomed).

Figure 2. Reference geometry approximating ventricles and atria on level ` = 0 and with
three uniform refinement steps.

t = 25 ms t = 100 ms t = 200 ms t = 250 ms t = 325 ms t = 700 ms mV

Figure 3. Evolution of a depolarization wave on the ventricles and atria: In this model,
the wave is initiated via external stimuli starting at the sinus node located in the wall of
the right atrium of the heart and then propagates by electrophysiologic mechanisms. The
electric potential is computed with conforming finite elements, which are coupled with an
abstract interface to the ODE system describing the electrophysiology of the cell membranes
at every nodal point. The time stepping is realized by a splitting scheme. The system is
computed in parallel and requires approximately 8.5 million tetrahedra to faithfully represent
a physiologically accurate propagation of the cardiac depolarization wave.

5. The ten Tusscher cell model

In the ventricles, we use the ten Tusscher cell model [ten Tusscher and Panfilov, 2006]. The model is extended
by a stretch-activated channel based on the formulation in [Kohl et al., 2001,Tavi et al., 1998].

Here, the model involves the ion concentration of calcium Ca, CaSS, CaSR, sodium Na, and potassium K,
and 13 gating variables

w =
(
Ca,CaSS,CaSR,Na,K, R,O,m, h, j, xr1, xr2, xs, s, r, d, f, f2, fCa

)
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and depending on the constants R, T , F , z, Nae, Ke, Cae, GNa, GCaL, GKs, Gto, GKr, GK1, GpCa, GpK, GbNa,
GSAC, pKNa, Vm,CaL, Vm,pK,1 , Vm,pK,1, kNaCa, γ, α, KmNai

, KmCa, ksat, PNaK, KmK, KmNa, KpCa, ESAC, κe

and αSAC for ionic currents and the constants Vc, VSR, VSS, Vleak, Vmaxup, Kup, Vrel, Vxfer, k1, k2, k3, k4, for
the evolution of ion concentration all specified in Tab. 2.

In the equation for the potential Cm∂tVm = Iion(Vm, w, γf ) + Iext, the transmembrane current density Iion is
given by

Iion(Vm, w, γf ) = INa(Vm,Na,m, h, j) + ICaL(Vm, d, f, f2, fCa,CaSS) + IKs(Vm,K,Na, xs) + Ito(Vm,K, r, s)

+ IKr(Vm,K, xr1, xr2) + IK1(Vm,K) + INaCa(Vm,Na,Ca) + INaK(Vm,Na) + IpCa(Ca)

+ IpK(Vm,K) + IbCa(Vm,Ca) + IbNa(Vm,Na) + ISAC(Vm, γf )

combines the contribution of different ions, where

INa

(
Vm,Na,m, h, j

)
= GNam

3hj
(
Vm − ENa(Na)

)
,

ICaL(Vm, d, f, f2, fCa,CaSS) = 4
(Vm − Vm,CaL)F 2

RT

0.25CaSS exp
(
2(Vm − Vm,CaL) F

RT

)
− Cae

exp
(
2(Vm − Vm,CaL) F

RT

)
− 1

GCaLff2fCad ,

IKs(Vm,K,Na, xs) = GKsx
2
s

(
Vm − EKs(K,Na)

)
,

Ito(Vm,K, r, s) = Gtors
(
Vm − EK(K)

)
,

IKr(Vm,K, xr1, xr2) = GKr

√
Ke

5.4
xr1xr2

(
Vm − EK(K)

)
,

IK1(Vm,K) = GK1

√
Ke

5.4
xK1,∞(Vm,K)

(
Vm − EK(K)

)
,

INaCa(Vm,Na,Ca) = kNaCa

exp
(
γVm

F
RT

)
Na3Cae − exp

(
(γ − 1)Vm

F
RT

)
Na3

eCaα

(K3
mNai

+ Na3
e)(KmCa + Cae)

(
1 + ksat exp

(
(γ − 1)Vm

F
RT

))
)
,

INaK(Vm,Na) = PNaK
KeNa

(Ke + KmK)(Na + KmNa)
(
1 + 0.1245 exp

(
− 0.1Vm

F
RT

)
+ 0.0353 exp

(
− Vm

F
RT

)) ,
IpCa(Ca) = GpCa

Ca

KpCa + Ca
,

IpK(Vm,K) = GpK
Vm − EK(K)

1 + exp
(
(Vm,pK,1 − Vm)/Vm,pK,2

) ,
IbCa(Vm,Ca) = GbCa

(
Vm − ECa(Ca)

)
,

IbNa(Vm,Na) = GbNa

(
Vm − ENa(Na)

)
,

ISAC(Vm, γf ) = GSAC
Vm − ESAC

1 + κe exp
(
− αSACγf )
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with the reverse potentials

ECa(Ca) =
RT

zF
log

Cae

Ca
,

ENa(Na) =
RT

zF
log

Nae

Na
,

EK(K) =
RT

zF
log

Ke

K
,

EKs(K,Na) =
RT

F
log

Ke + pKNaNae

K + pKNaNa
,

and

αK1(Vm,K) =
0.1

1 + exp
(
0.06(−200 + Vm − EK(K))

) ,
βK1(Vm,K) =

3 exp
(
0.0002(100 + Vm − EK(K))

)
+ exp

(
0.1(−10 + Vm − EK(K))

)
1 + exp

(
− 0.5(Vm − EK(K))

) ,

xK1,∞(Vm,K) =
αK1(Vm,K)

αK1(Vm,K) + βK1(Vm,K)
.

For the evolution of ion concentrations and gating variables (4b) we specify every component of w independently.

The evolution of ion concentrations. We have

∂tNa = − 1

VcF

(
INa(Vm,Na,m, h, j) + IbNa(Vm,Na) + 3INaK(Vm,Na) + 3INaCa(Vm,Na,Ca)

)
,

∂tK = − 1

VcF

(
IK1(Vm,K) + INaCa(Vm,Na,Ca) + Ito(Vm,K, r, s) + IKr(Vm,K, xr1, xr2)

+ IKs(Vm,K,Na, xs)− 2INaK(Vm,Na) + IpCa(Ca) + Iext

)
,

∂tCa = − 1

2VcF

(
IbCa(Vm,Ca) + IpCa(Ca)− 2INaCa(Vm,Na,Ca)

)
+
VSR

Vc

(
Ileak(Ca,CaSR)− Iup(Ca) + Ixfer(Ca,CaSS)

)
,

∂tCaSR = Iup(Ca)− Irel(CaSR,CaSS, R)− Ileak(Ca,CaSR) ,

∂tCaSS = − 1

2VSSF
ICaL(Vm, d, f, f2, fCa) +

VSR

VSS
Irel(CaSR,CaSS, R)− VC

VSS
Ixfer(Ca,CaSS)

with

Ileak(Ca,CaSR) = Vleak

(
CaSR − Ca

)
,

Iup(Ca) =
Vmaxup

1 +K2
up/Ca2 ,

Irel(CaSR,CaSS, R) = VrelO(CaSS, R)
(
CaSR − CaSS

)
,

Ixfer(Ca,CaSS) = Vxfer

(
CaSS − Ca

)
,

where the proportion of open Irel channels is given by

O(CaSS, R) =
k1Ca2

SSR

k3 + k1Ca2
SS
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depending on the proportion of closed Irel channels R, which is modeled by a Hodgkin-Huxley type equation

∂tR = αR(1−R)− βR(CaSS)R

with

αR = k4 , βR(CaSS) = k2CaSS .

