From 6b33fa1db14cdc4bbcb17fa17114cac63bb06884 Mon Sep 17 00:00:00 2001
From: Alexander Grote <grote@fzi.de>
Date: Thu, 25 Apr 2024 15:11:32 +0200
Subject: [PATCH] adding regression solution

---
 ml_bootcamp/Regression_Solution.ipynb | 1925 +++++++++++++++++++++++++
 1 file changed, 1925 insertions(+)
 create mode 100644 ml_bootcamp/Regression_Solution.ipynb

diff --git a/ml_bootcamp/Regression_Solution.ipynb b/ml_bootcamp/Regression_Solution.ipynb
new file mode 100644
index 0000000..9d8c1ad
--- /dev/null
+++ b/ml_bootcamp/Regression_Solution.ipynb
@@ -0,0 +1,1925 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "# Business Data Analytics - Exercise Regression Tutorial\n",
+    "\n",
+    "This notebook is designed to illustrate the basic steps in a data science project. It is inspired by two notebooks from Kaggle, which is a platform that organises data science comptitions. Click [here](https://www.kaggle.com/code/abdelrahmantarek13/houseprice-step-by-step/notebook) and [here](https://www.kaggle.com/code/serigne/stacked-regressions-top-4-on-leaderboard) to see these notebooks."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## The CRISP-DM Process\n",
+    "\n",
+    "> Cross-industry standard process for data mining, also known as CRISP-DM, is an open standard process model that describes common approaches used by data mining experts. It is the most widely-used analytics model.\n",
+    "> \n",
+    "> -- Source: https://en.wikipedia.org/wiki/Cross-industry_standard_process_for_data_mining\n",
+    "\n",
+    "<p align=\"center\">\n",
+    "<img src=\"https://upload.wikimedia.org/wikipedia/commons/b/b9/CRISP-DM_Process_Diagram.png\" width=\"400\" />\n",
+    "</p>\n",
+    "\n",
+    "CRISP-DM breaks the process of data mining into six major phases:\n",
+    "\n",
+    "- Business Understanding\n",
+    "- Data Understanding\n",
+    "- Data Preparation\n",
+    "- Modeling\n",
+    "- Evaluation\n",
+    "- Deployment\n",
+    "\n",
+    "The sequence of the phases is not strict and moving back and forth between different phases is usually required. The arrows in the process diagram indicate the most important and frequent dependencies between phases. The outer circle in the diagram symbolizes the cyclic nature of data mining itself. A data mining process continues after a solution has been deployed. The lessons learned during the process can trigger new, often more focused business questions, and subsequent data mining processes will benefit from the experiences of previous ones.\n",
+    "\n",
+    "**Disclaimer**: Because we are not solving a real-world data science project, we are skipping the **Business Understanding** and **Deployment Step**. However, in my experience, these steps are the most important ones to provide business value."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Task Description: House Prices - Advanced Regression Techniques\n",
+    "\n",
+    "This notebook follows the idea of the \"House Prices - Advanced Regression Techniques\" competition on Kaggle. However, the dataset for this competition has been compiled by Dean De Cock for use in data science education. It was designed after the Boston Housing dataset and is now considered a more modernized and expanded version of it. More details of this dataset are described in [Ames, Iowa: Alternative to the Boston Housing Data as an End of Semester Regression Project](http://jse.amstat.org/v19n3/decock.pdf).\n",
+    "\n",
+    ">**Goal**: It is your job to predict the sales price for each house. For each Id in the test set, you must predict the value of the SalePrice variable. \n",
+    ">\n",
+    ">**Metric**: Submissions are evaluated on Root-Mean-Squared-Error (RMSE) between the logarithm of the predicted value and the logarithm of the observed sales price. (Taking logs means that errors in predicting expensive houses and cheap houses will affect the result equally.)\n",
+    ">\n",
+    "> -- description taken from [Kaggle](https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques/overview/evaluation)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Install & import packages"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Requirement already satisfied: scikit-learn in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from -r requirements.txt (line 1)) (1.1.0)\n",
+      "Requirement already satisfied: numpy in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from -r requirements.txt (line 2)) (1.22.3)\n",
+      "Requirement already satisfied: pandas in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from -r requirements.txt (line 3)) (1.4.2)\n",
+      "Requirement already satisfied: seaborn in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from -r requirements.txt (line 4)) (0.11.2)\n",
+      "Requirement already satisfied: IPython in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from -r requirements.txt (line 5)) (8.3.0)\n",
+      "Requirement already satisfied: ipykernel in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from -r requirements.txt (line 6)) (6.13.0)\n",
+      "Requirement already satisfied: notebook in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from -r requirements.txt (line 7)) (6.4.11)\n",
+      "Requirement already satisfied: category_encoders in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from -r requirements.txt (line 8)) (2.4.1)\n",
