diff --git a/src/example_5_2.m b/src/example_5_2.m
index 374900cfc55c1674e12e8fbc0b4b0bb53a5f05ac..8e3df061f249bbd0c67ff3e6005e57ceb73e0eac 100644
--- a/src/example_5_2.m
+++ b/src/example_5_2.m
@@ -18,7 +18,7 @@ q = [-.5, 1];
 
 noiselevel = 0.05;
 
-alpha_vec = pi/16*[1,2,3,4,5,6]; % controlls area of non-observable sets
+alpha_vec = pi/32*[1,2,3,4,5,6,7,8,9,10]; % controlls area of non-observable sets
 
 nr_rep = length(alpha_vec);
 
@@ -26,7 +26,7 @@ P_Omega = cell(1,nr_rep);
 P_OmegaC = cell(1,nr_rep);
 
 for iteri=1:nr_rep
-
+    
     alpha = alpha_vec(iteri);
 
     % cross-shaped Omega, 20% midding data:
@@ -38,6 +38,9 @@ for iteri=1:nr_rep
     % To enforce symmetry according to reciprocity principle:
     P_Omega{iteri} = applyRP(Help);
     P_OmegaC{iteri} = ones(sampling.nd,sampling.nxhat) - P_Omega{iteri};
+
+    ratio(iteri) = sum(sum(P_Omega{iteri}))/(sampling.nxhat*sampling.nd);
+
     clear Help
 end
 
@@ -64,28 +67,21 @@ end
 
 % Numerical reconstruction with least squares approach:
 
-tol = 1e-5;
-kmax = 100;
+tol = [1e-5 1e-5 1e-5 1e-4 1e-4 5e-3 5e-3 5e-3 1e-3 1e-3];
+kmax = 300;
 
 Aall = cell(1,nr_rep);
 B = cell(1,nr_rep);
 
 for iteri = 1:nr_rep
-   [A, ~, ~] = CG_secondOrder(G{iteri}, sampling, k, P_Omega{iteri}, z, R, kmax, tol);
+   [A, ~, ~]= CG_secondOrder(G{iteri}, sampling, k, P_Omega{iteri}, z, R, kmax, tol(iteri));
 
    Aall{iteri} = A{2};
    B{iteri} = A{1};
    clear A
 
-   relerrOmega(iteri) = norm(B{iteri}+P_Omega{iteri}.*Fall)/norm(P_Omega{iteri}.*Fall);
-   relerr(iteri) = norm(Aall{iteri}-Fall)/norm(Fall);
-end
-
-disp('Table 5.2 (left): Relative errors of far field operator completion with least squares approach for Omega_1:')
-fprintf('   |Omega|/(4pi^2)  epsilon   epsilon_Omega\n')
-for iteri = 1:nr_rep
-    ratio = sum(sum(P_Omega{iteri}))/(sampling.nxhat*sampling.nd);
-    fprintf('   %.2f             %.3f     %.3f\n', ratio, round(relerr(iteri),3), round(relerrOmega(iteri),3))
+   relerrOmega1_cg(iteri) = norm(B{iteri}+P_Omega{iteri}.*Fall)/norm(P_Omega{iteri}.*Fall);
+   relerr1_cg(iteri) = norm(Aall{iteri}-Fall)/norm(Fall);
 end
 
 % Numerical reconstruction with l1xl1-minimization:
@@ -96,22 +92,37 @@ Aall = cell(1,nr_rep);
 B = cell(1,nr_rep);
 
 for iteri = 1:nr_rep
-    [A, nr_of_iterations, Resnorm] = FISTA_secondOrder(G{iteri}, sampling, k, P_OmegaC{iteri}, z, kmax);
+    [A, ~, ~] = FISTA_secondOrder(G{iteri}, sampling, k, P_OmegaC{iteri}, z, kmax);
     Aall{iteri} = A{1};
     clear A
 
-    relerrOmega(iteri) = norm(P_Omega{iteri}.*(Aall{iteri}-Fall))/norm(P_Omega{iteri}.*Fall);
-    relerr(iteri) = norm(Aall{iteri}-Fall)/norm(Fall);
+    relerrOmega1_fista(iteri) = norm(P_Omega{iteri}.*(Aall{iteri}-Fall))/norm(P_Omega{iteri}.*Fall);
+    relerr1_fista(iteri) = norm(Aall{iteri}-Fall)/norm(Fall);
 end
 