The gating mechanism. Gating variables y are described by a Hodgkin-Huxley type equation

∂ty = αy(Vm)(1− y)− βy(Vm)y , (5)

where αy and βy are nonnegative functions of Vm, cf. [Cronin and Jane, 1987]. In case of constant coefficients
αy and βy, we obtain the solution of the linear ODE

y(t) =
αy

αy + βy
−
( αy
αy + βy

− y(tn−1)
)

exp
(
− (αy + βy)(t− tn−1)

)
, t ∈ [tn−1, tn] . (6)

This expression is used in the time-stepping scheme, i.e, yn is computed from yn−1 with (6) by inserting
αn−1
y = αy(V n−1

m ) and βn−1
y = βy(V n−1

m ).
Thus, we specify directly

τy(Vm) =
1

αy(Vm) + βy(Vm)
, y∞(Vm) =

αy(Vm)

αy(Vm) + βy(Vm)
,

from which αy(Vm) and βy(Vm) can be computed.

The gating evolution in the ten Tusscher model. In the following, all expressions depending on Vm are
given in mV, i.e., in exp

(
(35 + Vm)/5

)
the qualities 35 and 5 have the physical unit mV. The gating variables

y ∈
{
m,h, j, xr1, xr2, xs, s, r, d, f, f2

}
are determined by

τm(Vm) =
1

1 + exp
(
(−60− Vm)/5

)( 0.1

1 + exp
(
(35 + Vm)/5

) +
0.1

1 + exp
(
(−50 + Vm

)
/200)

)
,

m∞(Vm) =
1(

1 + exp
(
(−56.86− Vm)/9.03

))2 ,

τh(Vm) =


0.13(1+exp

(
−(Vm+10.66)/11.1

))
0.77 Vm ≥ −40 ,(

0.057 exp
(
− (Vm + 80)/6.8

)
+ 2.7 exp(0.079Vm) + 3.1 · 105 exp(0.3485Vm)

)−1

else ,

h∞(Vm) =
1(

1 + exp
(
(71.55 + Vm)/7.43

))2 ,

τj(Vm) =


1+exp(−0.1(Vm+32))

0.6 exp(0.057Vm) Vm ≥ −40 ,((
−2.5428·104 exp(0.24444Vm)−6.948·10−6 exp(−0.04391Vm)

)
(Vm+37.78)

1+exp(0.311(Vm+79.23)) + 0.02424 exp(−0.01052Vm)
1+exp(−0.1378(Vm+40.14))

)−1

else ,

j∞(Vm) = h∞(Vm) .
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τd(Vm) =
( 1.4

1 + exp
(
(−35− Vm)/13

) + 0.25
) 1.4

1 + exp
(
(5 + Vm)/5

) +
1

1 + exp
(
(50− Vm)/20

) ,
d∞(Vm) =

1

1 + exp
(
(−8− Vm)/7.5

) ,
τf (Vm) = 1102.5 exp

(
−
(Vm + 27

15

)2)
+

200

1 + exp
(
(13− Vm)/10

) +
180

1 + exp
(
(30 + Vm)/10

) + 20 ,

f∞(Vm) =
1

1 + exp
(
(20 + Vm)/7

) ,

τf2(Vm) = 600 exp
(
− (Vm + 25)2

170

)
+

31

1 + exp
(
(25− Vm)/10

) +
16

1 + exp
(
(30 + Vm)/10

) ,
f2,∞(Vm) =

0.67

1 + exp
(
(35 + Vm)/7

) + 0.33 ,

τxs
(Vm) =

1400√
1 + exp

(
(5− Vm)/6

) 1

1 + exp
(
(−35 + Vm)/15

) + 80 ,

xs,∞(Vm) =
1

1 + exp
(
(−5− Vm)/14

) ,

τr(Vm) = 9.5 exp
(
− (40 + Vm)2

1800

)
+ 0.8 ,

r∞(Vm) =
1

1 + exp
(
(20− Vm)/6

) ,

τs(Vm) = 85 exp
(
− (45 + Vm)2

320

)
+

5

1 + exp
(
(−20 + Vm)/5

) + 3 ,

s∞(Vm) =
1

1 + exp
(
(20 + Vm)/5

) ,
τxr1(Vm) =

450

1 + exp
(
(−45− Vm)/10

) 6

1 + exp
(
(30 + Vm)/11.5

) ,
xr1,∞(Vm) =

1

1 + exp
(
(−26− Vm)/7

) ,
τxr2

(Vm) =
3

1 + exp
(
(−60− Vm)/20

) 1.12

1 + exp
(
(−60 + Vm)/20

) ,
xr2,∞(Vm) =

1

1 + exp
(
(88 + Vm)/24

) .
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The evolution of the gating variable fCa is also given by a Hodgkin-Huxley type equation, depending on Cass.
We have

τfCa
(Cass) =

80

1 +
(

Cass

0.05

)2 + 2 , fCa,∞(Cass) =
0.6

1 +
(

Cass

0.05

)2 + 0.4 .

Computing α(Vm) and β(Vm). In the cell model of ten Tusscher we have 11 variables to describe the gating
mechanism. For two of them we know α(Vm) and β(Vm) from definition. For all others we have to compute the
values if we want to know them. For the implemented numerical method the exact integrators it is sufficient
to know τx and x∞. To use another numerical scheme we need the values of α(Vm) and β(Vm). For a fixed
potential V we have τx := τx(V ) and x∞ := x∞(V ). With those we want to compute α := α(V ) and β := β(V ).
To repeat shortly we know

τx =
1

α+ β

x∞ =
α

α+ β
.

Then

x∞ = ατx ⇔ α =
x∞
τx

and for β we have

τx =
1

α+ β
⇔ τx(α+ β) = 1⇔ β =

1

τx
− α.

Inserting α gives

β =
1

τx
− x∞

τx
=

1− x∞
τx

.

6. The Courtemanche cell model

In the atria, we the use the Courtemanche cell model [Courtemanche et al., 1998]. Here, the model involves
the ion concentration of calcium Ca, Caup, Carel , sodium Na, and potassium K, and 15 gating variables

w =
(
Ca,Caup,Carel,Na,K,m, h, j, oa, oi, ua, ui, xr, xs, d, f, fCa, u, v, wrel

)
,

and it depends on the constants gNa, gCaL, VCaL, gKs, gto, gKr, VKr1, VKr2, gK1, VK1, INaCa(max), Cae, Nae,
Km,Na(e), Km,Ca, ksat, γ, F , R, T , INaK(max), Km,Na, Ke, Km,Ke

, Ip,Ca(max), gbCa, KQ10 and gbNa for ionic
currents and the constants Vi, Caup,max, kup, krel, Iup(max), Trpnmax, Cmdnmax, Csqnmax, Km,Csqn, Km,Cmdn,
Km,Trpn, cf. Tab. 3.