+      "Requirement already satisfied: joblib>=1.0.0 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from scikit-learn->-r requirements.txt (line 1)) (1.2.0)\n",
+      "Requirement already satisfied: scipy>=1.3.2 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from scikit-learn->-r requirements.txt (line 1)) (1.8.0)\n",
+      "Requirement already satisfied: threadpoolctl>=2.0.0 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from scikit-learn->-r requirements.txt (line 1)) (3.1.0)\n",
+      "Requirement already satisfied: pytz>=2020.1 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from pandas->-r requirements.txt (line 3)) (2022.1)\n",
+      "Requirement already satisfied: python-dateutil>=2.8.1 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from pandas->-r requirements.txt (line 3)) (2.8.2)\n",
+      "Requirement already satisfied: matplotlib>=2.2 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from seaborn->-r requirements.txt (line 4)) (3.5.2)\n",
+      "Requirement already satisfied: stack-data in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from IPython->-r requirements.txt (line 5)) (0.2.0)\n",
+      "Requirement already satisfied: backcall in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from IPython->-r requirements.txt (line 5)) (0.2.0)\n",
+      "Requirement already satisfied: traitlets>=5 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from IPython->-r requirements.txt (line 5)) (5.2.0)\n",
+      "Requirement already satisfied: decorator in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from IPython->-r requirements.txt (line 5)) (5.1.1)\n",
+      "Requirement already satisfied: pygments>=2.4.0 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from IPython->-r requirements.txt (line 5)) (2.12.0)\n",
+      "Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from IPython->-r requirements.txt (line 5)) (3.0.29)\n",
+      "Requirement already satisfied: matplotlib-inline in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from IPython->-r requirements.txt (line 5)) (0.1.3)\n",
+      "Requirement already satisfied: colorama in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from IPython->-r requirements.txt (line 5)) (0.4.4)\n",
+      "Requirement already satisfied: pickleshare in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from IPython->-r requirements.txt (line 5)) (0.7.5)\n",
+      "Requirement already satisfied: setuptools>=18.5 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from IPython->-r requirements.txt (line 5)) (61.2.0)\n",
+      "Requirement already satisfied: jedi>=0.16 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from IPython->-r requirements.txt (line 5)) (0.18.1)\n",
+      "Requirement already satisfied: debugpy>=1.0 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from ipykernel->-r requirements.txt (line 6)) (1.6.0)\n",
+      "Requirement already satisfied: tornado>=6.1 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from ipykernel->-r requirements.txt (line 6)) (6.1)\n",
+      "Requirement already satisfied: jupyter-client>=6.1.12 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from ipykernel->-r requirements.txt (line 6)) (7.3.1)\n",
+      "Requirement already satisfied: packaging in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from ipykernel->-r requirements.txt (line 6)) (21.3)\n",
+      "Requirement already satisfied: nest-asyncio in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from ipykernel->-r requirements.txt (line 6)) (1.5.5)\n",
+      "Requirement already satisfied: psutil in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from ipykernel->-r requirements.txt (line 6)) (5.9.0)\n",
+      "Requirement already satisfied: jinja2 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from notebook->-r requirements.txt (line 7)) (3.1.2)\n",
+      "Requirement already satisfied: ipython-genutils in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from notebook->-r requirements.txt (line 7)) (0.2.0)\n",
+      "Requirement already satisfied: pyzmq>=17 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from notebook->-r requirements.txt (line 7)) (22.3.0)\n",
+      "Requirement already satisfied: terminado>=0.8.3 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from notebook->-r requirements.txt (line 7)) (0.13.3)\n",
+      "Requirement already satisfied: prometheus-client in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from notebook->-r requirements.txt (line 7)) (0.14.1)\n",
+      "Requirement already satisfied: nbconvert>=5 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from notebook->-r requirements.txt (line 7)) (6.5.0)\n",
+      "Requirement already satisfied: argon2-cffi in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from notebook->-r requirements.txt (line 7)) (21.3.0)\n",
+      "Requirement already satisfied: Send2Trash>=1.8.0 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from notebook->-r requirements.txt (line 7)) (1.8.0)\n",
+      "Requirement already satisfied: jupyter-core>=4.6.1 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from notebook->-r requirements.txt (line 7)) (4.10.0)\n",
+      "Requirement already satisfied: nbformat in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from notebook->-r requirements.txt (line 7)) (5.4.0)\n",
+      "Requirement already satisfied: statsmodels>=0.9.0 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from category_encoders->-r requirements.txt (line 8)) (0.13.2)\n",
