From f68f8b25f4e9898e954085f617e74557817cb0b4 Mon Sep 17 00:00:00 2001 From: Jaroslav Borodavka <df2994@kit.edu> Date: Fri, 15 Mar 2024 13:24:00 +0100 Subject: [PATCH] Translated most of the code from German to English. --- R/Comp_Statistics_Powertests_d_equal_2.R | 196 +++++++++++------------ 1 file changed, 98 insertions(+), 98 deletions(-) diff --git a/R/Comp_Statistics_Powertests_d_equal_2.R b/R/Comp_Statistics_Powertests_d_equal_2.R index 4d7ee4a..86bf022 100644 --- a/R/Comp_Statistics_Powertests_d_equal_2.R +++ b/R/Comp_Statistics_Powertests_d_equal_2.R @@ -121,13 +121,13 @@ CircComp_stat_value <- function(data, index){ # test realizations for uniform distribution CircComp_unif <- function(n, dim, index){ - return(list("Realisierung" = CircComp_stat_value(data = runif_sphere(n, dim), + return(list("realization" = CircComp_stat_value(data = runif_sphere(n, dim), index = index))) } # alternatives according to paper by Cutting, Pandaveine und Verdebout ("TESTING UNIFORMITY ON HIGH-DIMENSIONAL SPHERES AGAINST MONOTONE ROTATIONALLY SYMMETRIC ALTERNATIVES") CircComp_vMF <- function(n, dim, kappa, index){ - return(list("Realisierung" = CircComp_stat_value(data = rvmf(n, c(1,rep(0, dim-1)), kappa), + return(list("realization" = CircComp_stat_value(data = rvmf(n, c(1,rep(0, dim-1)), kappa), index = index))) } @@ -135,41 +135,41 @@ CircComp_vMF <- function(n, dim, kappa, index){ CircComp_mixvmf_1 <- function(n, dim, p, index){ U = runif(n, 0, 1) sample = (U<p)*rvmf(n, c(-1,rep(0,dim-1)), 1) + (U>=p)*rvmf(n, c(1,rep(0,dim-1)), 1) - return(list("Realisierung" = CircComp_stat_value(data = sample, index = index))) + return(list("realization" = CircComp_stat_value(data = sample, index = index))) } CircComp_mixvmf_2 <- function(n, dim, p, index){ U = runif(n, 0, 1) sample = (U<p)*rvmf(n, c(-1,rep(0,dim-1)), 1)+(U>=p)*rvmf(n, c(1,rep(0,dim-1)), 4) - return(list("Realisierung" = CircComp_stat_value(data = sample, index = index))) + return(list("realization" = CircComp_stat_value(data = sample, index = index))) } CircComp_mixvmf_3 <- function(n, dim, index){ p = 0.25 U = runif(n, 0, 1) sample = (U<p)*rvmf(n, rep(-1,dim), 2) + (U>=p)*(U<2*p)*rvmf(n, c(-1,rep(1,dim-1)), 3) + (U>=2*p)*rvmf(n, c(1,rep(0,dim-1)), 3) - return(list("Realisierung" = CircComp_stat_value(data = sample, index = index))) + return(list("realization" = CircComp_stat_value(data = sample, index = index))) } CircComp_mixvmf_4 <- function(n, dim, index){ p = 1/3 U = runif(n, 0, 1) sample = (U<p)*rvmf(n, rep(-1,dim), 2) + (U>=p)*(U<2*p)*rvmf(n, c(-1,rep(1,dim-1)), 3) + (U>=2*p)*rvmf(n, c(1,rep(0,dim-1)), 4) - return(list("Realisierung" = CircComp_stat_value(data = sample, index = index))) + return(list("realization" = CircComp_stat_value(data = sample, index = index))) } CircComp_bing_1 <- function(n, dim, tau, index){ A = tau*diag(seq(1,dim)) - return(list("Realisierung" = CircComp_stat_value(data = rbingham(n, A), index = index))) + return(list("realization" = CircComp_stat_value(data = rbingham(n, A), index = index))) } CircComp_bing_2 <- function(n, dim, tau, index){ A = tau*diag(c(-dim, rep(0, dim-2), dim)) - return(list("Realisierung" = CircComp_stat_value(data = rbingham(n, A), index = index))) + return(list("realization" = CircComp_stat_value(data = rbingham(n, A), index = index))) } CircComp_LP <- function(n, dim, m, kappa, index){ - return(list("Realisierung" = CircComp_stat_value(data = rLP(n, m, c(1,rep(0,dim-1)), kappa), index = index))) + return(list("realization" = CircComp_stat_value(data = rLP(n, m, c(1,rep(0,dim-1)), kappa), index = index))) } ################################################################################################# @@ -202,17 +202,17 @@ DT_CircComp_unif <- setDT(DF_CircComp_unif) # creating groups DT_CircComp_unif[, grp := .GRP, by = c("n", "dim", "index")] -DT_CircComp_unif = DT_CircComp_unif[order(grp, Realisierung)] -DT_CircComp_unif_CA = DT_CircComp_unif[index == 5, list(n, "Dimension" = dim, "Index" = index, "Realisierung" = Realisierung, - "Niveau_10" = lapply(.SD, quantile, probs = 0.10, na.rm = T), - "Niveau_5" = lapply(.SD, quantile, probs = 0.05, na.rm = T), - "Niveau_1" = lapply(.SD, quantile, probs = 0.01, na.rm = T)), - by = grp, .SDcols = c("Realisierung")] -DT_CircComp_unif = DT_CircComp_unif[index %in% c(seq(1,4), 6), list(n, "Dimension" = dim, "Index" = index, "Realisierung" = Realisierung, - "Niveau_10" = lapply(.SD, quantile, probs = 0.90, na.rm = T), - "Niveau_5" = lapply(.SD, quantile, probs = 0.95, na.rm = T), - "Niveau_1" = lapply(.SD, quantile, probs = 0.99, na.rm = T)), - by = grp, .SDcols = c("Realisierung")] +DT_CircComp_unif = DT_CircComp_unif[order(grp, realization)] +DT_CircComp_unif_CA = DT_CircComp_unif[index == 5, list(n, "dimension" = dim, "index" = index, "realization" = realization, + "level_10" = lapply(.SD, quantile, probs = 0.10, na.rm = T), + "level_5" = lapply(.SD, quantile, probs = 0.05, na.rm = T), + "level_1" = lapply(.SD, quantile, probs = 0.01, na.rm = T)), + by = grp, .SDcols = c("realization")] +DT_CircComp_unif = DT_CircComp_unif[index %in% c(seq(1,4), 6), list(n, "dimension" = dim, "index" = index, "realization" = realization, + "level_10" = lapply(.SD, quantile, probs = 0.90, na.rm = T), + "level_5" = lapply(.SD, quantile, probs = 0.95, na.rm = T), + "level_1" = lapply(.SD, quantile, probs = 0.99, na.rm = T)), + by = grp, .SDcols = c("realization")] DT_CircComp_unif = rbindlist(list(DT_CircComp_unif, DT_CircComp_unif_CA)) print(DT_CircComp_unif) @@ -238,14 +238,14 @@ DT_CircComp_Test = na.omit(DT_CircComp_Test) Power_CircComp = matrix(data = c(seq(1, grp_number), rep(0, 6*grp_number)), nrow = grp_number, ncol = 7) for (k in 1:grp_number) { - real = DT_CircComp_Test[grp==k]$Realisierung + real = DT_CircComp_Test[grp==k]$realization n = DT_CircComp_Test[grp==k]$n[1] dim = DT_CircComp_Test[grp==k]$dim[1] index = DT_CircComp_Test[grp==k]$index[1] - niv_10 = DT_CircComp_unif[grp==k]$Niveau_10[[1]] - niv_5 = DT_CircComp_unif[grp==k]$Niveau_5[[1]] - niv_1 = DT_CircComp_unif[grp==k]$Niveau_1[[1]] + niv_10 = DT_CircComp_unif[grp==k]$level_10[[1]] + niv_5 = DT_CircComp_unif[grp==k]$level_5[[1]] + niv_1 = DT_CircComp_unif[grp==k]$level_1[[1]] if (index == 5){ dec_10 = sapply(real, Decision_CA, critical = niv_10) @@ -266,8 +266,8 @@ for (k in 1:grp_number) { Power_CircComp[k, 7] = sum(dec_1[dec_1==1])/length(dec_1) } -Power_CircComp = data.frame("Gruppe" = Power_CircComp[,1], "n" = Power_CircComp[,2], "dim" = Power_CircComp[,3], "Teststatistik" = Power_CircComp[,4], - "Niveau_10" = Power_CircComp[,5], "Niveau_5" = Power_CircComp[,6], "Niveau_1" = Power_CircComp[,7]) +Power_CircComp = data.frame("group" = Power_CircComp[,1], "n" = Power_CircComp[,2], "dim" = Power_CircComp[,3], "test" = Power_CircComp[,4], + "level_10" = Power_CircComp[,5], "level_5" = Power_CircComp[,6], "level_1" = Power_CircComp[,7]) print(Power_CircComp) ################################################################################################# @@ -294,15 +294,15 @@ DT_CircComp_vMF = na.omit(DT_CircComp_vMF) Power_CircComp_vMF = matrix(data = c(seq(1,grp_number), rep(0, 7*grp_number)), nrow = grp_number, ncol = 8) for (k in 1:grp_number) { - real = DT_CircComp_vMF[grp==k]$Realisierung - umfang = DT_CircComp_vMF[grp==k]$n[1] + real = DT_CircComp_vMF[grp==k]$realization + size = DT_CircComp_vMF[grp==k]$n[1] dim = DT_CircComp_vMF[grp==k]$dim[1] kappa = DT_CircComp_vMF[grp==k]$kappa[1] index = DT_CircComp_vMF[grp==k]$index[1] - niv_10 = DT_CircComp_unif[n == umfang & Dimension == dim & Index == index]$Niveau_10[[1]] - niv_5 = DT_CircComp_unif[n == umfang & Dimension == dim & Index == index]$Niveau_5[[1]] - niv_1 = DT_CircComp_unif[n == umfang & Dimension == dim & Index == index]$Niveau_1[[1]] + niv_10 = DT_CircComp_unif[n == size & dimension == dim & index == index]$level_10[[1]] + niv_5 = DT_CircComp_unif[n == size & dimension == dim & index == index]$level_5[[1]] + niv_1 = DT_CircComp_unif[n == size & dimension == dim & index == index]$level_1[[1]] if (index == 5){ dec_10 = sapply(real, Decision_CA, critical = niv_10) @@ -315,7 +315,7 @@ for (k in 1:grp_number) { dec_1 = sapply(real, Decision, critical = niv_1) } - Power_CircComp_vMF[k, 2] = umfang + Power_CircComp_vMF[k, 2] = size Power_CircComp_vMF[k, 3] = dim Power_CircComp_vMF[k, 4] = kappa Power_CircComp_vMF[k, 4] = switch(index, "Kuiper", "Watson", "Ajne", "Rayleigh", "Cuesta-Albertos", "Bingham") @@ -324,9 +324,9 @@ for (k in 1:grp_number) { Power_CircComp_vMF[k, 8] = sum(dec_1[dec_1==1])/length(dec_1) } -Power_CircComp_vMF = data.frame("Gruppe" = Power_CircComp_vMF[,1], "n" = Power_CircComp_vMF[,2], "dim" = Power_CircComp_vMF[,3], - "Kappa" = Power_CircComp_vMF[,4], "Teststatistik" = Power_CircComp_vMF[, 5], "Niveau_10" = Power_CircComp_vMF[,6], - "Niveau_5" = Power_CircComp_vMF[,7], "Niveau_1" = Power_CircComp_vMF[,8]) +Power_CircComp_vMF = data.frame("group" = Power_CircComp_vMF[,1], "n" = Power_CircComp_vMF[,2], "dim" = Power_CircComp_vMF[,3], + "kappa" = Power_CircComp_vMF[,4], "test" = Power_CircComp_vMF[, 5], "level_10" = Power_CircComp_vMF[,6], + "level_5" = Power_CircComp_vMF[,7], "level_1" = Power_CircComp_vMF[,8]) print(Power_CircComp_vMF) # Mix vMF with two centers (1) @@ -350,15 +350,15 @@ DT_CircComp_mixvmf_1 = na.omit(DT_CircComp_mixvmf_1) Power_CircComp_mixvmf_1 = matrix(data = c(seq(1,grp_number), rep(0, 7*grp_number)), nrow = grp_number, ncol = 8) for (k in 1:grp_number) { - real = DT_CircComp_mixvmf_1[grp==k]$Realisierung - umfang = DT_CircComp_mixvmf_1[grp==k]$n[1] + real = DT_CircComp_mixvmf_1[grp==k]$realization + size = DT_CircComp_mixvmf_1[grp==k]$n[1] dim = DT_CircComp_mixvmf_1[grp==k]$dim[1] prob = DT_CircComp_mixvmf_1[grp==k]$p[1] index = DT_CircComp_mixvmf_1[grp==k]$index[1] - niv_10 = DT_CircComp_unif[n == umfang & Dimension == dim & Index == index]$Niveau_10[[1]] - niv_5 = DT_CircComp_unif[n == umfang & Dimension == dim & Index == index]$Niveau_5[[1]] - niv_1 = DT_CircComp_unif[n == umfang & Dimension == dim & Index == index]$Niveau_1[[1]] + niv_10 = DT_CircComp_unif[n == size & dimension == dim & index == index]$level_10[[1]] + niv_5 = DT_CircComp_unif[n == size & dimension == dim & index == index]$level_5[[1]] + niv_1 = DT_CircComp_unif[n == size & dimension == dim & index == index]$level_1[[1]] if (index == 5){ dec_10 = sapply(real, Decision_CA, critical = niv_10) @@ -371,7 +371,7 @@ for (k in 1:grp_number) { dec_1 = sapply(real, Decision, critical = niv_1) } - Power_CircComp_mixvmf_1[k, 2] = umfang + Power_CircComp_mixvmf_1[k, 2] = size Power_CircComp_mixvmf_1[k, 3] = dim Power_CircComp_mixvmf_1[k, 4] = prob Power_CircComp_mixvmf_1[k, 5] = switch(index, "Kuiper", "Watson", "Ajne", "Rayleigh", "Cuesta-Albertos", "Bingham") @@ -380,9 +380,9 @@ for (k in 1:grp_number) { Power_CircComp_mixvmf_1[k, 8] = sum(dec_1[dec_1==1])/length(dec_1) } -Power_CircComp_mixvmf_1 = data.frame("Gruppe" = Power_CircComp_mixvmf_1[,1], "n" = Power_CircComp_mixvmf_1[,2], "dim" = Power_CircComp_mixvmf_1[,3], - "Wahrscheinlichkeit" = Power_CircComp_mixvmf_1[,4], "Teststatistik" = Power_CircComp_mixvmf_1[,5], "Niveau_10" = Power_CircComp_mixvmf_1[,6], - "Niveau_5" = Power_CircComp_mixvmf_1[,7], "Niveau_1" = Power_CircComp_mixvmf_1[,8]) +Power_CircComp_mixvmf_1 = data.frame("group" = Power_CircComp_mixvmf_1[,1], "n" = Power_CircComp_mixvmf_1[,2], "dim" = Power_CircComp_mixvmf_1[,3], + "Wahrscheinlichkeit" = Power_CircComp_mixvmf_1[,4], "test" = Power_CircComp_mixvmf_1[,5], "level_10" = Power_CircComp_mixvmf_1[,6], + "level_5" = Power_CircComp_mixvmf_1[,7], "level_1" = Power_CircComp_mixvmf_1[,8]) print(Power_CircComp_mixvmf_1) # Mix vMF with two centers (2) @@ -406,15 +406,15 @@ DT_CircComp_mixvmf_2 = na.omit(DT_CircComp_mixvmf_2) Power_CircComp_mixvmf_2 = matrix(data = c(seq(1, grp_number), rep(0, 7*grp_number)), nrow = grp_number, ncol = 8) for (k in 1:grp_number) { - real = DT_CircComp_mixvmf_2[grp==k]$Realisierung - umfang = DT_CircComp_mixvmf_2[grp==k]$n[1] + real = DT_CircComp_mixvmf_2[grp==k]$realization + size = DT_CircComp_mixvmf_2[grp==k]$n[1] dim = DT_CircComp_mixvmf_2[grp==k]$dim[1] prob = DT_CircComp_mixvmf_2[grp==k]$p[1] index = DT_CircComp_mixvmf_2[grp==k]$index[1] - niv_10 = DT_CircComp_unif[n == umfang & Dimension == dim & Index == index]$Niveau_10[[1]] - niv_5 = DT_CircComp_unif[n == umfang & Dimension == dim & Index == index]$Niveau_5[[1]] - niv_1 = DT_CircComp_unif[n == umfang & Dimension == dim & Index == index]$Niveau_1[[1]] + niv_10 = DT_CircComp_unif[n == size & dimension == dim & index == index]$level_10[[1]] + niv_5 = DT_CircComp_unif[n == size & dimension == dim & index == index]$level_5[[1]] + niv_1 = DT_CircComp_unif[n == size & dimension == dim & index == index]$level_1[[1]] if (index == 5){ dec_10 = sapply(real, Decision_CA, critical = niv_10) @@ -427,7 +427,7 @@ for (k in 1:grp_number) { dec_1 = sapply(real, Decision, critical = niv_1) } - Power_CircComp_mixvmf_2[k, 2] = umfang + Power_CircComp_mixvmf_2[k, 2] = size Power_CircComp_mixvmf_2[k, 3] = dim Power_CircComp_mixvmf_2[k, 4] = prob Power_CircComp_mixvmf_2[k, 5] = switch(index, "Kuiper", "Watson", "Ajne", "Rayleigh", "Cuesta-Albertos", "Bingham") @@ -436,9 +436,9 @@ for (k in 1:grp_number) { Power_CircComp_mixvmf_2[k, 8] = sum(dec_1[dec_1==1])/length(dec_1) } -Power_CircComp_mixvmf_2 = data.frame("Gruppe" = Power_CircComp_mixvmf_2[,1], "n" = Power_CircComp_mixvmf_2[,2], "dim" = Power_CircComp_mixvmf_2[,3], - "Wahrscheinlichkeit" = Power_CircComp_mixvmf_2[,4], "Teststatistik" = Power_CircComp_mixvmf_2[,5], "Niveau_10" = Power_CircComp_mixvmf_2[,6], - "Niveau_5" = Power_CircComp_mixvmf_2[,7], "Niveau_1" = Power_CircComp_mixvmf_2[,8]) +Power_CircComp_mixvmf_2 = data.frame("group" = Power_CircComp_mixvmf_2[,1], "n" = Power_CircComp_mixvmf_2[,2], "dim" = Power_CircComp_mixvmf_2[,3], + "Wahrscheinlichkeit" = Power_CircComp_mixvmf_2[,4], "test" = Power_CircComp_mixvmf_2[,5], "level_10" = Power_CircComp_mixvmf_2[,6], + "level_5" = Power_CircComp_mixvmf_2[,7], "level_1" = Power_CircComp_mixvmf_2[,8]) print(Power_CircComp_mixvmf_2) # Mix vMF with three centers (1) @@ -461,14 +461,14 @@ DT_CircComp_mixvmf_3 = na.omit(DT_CircComp_mixvmf_3) Power_CircComp_mixvmf_3 = matrix(data = c(seq(1,grp_number), rep(0, 7*grp_number)), nrow = grp_number, ncol = 8) for (k in 1:grp_number) { - real = DT_CircComp_mixvmf_3[grp==k]$Realisierung - umfang = DT_CircComp_mixvmf_3[grp==k]$n[1] + real = DT_CircComp_mixvmf_3[grp==k]$realization + size = DT_CircComp_mixvmf_3[grp==k]$n[1] dim = DT_CircComp_mixvmf_3[grp==k]$dim[1] index = DT_CircComp_mixvmf_3[grp==k]$index[1] - niv_10 = DT_CircComp_unif[n == umfang & Dimension == dim & Index == index]$Niveau_10[[1]] - niv_5 = DT_CircComp_unif[n == umfang & Dimension == dim & Index == index]$Niveau_5[[1]] - niv_1 = DT_CircComp_unif[n == umfang & Dimension == dim & Index == index]$Niveau_1[[1]] + niv_10 = DT_CircComp_unif[n == size & dimension == dim & index == index]$level_10[[1]] + niv_5 = DT_CircComp_unif[n == size & dimension == dim & index == index]$level_5[[1]] + niv_1 = DT_CircComp_unif[n == size & dimension == dim & index == index]$level_1[[1]] if (index == 5){ dec_10 = sapply(real, Decision_CA, critical = niv_10) @@ -481,7 +481,7 @@ for (k in 1:grp_number) { dec_1 = sapply(real, Decision, critical = niv_1) } - Power_CircComp_mixvmf_3[k, 2] = umfang + Power_CircComp_mixvmf_3[k, 2] = size Power_CircComp_mixvmf_3[k, 3] = dim Power_CircComp_mixvmf_3[k, 4] = 0.25 Power_CircComp_mixvmf_3[k, 5] = switch(index, "Kuiper", "Watson", "Ajne", "Rayleigh", "Cuesta-Albertos", "Bingham") @@ -490,9 +490,9 @@ for (k in 1:grp_number) { Power_CircComp_mixvmf_3[k, 8] = sum(dec_1[dec_1==1])/length(dec_1) } -Power_CircComp_mixvmf_3 = data.frame("Gruppe" = Power_CircComp_mixvmf_3[,1], "n" = Power_CircComp_mixvmf_3[,2], "dim" = Power_CircComp_mixvmf_3[,3], - "Wahrscheinlichkeit" = Power_CircComp_mixvmf_3[,4], "Teststatistik" = Power_CircComp_mixvmf_3[, 5], "Niveau_10" = Power_CircComp_mixvmf_3[,6], "Niveau_5" = Power_CircComp_mixvmf_3[,7], - "Niveau_1" = Power_CircComp_mixvmf_3[,8]) +Power_CircComp_mixvmf_3 = data.frame("group" = Power_CircComp_mixvmf_3[,1], "n" = Power_CircComp_mixvmf_3[,2], "dim" = Power_CircComp_mixvmf_3[,3], + "Wahrscheinlichkeit" = Power_CircComp_mixvmf_3[,4], "test" = Power_CircComp_mixvmf_3[, 5], "level_10" = Power_CircComp_mixvmf_3[,6], "level_5" = Power_CircComp_mixvmf_3[,7], + "level_1" = Power_CircComp_mixvmf_3[,8]) print(Power_CircComp_mixvmf_3) # Mix vMF with three centers (2) @@ -513,14 +513,14 @@ DT_CircComp_mixvmf_4 = na.omit(DT_CircComp_mixvmf_4) Power_CircComp_mixvmf_4 = matrix(data = c(seq(1,grp_number), rep(0, 7*grp_number)), nrow = grp_number, ncol = 8) for (k in 1:grp_number) { - real = DT_CircComp_mixvmf_4[grp==k]$Realisierung - umfang = DT_CircComp_mixvmf_4[grp==k]$n[1] + real = DT_CircComp_mixvmf_4[grp==k]$realization + size = DT_CircComp_mixvmf_4[grp==k]$n[1] dim = DT_CircComp_mixvmf_4[grp==k]$dim[1] index = DT_CircComp_mixvmf_4[grp==k]$index[1] - niv_10 = DT_CircComp_unif[n == umfang & Dimension == dim & Index == index]$Niveau_10[[1]] - niv_5 = DT_CircComp_unif[n == umfang & Dimension == dim & Index == index]$Niveau_5[[1]] - niv_1 = DT_CircComp_unif[n == umfang & Dimension == dim & Index == index]$Niveau_1[[1]] + niv_10 = DT_CircComp_unif[n == size & dimension == dim & index == index]$level_10[[1]] + niv_5 = DT_CircComp_unif[n == size & dimension == dim & index == index]$level_5[[1]] + niv_1 = DT_CircComp_unif[n == size & dimension == dim & index == index]$level_1[[1]] if (index == 5){ dec_10 = sapply(real, Decision_CA, critical = niv_10) @@ -533,7 +533,7 @@ for (k in 1:grp_number) { dec_1 = sapply(real, Decision, critical = niv_1) } - Power_CircComp_mixvmf_4[k, 2] = umfang + Power_CircComp_mixvmf_4[k, 2] = size Power_CircComp_mixvmf_4[k, 3] = dim Power_CircComp_mixvmf_4[k, 4] = round(1/3, digits = 2) Power_CircComp_mixvmf_4[k, 5] = switch(index, "Kuiper", "Watson", "Ajne", "Rayleigh", "Cuesta-Albertos", , "Bingham") @@ -542,9 +542,9 @@ for (k in 1:grp_number) { Power_CircComp_mixvmf_4[k, 8] = sum(dec_1[dec_1==1])/length(dec_1) } -Power_CircComp_mixvmf_4 = data.frame("Gruppe" = Power_CircComp_mixvmf_4[,1], "n" = Power_CircComp_mixvmf_4[,2], "dim" = Power_CircComp_mixvmf_4[,3], - "Wahrscheinlichkeit" = Power_CircComp_mixvmf_4[,4], "Teststatistik" = Power_CircComp_mixvmf_4[,5], "Niveau_10" = Power_CircComp_mixvmf_4[,6], "Niveau_5" = Power_CircComp_mixvmf_4[,7], - "Niveau_1" = Power_CircComp_mixvmf_4[,8]) +Power_CircComp_mixvmf_4 = data.frame("group" = Power_CircComp_mixvmf_4[,1], "n" = Power_CircComp_mixvmf_4[,2], "dim" = Power_CircComp_mixvmf_4[,3], + "Wahrscheinlichkeit" = Power_CircComp_mixvmf_4[,4], "test" = Power_CircComp_mixvmf_4[,5], "level_10" = Power_CircComp_mixvmf_4[,6], "level_5" = Power_CircComp_mixvmf_4[,7], + "level_1" = Power_CircComp_mixvmf_4[,8]) print(Power_CircComp_mixvmf_4) @@ -569,15 +569,15 @@ DT_CircComp_bing_1 = na.omit(DT_CircComp_bing_1) Power_CircComp_bing_1 = matrix(data = c(seq(1,grp_number), rep(0, 7*grp_number)), nrow = grp_number, ncol = 8) for (k in 1:grp_number) { - real = DT_CircComp_bing_1[grp==k]$Realisierung - umfang = DT_CircComp_bing_1[grp==k]$n[1] + real = DT_CircComp_bing_1[grp==k]$realization + size = DT_CircComp_bing_1[grp==k]$n[1] dim = DT_CircComp_bing_1[grp==k]$dim[1] tau = DT_CircComp_bing_1[grp==k]$tau[1] index = DT_CircComp_bing_1[grp==k]$index[1] - niv_10 = DT_CircComp_unif[n == umfang & Dimension == dim & Index == index]$Niveau_10[[1]] - niv_5 = DT_CircComp_unif[n == umfang & Dimension == dim & Index == index]$Niveau_5[[1]] - niv_1 = DT_CircComp_unif[n == umfang & Dimension == dim & Index == index]$Niveau_1[[1]] + niv_10 = DT_CircComp_unif[n == size & dimension == dim & index == index]$level_10[[1]] + niv_5 = DT_CircComp_unif[n == size & dimension == dim & index == index]$level_5[[1]] + niv_1 = DT_CircComp_unif[n == size & dimension == dim & index == index]$level_1[[1]] if (index == 5){ dec_10 = sapply(real, Decision_CA, critical = niv_10) @@ -590,7 +590,7 @@ for (k in 1:grp_number) { dec_1 = sapply(real, Decision, critical = niv_1) } - Power_CircComp_bing_1[k, 2] = umfang + Power_CircComp_bing_1[k, 2] = size Power_CircComp_bing_1[k, 3] = dim Power_CircComp_bing_1[k, 4] = tau Power_CircComp_bing_1[k, 5] = switch(index, "Kuiper", "Watson", "Ajne", "Rayleigh", "Cuesta-Albertos", "Bingham") @@ -599,9 +599,9 @@ for (k in 1:grp_number) { Power_CircComp_bing_1[k, 8] = sum(dec_1[dec_1==1])/length(dec_1) } -Power_CircComp_bing_1 = data.frame("Gruppe" = Power_CircComp_bing_1[,1], "n" = Power_CircComp_bing_1[,2], "dim" = Power_CircComp_bing_1[,3], - "Tau" = Power_CircComp_bing_1[,4], "Teststatistik" = Power_CircComp_bing_1[,5], "Niveau_10" = Power_CircComp_bing_1[,6], - "Niveau_5" = Power_CircComp_bing_1[,7], "Niveau_1" = Power_CircComp_bing_1[,8]) +Power_CircComp_bing_1 = data.frame("group" = Power_CircComp_bing_1[,1], "n" = Power_CircComp_bing_1[,2], "dim" = Power_CircComp_bing_1[,3], + "tau" = Power_CircComp_bing_1[,4], "test" = Power_CircComp_bing_1[,5], "level_10" = Power_CircComp_bing_1[,6], + "level_5" = Power_CircComp_bing_1[,7], "level_1" = Power_CircComp_bing_1[,8]) print(Power_CircComp_bing_1) # Bingham (2) @@ -625,15 +625,15 @@ DT_CircComp_bing_2 = na.omit(DT_CircComp_bing_2) Power_CircComp_bing_2 = matrix(data = c(seq(1,grp_number), rep(0, 7*grp_number)), nrow = grp_number, ncol = 8) for (k in 1:grp_number) { - real = DT_CircComp_bing_2[grp==k]$Realisierung - umfang = DT_CircComp_bing_2[grp==k]$n[1] + real = DT_CircComp_bing_2[grp==k]$realization + size = DT_CircComp_bing_2[grp==k]$n[1] dim = DT_CircComp_bing_2[grp==k]$dim[1] tau = DT_CircComp_bing_2[grp==k]$tau[1] index = DT_CircComp_bing_2[grp==k]$index[1] - niv_10 = DT_CircComp_unif[n == umfang & Dimension == dim & Index == index]$Niveau_10[[1]] - niv_5 = DT_CircComp_unif[n == umfang & Dimension == dim & Index == index]$Niveau_5[[1]] - niv_1 = DT_CircComp_unif[n == umfang & Dimension == dim & Index == index]$Niveau_1[[1]] + niv_10 = DT_CircComp_unif[n == size & dimension == dim & index == index]$level_10[[1]] + niv_5 = DT_CircComp_unif[n == size & dimension == dim & index == index]$level_5[[1]] + niv_1 = DT_CircComp_unif[n == size & dimension == dim & index == index]$level_1[[1]] if (index == 5){ dec_10 = sapply(real, Decision_CA, critical = niv_10) @@ -646,7 +646,7 @@ for (k in 1:grp_number) { dec_1 = sapply(real, Decision, critical = niv_1) } - Power_CircComp_bing_2[k, 2] = umfang + Power_CircComp_bing_2[k, 2] = size Power_CircComp_bing_2[k, 3] = dim Power_CircComp_bing_2[k, 4] = tau