In the equation for the potential Cm∂tVm = Iion(Vm, w) + Iext, the transmembrane current density Iion given
by

Iion(Vm, w) = INa(Vm,Na,m, h, j) + ICaL(Vm, d, f, fCa) + IKs(Vm,K, xs) + Ito(Vm,K, oa, oi)

+ IKr(Vm,K, xr) + IKur(Vm,K, ua, ui) + IK1(Vm,K) + INaCa(Vm,Na,Ca)

+ INaK(Vm,Na) + IpCa(Ca) + IbCa(Vm,Ca) + IbNa(Vm,Na)
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combines the contribution of different ions, where

INa

(
Vm,Na,m, h, j

)
= gNam

3hj
(
Vm − ENa(Na)

)
,

ICaL(Vm, d, f, fCa) = gCaLdffCa

(
Vm − VCaL

)
,

IKs(Vm,K, xs) = gKsx
2
s

(
Vm − EK(K)

)
,

Ito(Vm,K, oa, oi) = gtoo
3
aoi

(
Vm − EK(K)

)
,

IKr(Vm,K, xr) =
gKrxr

(
Vm − EK(K

)
1 + exp

((
Vm + VKr1

)
/VKr2

) ,
IK1(Vm,K) =

gK1(Vm − EK(K)

1 + exp
(
0.07(Vm + VK1)

) ,
IKur(Vm,K, ua, ui) = gKuru

3
aui

(
Vm − EK(K)

)
,

INaCa(Vm,Na,Ca) =
INaCa(max)

(
exp(γ VmF

RT ))Na3Cae − exp((γ − 1)VmF
RT )Na3

eCa
)

(K3
m,Na(e) + Na3

e)(Km,Ca + Cae)(1 + ksat exp((γ − 1)Vm
F
RT ))

,

INaK(Vm,Na) = INaK(max)fNaK
1

1 + (Km,Na/Na)1.5

Ke

Ke +Km,Ke

,

IpCa(Ca) = Ip,Ca(max)
Ca

0.0005 + Ca
,

IbCa(Vm,Ca) = gbCa

(
Vm − ECa(Ca)

)
,

IbNa(Vm,Na) = gbNa

(
Vm − ENa(Na)

)
with the reverse potentials

ECa(Ca) =
RT

zF
log

Cae

Ca
,

ENa(Na) =
RT

zF
log

Nae

Na
,

EK(K) =
RT

zF
log

Ke

K
.

The evolution of ion concentration. We have

∂tNa = − 1

ViF

(
INa(Vm,Na,m, h, j) + IbNa(Vm,Na) + 3INaK(Vm,Na) + 3INaCa(Vm,Na,Ca)

)
,

∂tK = − 1

ViF

(
IK1(Vm,K) + Ito(Vm,K, oa, oi) + IKr(Vm,K, xr)

+ IKs(Vm,K, xs)− 2INaK(Vm,Na) + IKur(Vm,K, ua, ui)
)
,

∂tCa =
(
− IbCa(Vm,Ca) + IpCa(Ca) + ICaL(Vm, d, f, fCa)− 2INaCa(Vm,Na,Ca)

2ViF

+
Vup(Iup,leak − Iup) + IrelVrel

Vi

)(
1 +

TrpnmaxKm,Trpn

(Ca +Km,Trpn)2
+

CmdnmaxKm,Cmdn

(Ca +Km,Cmdn)2

)−1

,

∂tCaup = Iup(Ca)− Iup,leak(Caup)− Itr(Caup,Carel)
Vrel

Vup
,

∂tCarel =
(
Itr(Caup,Carel)− Irel(Ca,Carel, u, v, wrel)

)(
1 +

CsqnmaxKm,Csqn

(Carel +Km,Csqn)2

)−1
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with

Iup(Ca) =
Iup(max)

1 +
kup
Ca

,

Iup,leak(Caup) =
Caup

Caup,max
Iup(max) ,

Itr(Caup,Carel) =
Caup − Carel

180
,

Irel(Ca,Carel, u, v, wrel) = krelu
2vwrel

(
Carel − Ca

)
.

The gating evolution in the Courtemanche model. For the evolution of the gating variables we specify
every component of w independently. Every gating variable y ∈

{
m,h, j, oa, oi, ua, ui, xr, xs, d, f, fCa, u, v, wrel

}
is described by a Hodgkin-Huxley type equation as given in (5), so that the evolution is determined by τy and
y∞, cf. Sect. 5. As in the cell model of ten Tusscher all expressions depending on Vm are given in mV, i.e., in
exp

(
(Vm + 80)/6.8

)
the qualities 80 and 6.8 have the physical unit mV.

Here, we use for the gating variables
{
m,h, j

}
τy(Vm) =

1

ay(Vm) + by(Vm)
,

y∞(Vm) = ay(Vm)by(Vm),

with

am(Vm) =

3.2 Vm = −47.13 ,

0.32 Vm+47.13

1−exp
(
−0.1(47.13+Vm)

) else ,

bm(Vm) = 0.08 exp
(
− Vm

11

)
,

ah(Vm) =

{
0 Vm ≥ −40 ,

0.135 exp
(
− (Vm + 80)/6.8

)
else ,

bh(Vm) =


(

0.13
(
1 + exp

(
− (10.66 + Vm)/11.1

)))−1

Vm ≥ −40 ,

3.56 exp(0.079Vm) + 3.1 · 105 exp(0.35Vm) else ,

and

aj(Vm) =


0 Vm ≥ −40 ,(
− 127.14 exp(0.2444Vm)− 3.474 · 10−5 exp(−0.04391Vm)

)
(37.78 + Vm)

1 + exp
(
0.311(79.23 + Vm

) ,

bj(Vm) =


0.3

exp(−2.535 · 10−7Vm)

1 + exp(−0.1(Vm + 32))
Vm ≥ −40 ,

0.1212
exp(−0.01052Vm)

1 + exp(−0.1378(Vm + 40.14))
else ,
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For the gating variables
{
oa, oi, ua, ui, xr, xs, d, f, wrel

}
we use

τoa(Vm) =
(
KQ10(

0.65

exp(−(10 + Vm)/8.5) + exp(−(−30 + Vm)/59)
+

0.65

2.5 + exp((82 + Vm)/17)
)
)−1

,

oa,∞(Vm) =
(

1 + exp(−(20.47 + Vm)/17.54)
)−1

,

τoi(Vm) =
(
KQ10(

1

18.53 + exp((113.7 + Vm)/10.95)
+

1

35.56 + exp(−(1.26 + Vm)/7.44)
)
)−1

,

oi,∞(Vm) =
(

1 + exp((43.1 + Vm)/5.3)
)−1

,

τua(Vm) = τoa(Vm) ,

ua,∞(Vm) =
(

1 + exp(−(30.3 + Vm)/9.6)
)−1

,

τui
(Vm) =

(
KQ10(

1

21 + exp(−(−185 + Vm)/28)
+ exp((−158 + Vm)/16))