-disp('Table 5.2 (left): Relative errors of far field operator completion with l1xl1-minimization for Omega_1:')
-fprintf('   |Omega|/(4pi^2)  epsilon   epsilon_Omega\n')
-for iteri = 1:nr_rep
-    ratio = sum(sum(P_Omega{iteri}))/(sampling.nxhat*sampling.nd);
-    fprintf('   %.2f             %.3f     %.3f\n', ratio, round(relerr(iteri),3), round(relerrOmega(iteri),3))
-end
+%% Plot of relative errors for Omega_1:
+
+figure()
+
+semilogy(ratio, relerrOmega1_cg, 'r--o', ratio, relerr1_cg, 'b--*', ratio, relerrOmega1_fista, 'r-o', ratio, relerr1_fista, 'b-*', 'LineWidth', 1.2)
+
+title('Relative errors for varying area of non-observable set $\Omega_1$', 'Interpreter', 'latex')
+xlabel('$\frac{|\Omega|}{4\pi^2}$', 'Interpreter', 'latex')
+ylabel('$\epsilon_{\mathrm{rel}}$', 'Interpreter', 'latex')
 
-% Plot of geometry:
+legend({'$\epsilon_{\mathrm{rel}}^{\Omega}$ using cg','$\epsilon_{\mathrm{rel}}$ using cg', '$\epsilon_{\mathrm{rel}}^{\Omega}$ using FISTA', '$\epsilon_{\mathrm{rel}}$ using FISTA'}, 'Interpreter','latex', 'Location','southeast')
+
+xlim([ratio(1) ratio(end)])
+ylim([10^(-2) 1])
+
+grid on
+
+ax = gca;
+ax.FontSize = 16;
+
+print ../figures/errors_vary_Omega1_completion.eps -depsc
+
+%% Plot of geometry:
 
 figure()
 
@@ -146,12 +157,15 @@ title('Geometry and a priori information', 'Interpreter', 'Latex')
 grid on
 axis equal
 
+text(26.2,-1.8,'$D_1$','Color','blue','FontSize',18, 'Interpreter','latex')
+text(6.25,-10.8,'$D_2$','Color','blue','FontSize',18, 'Interpreter','latex')
+
 ax = gca;
-ax.FontSize = 17;
+ax.FontSize = 18;
 
 print ../figures/geometry_vary_Omega.eps -depsc
 
-% Plot of Omega_1:
+%% Plot of Omega_1:
 
 figure()
 
@@ -204,8 +218,6 @@ print ../figures/support_Omega1.eps -depsc
 
 %% Example 5.2 (Completion only) for Omega_2:
 
-clear all
-
 % Parameters:
 
 k = .5;  % wave number
@@ -220,7 +232,7 @@ q = [-.5, 1];
 
 noiselevel = 0.05;
 
-alpha_vec = pi/16*[1,2,3,4,5,6]; % controlls area of non-observable sets
+alpha_vec = pi/32*[1,2,3,4,5,6,7,8,9,10]; % controlls area of non-observable sets
 
 nr_rep = length(alpha_vec);
 
@@ -240,6 +252,9 @@ for iteri=1:nr_rep
     % To enforce symmetry according to reciprocity principle:
     P_Omega{iteri} = applyRP(Help);
     P_OmegaC{iteri} = ones(sampling.nd,sampling.nxhat) - P_Omega{iteri};
+
+    ratio(iteri) = sum(sum(P_Omega{iteri}))/(sampling.nxhat*sampling.nd);
+
     clear Help
 end
 
@@ -266,28 +281,21 @@ end
 
 % Numerical reconstruction with least squares approach:
 
-tol = 1e-5;
-kmax = 100;
+tol = [1e-5 1e-5 1e-5 1e-4 5e-3 5e-3 5e-3 5e-3 1e-3 1e-3];
+kmax = 300;
 
 Aall = cell(1,nr_rep);
 B = cell(1,nr_rep);
 
 for iteri = 1:nr_rep
-   [A, ~, ~] = CG_secondOrder(G{iteri}, sampling, k, P_Omega{iteri}, z, R, kmax, tol);
+   [A, ~, ~] = CG_secondOrder(G{iteri}, sampling, k, P_Omega{iteri}, z, R, kmax, tol(iteri));
 