Power_CircComp_bing_2[k, 5] = switch(index, "Kuiper", "Watson", "Ajne", "Rayleigh", "Cuesta-Albertos", "Bingham") @@ -655,9 +655,9 @@ for (k in 1:grp_number) { Power_CircComp_bing_2[k, 8] = sum(dec_1[dec_1==1])/length(dec_1) } -Power_CircComp_bing_2 = data.frame("Gruppe" = Power_CircComp_bing_2[,1], "n" = Power_CircComp_bing_2[,2], "dim" = Power_CircComp_bing_2[,3], - "Tau" = Power_CircComp_bing_2[,4], "Teststatistik" = Power_CircComp_bing_2[,5], "Niveau_10" = Power_CircComp_bing_2[,6], - "Niveau_5" = Power_CircComp_bing_2[,7], "Niveau_1" = Power_CircComp_bing_2[,8]) +Power_CircComp_bing_2 = data.frame("group" = Power_CircComp_bing_2[,1], "n" = Power_CircComp_bing_2[,2], "dim" = Power_CircComp_bing_2[,3], + "tau" = Power_CircComp_bing_2[,4], "test" = Power_CircComp_bing_2[,5], "level_10" = Power_CircComp_bing_2[,6], + "level_5" = Power_CircComp_bing_2[,7], "level_1" = Power_CircComp_bing_2[,8]) print(Power_CircComp_bing_2) # Legendre polynomial @@ -682,16 +682,16 @@ DT_CircComp_LP = na.omit(DT_CircComp_LP) Power_CircComp_LP = matrix(data = c(seq(1,grp_number), rep(0, 8*grp_number)), nrow = grp_number, ncol = 9) for (k in 1:grp_number) { - real = DT_CircComp_LP[grp==k]$Realisierung - umfang = DT_CircComp_LP[grp==k]$n[1] + real = DT_CircComp_LP[grp==k]$realization + size = DT_CircComp_LP[grp==k]$n[1] dim = DT_CircComp_LP[grp==k]$dim[1] m = DT_CircComp_LP[grp==k]$m[1] kappa = DT_CircComp_LP[grp==k]$kappa[1] index = DT_CircComp_LP[grp==k]$index[1] - niv_10 = DT_CircComp_unif[n == umfang & Dimension == dim & Index == index]$Niveau_10[[1]] - niv_5 = DT_CircComp_unif[n == umfang & Dimension == dim & Index == index]$Niveau_5[[1]] - niv_1 = DT_CircComp_unif[n == umfang & Dimension == dim & Index == index]$Niveau_1[[1]] + niv_10 = DT_CircComp_unif[n == size & dimension == dim & index == index]$level_10[[1]] + niv_5 = DT_CircComp_unif[n == size & dimension == dim & index == index]$level_5[[1]] + niv_1 = DT_CircComp_unif[n == size & dimension == dim & index == index]$level_1[[1]] if (index == 5){ dec_10 = sapply(real, Decision_CA, critical = niv_10) @@ -704,7 +704,7 @@ for (k in 1:grp_number) { dec_1 = sapply(real, Decision, critical = niv_1) } - Power_CircComp_LP[k, 2] = umfang + Power_CircComp_LP[k, 2] = size Power_CircComp_LP[k, 3] = dim Power_CircComp_LP[k, 4] = m Power_CircComp_LP[k, 5] = kappa @@ -714,9 +714,9 @@ for (k in 1:grp_number) { Power_CircComp_LP[k, 9] = sum(dec_1[dec_1==1])/length(dec_1) } -Power_CircComp_LP = data.frame("Gruppe" = Power_CircComp_LP[,1], "n" = Power_CircComp_LP[,2], "dim" = Power_CircComp_LP[,3], - "m" = Power_CircComp_LP[,4], "Kappa" = Power_CircComp_LP[,5], "Teststatistik" = Power_CircComp_LP[,6], "Niveau_10" = Power_CircComp_LP[,7], - "Niveau_5" = Power_CircComp_LP[,8], "Niveau_1" = Power_CircComp_LP[,9]) +Power_CircComp_LP = data.frame("group" = Power_CircComp_LP[,1], "n" = Power_CircComp_LP[,2], "dim" = Power_CircComp_LP[,3], + "m" = Power_CircComp_LP[,4], "kappa" = Power_CircComp_LP[,5], "test" = Power_CircComp_LP[,6], "level_10" = Power_CircComp_LP[,7], + "level_5" = Power_CircComp_LP[,8], "level_1" = Power_CircComp_LP[,9]) print(Power_CircComp_LP) save.image(file = "Comp_Statistics_Powertests_d_equal_2_Daten.RData") -- GitLab