)−1

,

ui,∞(Vm) =
(

1 + exp((−99.45 + Vm)/27.48)
)−1

,

τxr
(Vm) =

(
0.0003

14.1 + Vm

1− exp(−(14.1 + Vm)/5)
+ 7.3898 · 10−5 −3.3328 + Vm

exp((−3.3328 + Vm)/5.1237)− 1

)−1

,

xr,∞(Vm) =
(

1 + exp(−(14.1 + Vm)/6.5)
)−1

,

τxs(Vm) = 0.5
(

4 · 10−5 −19.9 + Vm

1− exp(−(−19.9 + Vm)/17)
+ 3.5 · 10−5 −19.9 + Vm

exp((−19.9 + Vm)/9)− 1

)−1

,

xs,∞(Vm) =
(

1 + exp(−(−19.9 + Vm)/12.7)
)− 1

2

,

τd(Vm) =
1− exp(−(10 + Vm)/6.24)

0.035
(
10 + Vm

)(
1 + exp(−(10 + Vm)/6.24)

) ,
d∞(Vm) =

(
1 + exp

(
− (10 + Vm)/8

))−1

,

τf (Vm) =
9

0.0197 exp
(
− 0.03372(10 + Vm)2

)
+ 0.02

,

f∞(Vm) =
(

1 + exp
(

(28 + Vm)/6.9
))−1

,
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τwrel
(Vm) = 6

1− exp
(
− (−7.9 + Vm)/5

)(
− 7.9 + Vm

)(
1 + 0.3 exp

(
− (−7.9 + Vm)/5

)) ,
wrel,∞(Vm) = 1−

(
1 + exp

(
− (−40 + Vm)/17

))−1

.

For the gating variables
{
u, v
}

we use

τu = 8 ,

u∞(Vm,Na, d, f, fCa) =
(

1 + exp
(Fn(Vm,Na, d, f, fCa)− 3.4175 · 10−13

13.67 · 10−16

))−1

,

τv(Vm,Na, d, f, fCa) = 1.91 + 2.09
(

1 + exp
(
− Fn(Vm,Na, d, f, fCa)− 3.4175 · 10−13

13.67 · 10−16

))−1

,

v∞(Vm,Na, d, f, fCa) = 1−
(

1 + exp
(Fn(Vm,Na, d, f, fCa)− 6.835 · 10−14

13.67 · 10−16

))−1

,

with

Fn(Vm,Na, d, f, fCa) = 10−12VrelIrel −
5 · 10−13

F

(
0.5ICaL(Vm, d, f, fCa)− 0.2INaCa(Vm,Na,Ca)

)
and the function

gKur(Vm) = 0.005 +
0.05

1 + exp(−(−15 + Vm)/13)
.

Finally, the evolution of the gating variable fCa is also given by a Hodgkin-Huxley type equation, depending
on Ca. We have

τfCa = 2 ,

fCa,∞(Ca) =
(

1 +
Ca

0.00035

)−1

.

7. A model for cardiac electromechanics

We consider the human heart to be a bounded reference domain Ω, which is deformed into the current
configuration by a deformation ϕ : [0, T ]× Ω −→ R3 during one heartbeat (T ≈ 1s). We set Ωt = ϕ(t,Ω).

The deformation ϕ is computed from the displacement u : [0, T ]× Ω −→ R3 by

ϕ(t, x) = x + u(t, x) ,

the elastic response depends on the deformation gradient

F(t, x) := Dϕ(t, x) =

(
∂

∂xi
ϕj(t, x)

)
i,j=1,...,3

.

From the separation of ϕ, we get F = I + Du, and we set J = det(F).
We use the balance equation in the Lagrange configuration

%0∂
2
t u = div P (7a)
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Figure 4. Reference geometry approximating ventricles and atria on level ` = 0 and with
three uniform refinement steps.

with reference density %0 and the stress P depending on F and an active strain or active stress model. This is
complemented by boundary conditions on ∂Ω = ΓD∪ΓP∪ΓLV∪ΓRV∪ΓLA∪ΓRA with Dirichtlet boundary ΓD,
pericardium ΓP = ∂ΩT ∩ ∂ΩV, and boundaries ΓLV = ∂ΩV ∩ ∂ΩLV, ΓRV = ∂ΩV ∩ ∂ΩRV, ΓLA = ∂ΩA ∩ ∂ΩLA,
ΓLA = ∂ΩA ∩ ∂ΩLA of the left and right ventrical and atria chambers ΩLV,ΩRV,ΩLA,ΩRA, see Fig. 4.

We use the boundary conditions

ϕ = 0 , on ΓD , (7b)

[ϕ] = 0 , on ΓP , (7c)

Pn = −pLVn , on ΓLV , (7d)

Pn = −pRVn , on ΓRV , (7e)

Pn = −pLAn , on ΓLA , (7f)

Pn = −pRAn , on ΓRA . (7g)

Hyperelasticity. We assume cardiovascular tissue to be hyperelastic, i.e., there exists a stored energy function
W = W (F) which defines the stress response (in case of no active forces) by

P = DW (F) .

Since the material is frame-indifferent, W̃ exists such that W (F) = W̃ (C), where C = F>F is left Cauchy
Green strain tensor. Alternatively, the energy functional is given in the form W (F) = W̌ (E) for E = 1

2 (C− I),

or W (F) = W̊ (ιC) depending on invariants ιC of the strain tensor.

Anisotropy. In isotropic materials, the hyperelastic energy only depends on the invariants of C

ι1(C) = trace(C) , ι2(C) = trace (Cof(C)) , ι3(C) = det(C) = J2 .
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The cardiac tissue is stronlgy anisotropic. Depending on the fiber direction and the normal direction in the
reference domain

f : Ω −→ S2 ,

n : Ω −→ S2

with n · f = 0 we define s = f × n. This defines the anisotropic invariants

ι4,f (C) = f ·Cf ,

ι4,n(C) = n ·Cn ,

ι4,s(C) = s ·Cs ,

ι8,fs(C) =
∣∣f ·Cs

∣∣ .
Constitutive models. With the representation above, we now specify the hyperelastic energy For cardiac
tissue, several models are proposed to imitate its viscoelastic behaviour. Commonly used models are:

(1) Neo-Hooke model. One of the simplest non-linear material models is given by

W̃ (C) =
µ

2
(trace(C)− 3) + Γλ(J) , Γλ(J) =

λ

2
(J − 1)2

with parameters µ and λ. Though it is easy to implement, it does not capture the anisotropy of cardiac
tissue.