    Aall{iteri} = A{2};
    B{iteri} = A{1};
    clear A
 
-   relerrOmega(iteri) = norm(B{iteri}+P_Omega{iteri}.*Fall)/norm(P_Omega{iteri}.*Fall);
-   relerr(iteri) = norm(Aall{iteri}-Fall)/norm(Fall);
-end
-
-disp('Table 5.2 (right): Relative errors of far field operator completion with least squares approach for Omega_2:')
-fprintf('   |Omega|/(4pi^2)  epsilon   epsilon_Omega\n')
-for iteri = 1:nr_rep
-    ratio = sum(sum(P_Omega{iteri}))/(sampling.nxhat*sampling.nd);
-    fprintf('   %.2f             %.3f     %.3f\n', ratio, round(relerr(iteri),3), round(relerrOmega(iteri),3))
+   relerrOmega2_cg(iteri) = norm(B{iteri}+P_Omega{iteri}.*Fall)/norm(P_Omega{iteri}.*Fall);
+   relerr2_cg(iteri) = norm(Aall{iteri}-Fall)/norm(Fall);
 end
 
 % Numerical reconstruction with l1xl1-minimization:
@@ -298,22 +306,37 @@ Aall = cell(1,nr_rep);
 B = cell(1,nr_rep);
 
 for iteri = 1:nr_rep
-    [A, nr_of_iterations, Resnorm] = FISTA_secondOrder(G{iteri}, sampling, k, P_OmegaC{iteri}, z, kmax);
+    [A, ~, ~] = FISTA_secondOrder(G{iteri}, sampling, k, P_OmegaC{iteri}, z, kmax);
     Aall{iteri} = A{1};
     clear A
 
-    relerrOmega(iteri) = norm(P_Omega{iteri}.*(Aall{iteri}-Fall))/norm(P_Omega{iteri}.*Fall);
-    relerr(iteri) = norm(Aall{iteri}-Fall)/norm(Fall);
+    relerrOmega2_fista(iteri) = norm(P_Omega{iteri}.*(Aall{iteri}-Fall))/norm(P_Omega{iteri}.*Fall);
+    relerr2_fista(iteri) = norm(Aall{iteri}-Fall)/norm(Fall);
 end
 
-disp('Table 5.2 (right): Relative errors of far field operator completion with l1xl1-minimization for Omega_2:')
-fprintf('   |Omega|/(4pi^2)  epsilon   epsilon_Omega\n')
-for iteri = 1:nr_rep
-    ratio = sum(sum(P_Omega{iteri}))/(sampling.nxhat*sampling.nd);
-    fprintf('   %.2f             %.3f     %.3f\n', ratio, round(relerr(iteri),3), round(relerrOmega(iteri),3))
-end
+%% Plot of relative errors for Omega_2:
+
+figure()
+
+semilogy(ratio, relerrOmega2_cg, 'r--o', ratio, relerr2_cg, 'b--*', ratio, relerrOmega2_fista, 'r-o', ratio, relerr2_fista, 'b-*', 'LineWidth', 1.2)
+
+title('Relative errors for varying area of non-observable set $\Omega_2$', 'Interpreter', 'latex')
+xlabel('$\frac{|\Omega|}{4\pi^2}$', 'Interpreter', 'latex')
+ylabel('$\epsilon_{\mathrm{rel}}$', 'Interpreter', 'latex')
+
+legend({'$\epsilon_{\mathrm{rel}}^{\Omega}$ using cg','$\epsilon_{\mathrm{rel}}$ using cg', '$\epsilon_{\mathrm{rel}}^{\Omega}$ using FISTA', '$\epsilon_{\mathrm{rel}}$ using FISTA'}, 'Interpreter','latex', 'Location','southeast')
+
+xlim([ratio(1) ratio(end)])
+ylim([10^(-2) 1])
+
+grid on
+
+ax = gca;
+ax.FontSize = 16;
+
+print ../figures/errors_vary_Omega2_completion.eps -depsc
 
-% Plot of Omega_2:
+%% Plot of Omega_2:
 
 figure()
 
@@ -385,4 +408,4 @@ title('Non-observable set $\Omega_2$', 'Interpreter', 'Latex')
 set(gca,'Fontsize',18)
 set(gca,'YDir','normal')
 
-print ../figures/support_Omega2.eps -depsc
+print ../figures/support_Omega2.eps -depsc
\ No newline at end of file