(2) Guccione model. An early contribution to anisotropic material models was given in [Guccione et al.,
1991], defining the Guccione material

W̌ (E) =
C0

2
exp [Qf ,s(E)− 1] + Γλ(J)

with parameters C0, µ and λ and Qf ,s(E) defining the functional

Qf ,s(E) := b1E
2

11 + b2(E
2

22 + E
2

33 + E
2

23 + E
2

32) + b3(E
2

12 + E
2

21 + E
2

13 + E
2

31) ,

where

E = f ·Ef + s ·Es + n ·En

is the Green strain tensor oriented along the fibre direction. The parameters b1, b2, b3 are determined
by experiments.

(3) Holzapfel-Ogden model. We use the general energy proposed by [Holzapfel and Ogden, 2009] defining
a Holzapfel-Ogden material :

W̊ (ιC) =
a

2b
[exp (b(ι1(C)− 3))− 1] +

af
2bf

[
exp

(
bf (ι4,f (C)− 1)2

)
− 1
]

+
as
2bs

[
exp

(
bs(ι4,s(C)− 1)2

)
− 1
]

+
afs
2bfs

[
exp

(
bfsι8,fs(C)2

)
− 1
]

+ Γλ(J)

with parameters a, b, af , bf , as, bs, afs, bfs determined by physical experiments.
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The active strain decomposition. The conclusions above all rely on the assumption that soft tissue can be
modeled as elastic. In reality, cardiac cells have viscoelastic behaviour. While rapid and repeated stretching
causes a stiffing effect, the tissue loosens when exposed to prolonged elongation. Some of these effects are
permanent, meaning that the pullback into Lagrange configuration would actually lead to a different, interme-
diate configuration. To account for this plasticity, we use the active strain model described in [Ambrosi et al.,
2011, Rossi et al., 2012]. Separating the deformation gradient F into an elastic, passive part Fe and an active
part Fa, we write

F = FeFa (8)

The tensor Fa accounts for the active deformation induced by the cells.
For each cell, we denote by γf , γs, γn : [0, T ]×Ω −→ R their deformation into the respective direction f , s,n.

Setting

Fa = I + γf f ⊗ f + γss⊗ s + γnn⊗ n , (9)

we can make the following assumptions:

• Cardiac cells are transverse isotropic along f , i.e. γs = γn.
• The cells consist mostly of water and are therefore isochoric, i.e., their volume is constant, so that
Ja := det(Fa) = 1.

From these two conditions follows directly that

det(Fa) = (γf + 1)(γs + 1)2 = 1

and therefore γs =
1√

γf + 1
− 1. Hence we only need to compute γf . We then set a new stress response

P = DFW (FF−1
a ) ,

which allows a pullback into the actual Lagrange configuration. An in-depth explanation of the evolution of γf
is given in Sect. 8.

Within this active strain model, we need to recompute the invariants as they now depend on γf , i.e.

ιe1 = (1 + γf )ι1 −
(

(γf + γf
γf + 2

(1 + γf )2

)
ι4,f

and

ιe4,f = (1 + γf )
−2ι4,f , ιe4,s = (1 + γf )ι4,s, ιe8,fs = (1 + γf )

− 1
2 ι8,fs .

The active stress decomposition. An alternative approach to the multiplicative split of the deformation, as
described above, is to additively split the stress tensor

P = DFW (F) + TmaxTtot(w, g) fϕ ⊗ fϕ , (10)

where Tmax is a constant adjusting for the maximal active tension and Ttot the current tension generated by
cellular evolution model, cf. Sect. 8.

The Newmark method. Now that we know how to properly calculate P(Dϕ, w), a proper time-integration
strategy is needed to solve the dynamic system (7). We implement a Newmark β-scheme [Crisfield, 1997], where
at each time step n we solve for u(tn,x) = un, approximating ∂2

t u ≈ an with

un = un−1 + Mtvn−1 + (Mt)2

(
1− 2βN

2
an−1 + βNan

)
, (11a)

vn = vn−1 + Mt
(
(1− γN)an−1 + γNan

)
(11b)
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and a0 = 0. The approximated dynamic system is the given by

%0a
n − div P

(
I + Dun

)
= 0 . (12)

Solving for an in (11a) and replacing an and vn in (12) gives us

%0

[
1

βNMt

(
1

Mt

(
un − un−1

)
− vn−1

)
− 1− 2βN

2βN
an−1

]
− div P

(
I + Dun

)
= 0 . (13)

The standard Newmark parameters are βN = 0.25 and γN = 0.5. As these values dictate the damping of the
system, further combinations are being tested in our experiments.

The ventricle volume. The reference domains for each chamber C are given by ΩLV, ΩRV, ΩLA, ΩRA. The
volume of the deformed chambers are then denoted by |Ωϕ

LV|, |Ω
ϕ
RV|, |Ω

ϕ
LA|, |Ω

ϕ
RA|, and would be computed by

|Ωϕ
C | =

∫
Ωϕ

C

1dx , C ∈ {LV, RV, LA, RA} .

On the discrete geometry however, the chamber volumes are evaluated by the sum of volumes of all tetrahedrons
constructed by a surface triangle K ⊂ ∂ΩC and the center point xC . By denoting the vectors of the vertices of
K by aK , bK , cK , we obtain

|Ωϕ
C | ≈

∑
K⊂∂ΩC

1

6
(aK − xC) ·

(
(bK − aK)× (cK − aK)

)
.

8. The cell-contraction model

The cell-contraction model for the active strain approach used in Sect. 7 involves two parts: The stretch
model itself and a second model simulating an active tension depending on the current concentration of Calcium.
Together, it determines the stretch γf depending on the deformation, on the calcium concentration in the set
of variables w for the cell model, and on an additional set of gating variables g for the tension model.

The contraction model determines the stretch γf and involves a set of 9 gating variables

g =
(
Tr, B, U,W, S, ζW , ζS , Cs, Cd

)
.

The evolution of the stretch depends on the deformation gradient Dϕ, the fiber direction f , and the parameters
l0, lmin, lmax, c0, ck, dk (k = 1, 2, 3) [Ruiz-Baier et al., 2014], cf. Tab. 5. The gating mechanism determines the

total force Ttot(w, g) and depends on the constants kTr, nTr, Caref
T50, kB , nTrB , kUW , kWS , rW , rS , γW , γS , φ,

Aeff, β0, β1, Tref, cf. Tab. 4.

The Stretch Model. The stretch value γf is determined a nonlinear ODE

∂tγf = Gγf (γf ,Dϕ, f , g, w) (14a)

We use the model [Quarteroni et al., 2017] given by

Gγf (γf ,Dϕ, f , g, w) =
1

ηa

[(
Dιe1

W (Fe) + Dιe4,f
W (Fe)

)(
F̂a(w, g, ι4,f , γf )−

2ι4,f
(1 + γf )3

)
− f ·DFa

W (Fe)f

]
depending on geometrical quantities and the calcium concentration Ca

F̂a(w, g, ι4,f , γf ) = αTtot(w, g)RF-L(ι4,f , γf ) , (14b)
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where F̂a is the active tension created in the cardiac cells depending on the concentration of Ca2+-Ions and the
invariant of the their current deformation ι4,f . Note that only the invariant along f is needed, as the cardiac
force mechanism is modeled in 1D. The evaluation of the resulting force Ttot and the force-length relationship
RF-L depends on the used force model of the cells. The model for Ttot is described in the next section, and RF-L

is approximated by fitted Taylor Series

RF-L(ι4,f ) = χ[lmin,lmax](l0 + γf )

[
c0
2

+

3∑
k=1

(
ck sin(kl0ι4,f ) + dk cos(kl0ι4,f )

)]
, χ[a,b](x) =

{
1 x ∈ [a, b],
0 x /∈ [a, b] .

The Land Tension Cell Model. To model the tension generated by activated cardiac muscle cells, we use
the model described by Land et al. [Land et al., 2017]. It simulates cardiac myocytes using ion concentrations
of calcium (Ca) and troponin (Tr) as well as crossbridge binding of sarcomeres using a three-state crossbridge
cycle

∂tTr = kTr

[(
Ca

CaT50

)nTr

(1− Tr)− Tr

]
(15)

Here, Tr represents the fraction of troponin units with calcium bond. This concentration drives the unblocking
of tropomyosin. The fraction of blocked binding sites (B) is given by

∂tB = kB · Tr
−nTrB

2 U − kU · Tr
nTrB

2 B (16)

The following crossbridge cycle containins an unbound (U), a pre-powerstroke (W ) and a post-powerstroke (S)
state. They are given by the relation

U = (1−B)− S −W , (17a)

∂tW = kUWU − kWUW − kWSW − γWUW , (17b)

∂tS = kWSW − kSUS − γSUS , (17c)

with parameters kUW , kWU , kWS , kWS . The values of γWU and γSU are derived from the distortion-decay
model

∂tζW = AW∂tλf − cW ζW ∂tζS = AS∂tλf − cSζS (18a)

γWU = γW |ζW | γSU =

 −γS(ζS + 1) if ζS < 1,
γSζS if ζS > 2,
0 otherwise.

(18b)

AW and AS relate to the magnitude of the instantaneous distortion response while cW and cS represent decay
rates. The variable λf corresponds to the relative cell length, i.e. λf = l0+γf

l0
. As it is difficult to provide the

values for k, A and c directly, we define the steady-state ratios

rS = steady-state
S

U +W + S
, (19a)

rW = steady-state
W

U +W
. (19b)
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This allows for an easier parameter estimation and gives the following relations:

kWU = kUW

(
1

rW
− 1

)
− kWS , (20a)

kSU = kWSrW

(
1

rS
− 1

)
, (20b)

kB = kU
TrnTrB

1− rS − (1− rS)rW
. (20c)

We further assume the magnitude of instantaneous distortion in W and S are equal, i.e.

AS = AW = Aeff
rS

(1− rS)rW + rS
. (21)

Additionally, we view the distortion decay rates to be proportional to the steady-state crossbridge cycling rates:

cW = φkUW
U

W
= φkUW

(1− rS)(1− rW )

(1− rS)rW
, (22a)

cS = φkWS
W

S
= φkWS

(1− rS)rW
rS

. (22b)

Ta = h(λf )
Tref

rS
((ζS + 1)S + ζWW ) (23)

where Tref is the maximal active tension at resting length and

h(λf ) = max
{

0, h̃ (min{λf , 1.2})− 1
}
, (24a)

h̃(λf ) = 1 + β0 (λf + min{λf , 0.87} − 1.87) (24b)

enforces a length-dependency on the tension. Such a dapendency is also introduced for the half-activation point
CaT50 used in equ. (15)

CaT50 = Caref
T50 + β1 (min{λf , 1.2} − 1) . (25)

In the coupled model, we also need to account for a passive tension withing sarcomeres. A sufficient implemen-
tation of such a passive cell model is given by

Cs = (λf − 1)− Cd , ∂tCd = k
Cs
η
, η =

{
ηl if Cs > 0,
ηs if Cs ≤ 0.

(26)

The passive tension is then calculated by
Tp = akCs (27)

and the resulting tension of the force model is given by

Ttot = Ta + Tp. (28)

9. The circulartory system

The heart interacts with the human vascular system, see [Quarteroni et al., 2019] for the mathematical
modelling of the human cardiovascular system, [Barbarotta et al., 2018] for a specific activation model for
ventricular contraction, [Fedele et al., 2017] for an aortic valve model, and [Tagliabue et al., 2017] for an
idealized blood flow model in the ventricle.
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Here we use a lumped parameter model of the closed-loop human vascular system to include more realistic
hemodynamic boundary conditions in our model of cardiac mechanics, This model is driven by the volume
changes of the four chambers |Ωϕ

VL|, |Ω
ϕ
VR|, |Ω

ϕ
AL|, |Ω

ϕ
AR|, where the deformation ϕ depends on the pressure

values of the right/left ventricular and right/left atrial chambers

p =
(
pVR, pVL, pVR, pVL

)
.

The circulatory system is determines

z =
(
vSysVen, vSysArt, vPulVen, vPulArt, vVR, vVL, vVR, vVL

)
describing the systemic venous, systemic arterial, pulmonary venous, pulmonary arterial, right/left ventricular,
and right/left atrial volumes, and depending on the parameters RSysArtValve, RSysArt, CSysArt, vSysArtUnstr,
RSysPer, RSysVen, CSysVen, vSysVenUnstr, RRavValve, RPulArtValve, RPulArt, CPulArt, vPulArtUnstr, RPulPer, RPulVen,
CPulVen, vPulVenUnstr, and RLavValve.

Figure 5. Schematic of the circulatory system model with the pressure values p, resistances
R, and compliances C.

In this closed loop system, the evolution of z is determined by

∂tvVL = max

{
pAL − pVL

RLavValve
, 0

}
−max

{
pVL − pCSysArt

RSysArtValve +RSysArt
, 0

}
,

∂tvSysVen =
pCSysArt − pSysVen

RSysPer
− pSysVen − pVR

RSysVen
,

∂tvVR = max

{
pVR − pVR

RRavValve
, 0

}
−max

{
pVR − pCPulArt

RPulArtValve +RPulArt
, 0

}
,

∂tvPulVen =
pCPulArt − pPulVen

RPulPer
− pPulVen − pVL

RPulVen
,

∂tvSysArt = max

{
pVL − pCSysArt

RSysArtValve +RSysArt
, 0

}
− pCSysArt − pSysVen

RSysPer
,

∂tvVR =
pSysVen − pVR

RSysVen
−max

{
pVR − pVR

RRavValve
, 0

}
,

∂tvPulArt = max

{
pVR − pCPulArt

RPulArtValve +RPulArt
, 0

}
− pCPulArt − pPulVen

RPulPer
,

∂tvAL =
pPulVen − pVL

RPulVen
−max

{
pAL − pVL

RLavValve
, 0

}
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subject to the relations for the pressure values(
pSysVen, pSysArt, pPulVen, pPulArt

)
for the systemic venous, systemic arterial, pulmonary venous, and pulmonary arterial pressures given by

pCSysArt =
vSysArt

CSysArt
, pSysVen =

vSysVen

CSysVen
,

pSysArt = pVL −RSysArtValve ·max

{
pVL − pCSysArt

RSysArtValve +RSysArt
, 0

}
,

pCPulArt =
vPulArt

CPulArt
, pPulVen =

vPulVen

CPulVen
,

pPulArt = pVR −RPulArtValve ·max

{
pVR − pCPulArt

RPulArtValve +RPulArt
, 0

}
and subject to the constraints

vVL = |Ωϕ
VL| , vVR = |Ωϕ

VR| , vAL = |Ωϕ
AL| , vAR = |Ωϕ

AR| , (29)

where the deformation ϕ depends on p =
(
pVR, pVL, pVR, pVL

)
.

The incremental realization. Withing one time step of the mechanical problem, we first find an approximated
pressure p through the closed-loop model. We either use a multistep method using previous pressure values, or
simply add a fixed amount in each chamber during the first initialization steps.

Next, we update the mechanical and circulatory models and compare the resulting chamber volumes if the
residuals ri = |Ωϕ

i | − vi for i ∈ {VL, VR, AL, AR} are below a threshold εp. If they are, the pressure p is
accepted and one moves to the next time step. Otherwise, we update p by a quasi Newton method:

pn = pn−1 −C−1
n rn , (30)

where Cn is the compliance matrix determined by

C−1
n = C−1

n−1 +
(
M pn −C−1

n−1 M rn
) M p>nC−1

n−1

M p>nC−1
n−1 M rn

(31)

with M pn = pn − pn−1, M rn = rn − rn−1.

Appendix A. Monodomain parameters

The parameters and initial valuse for the monodomain model are given in Tab. 1.

Table 1. Parameters for the evolution of the electric potential in the monodomain equations.

surface-to-volume ratio β = 140 mm−1

membrane capaticity Cm = 0.01 µFmm−1

longitudinal conductivity σA,l = 556.9188 Smm−1, σV,l = 133.4177215 Smm−1 = AV−1mm−1

transversal conductivity σA,t = 251.0 Smm−1, σV,t = 17.60617761 Smm−1

initial potential ventricles V 0
m = −80.8887 mV

initial potential atrim V 0
m = −85.298 mV

external current ventricle Ve = 0.582155 nA
external current atrium Ve = 20 pApF−1
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For the ten Tuscher cell model, the parameters are given in Tab. 2, and initial values for the ion concentrations
and gating variables

w0 =
(
Ca0,Ca0

SS,Ca0
SR,Na0,K0, R

0
,m0, h0, j0, x0

r1, x
0
r2, x

0
s , s

0, r0, d0, f0, f0
2 , f

0
Ca, O

0)

at t = 0 and for all x ∈ ΩV are set to

Ca0 = 0.00011576 , Ca0
SS = 0.000233 , Ca0

SR = 4.1371 , Na0 = 9.4148 K0 = 136.0009 , R
0

= 0.98738 ,
m0 = 0.0016901 , h0 = 0.74684 , j0 = 0.74622 , x0

r1 = 0.00021327 , x0
r2 = 0.4719 , x0

s = 0.0033368 ,
s0 = 1 , r0 = 2.3886 · 10−8 , d0 = 3.3409 · 10−5 , f0 = 0.95972 , f0

2 = 0.99949 , f0
Ca = 0.99996 ,

O
0

= 0 .

For the Courtemanche cell model, the parameters are given in Tab. 3, and initial values for the ion concentrations
and gating variables

w0 =
(
Ca0,Ca0

up,Ca0
rel,Na0,K0,m0, h0, j0, o0

a, o
0
i , u

0
a, u

0
i , x

0
r , x

0
s , d

0, f0, f0
Ca, u

0, v0, w0
rel

)

at t = 0 and for all x ∈ ΩA are set to

Ca0 = 0.000112836 , Ca0
up = 1.52919 , Ca0

rel = 1.10817 , Na0 = 11.83 K0 = 138.994 , ,
m0 = 0.00304588 , h0 = 0.962696 , j0 = 0.975742 , o0

a = 0.0309106 , o0
i = 0.999163 ,

u0
a = 0.00511314 , u0

i = 0.986906 , x0
r = 0.00229885 , x0

s = 0.0196603 , d0 = 0.000141583 ,
f0 = 0.916064 , f0

Ca = 0.75607 , u0 = 5.60519 · 10−43 , v0 = 0.999994 , w0
rel = 0.999185 .
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Table 2. Parameters in the ten Tuscher cell model.

gas constant R = 8314.472 mJK−1mol−1

temperature T= 310 K
Faraday constant F = 96485.3415 C/mol
valence of the ionic species z = 1 for Na and K, z = 2 for Ca
Vm,CaL 15 mV
Vm,pK,1 25 mV
Vm,pK,2 5.98 mV
Extracellular K+ concentration Ke = 5.4 mM
Extracellular Na+ concentration Nae = 140 mM
Extracellular Ca2+ concentration Cae = 2 mM
cytoplasmic volume Vc = 0.016404 mm3

maximal INa conductance GNa = 14.838 nS/pF
maximal ICaL conductance GCaL = 3.98 · 10−5 cm3µF−1s−1

maximal IKs conductance GKs =0.098 nS/pF
maximal Ito conductance Gto = 0.294 nS/pF
maximal IKr conductance GKr = 0.153 nS/pF
maximal IK1 conductance GK1 = 5.405 nS/pF
maximal IpK conductance GpK = 0.0146 nS/pF
maximal IbNa conductance GbNa = 0.00029 nS/pF
maximal IbCa conductance GbCa =0.000592 nS/pF
maximal IpCa conductance GpCa = 0.1238 nS/pF
maximal ISAC conductance GSAC = 0.0375 mS/cm2

maximal INaCa kNaCa =1.0 pA/pF
voltage dependencd parameter of INaCa γ= 0.35
factor enhancing outward nature of INaCa α = 2.5
saturation factor for INaCa ksat = 0.1
Na half-saturation constant for INaCa KmNai = 87.5 mM
Ca half-saturation constant for INaCa KmCa = 1.38 mM
Ke half-saturation constant for INaK KmK = 1 mM
Na half-saturation constant for INaK KmNa = 40mM
Ca half-saturation constant of IpCa KpCa = 0.0005 mM
relative IKs permeability to Na+ pKNa = 0.03
SAC reversal potential ESAC = -20 mV
SAC equilibrium constant κe = 100
stretch sensitivity of ISAC αSAC = 3
subspace volume VSS = 5.468e−5 mm3

sarcoplasmic reticulum volume VSR = 0.001094 mm3

maximal Ileak conductance Vleak = 0.00036 mM/ms
maximal Iup conductance Vmaxup = 0.006375mM/ms
half saturation constant of Iup Kup = 0.00025 mM
maximal Irel conductance Vrel = 0.102 mM/ms
maximal Ixfer conductance Vxfer = 0.0038
R to O and RI to I Irel transition rate k1′ = 0.15
O to I and R to RI Irel transition rate k2′ = 0.045
O to R and I to RI Irel transition rate k3 = 0.06
I to O and RI to I Irel transition rate k4 = 0.005s−1
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Table 3. Parameters in the Courtemanche cell model.

gas constant R = 8314.472 mJK−1mol−1

temperature T= 310 K
Faraday constant F = 96485.3415 C/mol
valence of the ionic species z = 1 for Na and K, z = 2 for Ca
intracellular volume Vi = 13668
maximal INa conductance gNa = 7.8 nS/pF
maximal IK1 conductance gK1 = 0.09 nS/pF
maximal Ito conductance gto = 0.1652 nS/pF
maximal IKr conductance gKr = 0.029411765 nS/pF
maximal IKs conductance gKs = 0.12941176 nS/pF
maximal ICa,L conductance gCa,L = 0.12375 nS/pF
maximal Ib,Ca conductance gb,Ca = 0.001131 nS/pF
maximal Ib,Na conductance gb,Na = 0.000644375 nS/pF
maximal INaK INaK(max) = 0.59933874 pA/pF
maximal INaCa INaCa(max) = 1600
maximal Ip,Ca IpCa(max) = 0.275 pA/pF
maximal Iup Iup(max) = 0.005 mMms−1

extracellular K+ concentration Ke = 5.4 mM
extracellular Na+ concentration Nae = 140 mM
extracellular Ca2+ concentration Cae = 1.8 mM
Na+ half saturation constant for INaK Km,Na = 10 mM
Na+

e half saturation constant for INaCa Km,Na(e) = 87.5 mM
Ca2+

e half-saturation constant for INaCa Km,Ca = 1.38
K+
e half saturation constant for INaK Km,K(e) = 1.5 mM

saturation factor for INaCa ksat = 0.1
voltage dependence parameter for INaCa γ = 0.35
Ca2+ half-saturation constant for Iup kup = 0.00092 mM
maximal release rate for Irel krel = 30 ms−1

total troponin concentration in myoplasm Trpnmax = 0.07 mM
total calmodulin concentration in myoplasm Cmdnmax = 0.05 mM
total calsequestrin concentration in SR release compartement Csqnmax = 10 mM
Ca half-saturation constant for troponin Km,Trpn = 0.0005mM
Ca half-saturation constant for calmodulin Km,Cmdn = 0.00238 mM
Carel half-saturation constant for Iup Km,Csqn = 0.8 mM
temperatur scaling factor for IK ur and Ito KQ10 = 3
maximal Ca2+ concentration in NSR Caup,max = 15 mM
VCaL 65 mV
VKr1 15 mV
VKr2 22.4 mV
VK1 80 mV
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Appendix B. Hyperelastic parameters

In this section we present all parameters used in the mechanical models of the previous chapters. First, the
initial values of all parameters used in the Land force model are given in Tab. 4.

Table 4. Parameters in the Land cell model.

Unbinding rate kTr = 0.1 ms−1

Cooperativity of calcium-troponin binding rate nTr = 2

Half-activation point concentration Caref
T50 = 0.805 µM
kB = 0.1 ms−1

Cooperativity of troponin and unblocked binding sites nTrB = 5
kUW = 0.182 ms−1

kWS = 0.012 ms−1

Steady-state ration for state W rW = 0.50
Steady-state ration for state S rS = 0.25

γW = 0.615
γS = 0.0085

proportionality of steady-state crossbridge cycling rates φ = 2.23
Instantaneous distortion magnitude Aeff = 25

β0 = 2.3
β1 = −2.4

Maximal active tension at resting length Tref = 120 kPa

Next, the fitted parameters for the force-length-relationship RF-L are presented in Tab. 5.

Table 5. Parameters of the force-length relationship function

Sarcomere lengths lmin = 0.00170 mm lmax = 0.00260 mm

l0 = 0.00195 mm

Fourier coefficients c0 = −4333.618335582119 d0 = −2051.827278991976

c1 = 2570.395355352195 d1 = 302.216784558222

c2 = 1329.536116891330 d2 = 218.375174229422

c3 = 104.943770305116

The values for the different passive material models are given in Tab. 6.

Table 6. Parameters of the passive material models

Guccione Model C0 = 876 Pa b1 = 18.48

b2 = 3.58

b3 = 1.627

Holzapfel-Ogden Model a = 59 Pa b = 8.023

af = 18472 Pa bf = 16.026

as = 2481 Pa bs = 11.120

afs = 216 Pa bfs = 11.436

Volumetric Part Γλ λ = 2 · 105 Pa
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Appendix C. Circulatory System Parameters

In this section we present all parameters and initial values that are used for the circulatory system model
introduced in the previous chapters. The parameters are given in Tab. 8, while the initial conditions are set to
the values shown in Tab. 7.

Table 7. Initial conditions of the circulatory system model.

total volume Vtot = 5500 ml
systemic aortic volume VSysArt = 969.453 ml
pulmonary arterial volume VPulArt = 261.202 ml
pulmonary venous volume VPulVen = 281.373 ml
left ventricular pressure pLv = 1066.578923 Pa
left atrial pressure pLa = 1066.578923 Pa
right ventricular pressure pRv = 533.289461 Pa
reight atrial pressure pRa = 533.289461 Pa

Table 8. Parameters in the circulatory system model.

systemic aortic valve resistance RSysArtValve = 0.799934 Pa·s·ml−1

systemic aortic resistance RSysArt = 9.332566 Pa·s·ml−1

systemic aortic compliance CSysArt = 0.015001234039 ml·Pa−1

systemic aortic unstressed Volume VSysArtUnstr = 800 ml
systemic peripheral resistance RSysPer = 119.990129 Pa·s·ml−1

systemic venous resistance RSysVen = 3.999671 Pa·s·ml−1

systemic venous compliance CSysVen = 0.750062 ml·Pa−1

systemic venous unstressed volume VSysVenUnstr = 2850 ml
tricuspidal valve resistance RRavValve = 0.399967 Pa·s·ml−1

pulmonary arterial valve resistance RPulArtValve = 0.399967 Pa·s·ml−1

pulmonary arterial resistance RPulArt = 2.666447 Pa·s·ml−1

pulmonary arterial compliance CPulArt = 0.075006 ml·Pa−1

pulmonary arterial unstressed volume VPulArtUnstr = 150 ml
pulmonary peripheral resistance RPulPer = 9.332566 Pa·s·ml−1

pulmonary venous resistance RPulVen = 3.999671 Pa·s·ml−1

pulmonary venous compliance CPulVen = 0.112509255293 ml·Pa−1

pulmonary venous unstressed volume VPulVenUnstr = 200 ml
mitral valve resistance RLavValve = 0.399967 Pa·s·ml−1
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