+      "Requirement already satisfied: patsy>=0.5.1 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from category_encoders->-r requirements.txt (line 8)) (0.5.2)\n",
+      "Requirement already satisfied: parso<0.9.0,>=0.8.0 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from jedi>=0.16->IPython->-r requirements.txt (line 5)) (0.8.3)\n",
+      "Requirement already satisfied: entrypoints in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from jupyter-client>=6.1.12->ipykernel->-r requirements.txt (line 6)) (0.4)\n",
+      "Requirement already satisfied: pywin32>=1.0 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from jupyter-core>=4.6.1->notebook->-r requirements.txt (line 7)) (304)\n",
+      "Requirement already satisfied: pyparsing>=2.2.1 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from matplotlib>=2.2->seaborn->-r requirements.txt (line 4)) (3.0.9)\n",
+      "Requirement already satisfied: pillow>=6.2.0 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from matplotlib>=2.2->seaborn->-r requirements.txt (line 4)) (9.1.0)\n",
+      "Requirement already satisfied: kiwisolver>=1.0.1 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from matplotlib>=2.2->seaborn->-r requirements.txt (line 4)) (1.4.2)\n",
+      "Requirement already satisfied: fonttools>=4.22.0 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from matplotlib>=2.2->seaborn->-r requirements.txt (line 4)) (4.33.3)\n",
+      "Requirement already satisfied: cycler>=0.10 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from matplotlib>=2.2->seaborn->-r requirements.txt (line 4)) (0.11.0)\n",
+      "Requirement already satisfied: jupyterlab-pygments in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from nbconvert>=5->notebook->-r requirements.txt (line 7)) (0.2.2)\n",
+      "Requirement already satisfied: pandocfilters>=1.4.1 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from nbconvert>=5->notebook->-r requirements.txt (line 7)) (1.5.0)\n",
+      "Requirement already satisfied: defusedxml in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from nbconvert>=5->notebook->-r requirements.txt (line 7)) (0.7.1)\n",
+      "Requirement already satisfied: bleach in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from nbconvert>=5->notebook->-r requirements.txt (line 7)) (5.0.0)\n",
+      "Requirement already satisfied: nbclient>=0.5.0 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from nbconvert>=5->notebook->-r requirements.txt (line 7)) (0.6.3)\n",
+      "Requirement already satisfied: tinycss2 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from nbconvert>=5->notebook->-r requirements.txt (line 7)) (1.1.1)\n",
+      "Requirement already satisfied: MarkupSafe>=2.0 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from nbconvert>=5->notebook->-r requirements.txt (line 7)) (2.1.1)\n",
+      "Requirement already satisfied: beautifulsoup4 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from nbconvert>=5->notebook->-r requirements.txt (line 7)) (4.11.1)\n",
+      "Requirement already satisfied: mistune<2,>=0.8.1 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from nbconvert>=5->notebook->-r requirements.txt (line 7)) (0.8.4)\n",
+      "Requirement already satisfied: jsonschema>=2.6 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from nbformat->notebook->-r requirements.txt (line 7)) (4.5.1)\n",
+      "Requirement already satisfied: fastjsonschema in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from nbformat->notebook->-r requirements.txt (line 7)) (2.15.3)\n",
+      "Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from jsonschema>=2.6->nbformat->notebook->-r requirements.txt (line 7)) (0.18.1)\n",
+      "Requirement already satisfied: importlib-resources>=1.4.0 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from jsonschema>=2.6->nbformat->notebook->-r requirements.txt (line 7)) (5.7.1)\n",
+      "Requirement already satisfied: attrs>=17.4.0 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from jsonschema>=2.6->nbformat->notebook->-r requirements.txt (line 7)) (21.4.0)\n",
+      "Requirement already satisfied: zipp>=3.1.0 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from importlib-resources>=1.4.0->jsonschema>=2.6->nbformat->notebook->-r requirements.txt (line 7)) (3.8.0)\n",
+      "Requirement already satisfied: six in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from patsy>=0.5.1->category_encoders->-r requirements.txt (line 8)) (1.16.0)\n",
+      "Requirement already satisfied: wcwidth in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->IPython->-r requirements.txt (line 5)) (0.2.5)\n",
+      "Requirement already satisfied: pywinpty>=1.1.0 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from terminado>=0.8.3->notebook->-r requirements.txt (line 7)) (2.0.5)\n",
+      "Requirement already satisfied: argon2-cffi-bindings in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from argon2-cffi->notebook->-r requirements.txt (line 7)) (21.2.0)\n",
+      "Requirement already satisfied: cffi>=1.0.1 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from argon2-cffi-bindings->argon2-cffi->notebook->-r requirements.txt (line 7)) (1.15.0)\n",
+      "Requirement already satisfied: pycparser in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from cffi>=1.0.1->argon2-cffi-bindings->argon2-cffi->notebook->-r requirements.txt (line 7)) (2.21)\n",
+      "Requirement already satisfied: soupsieve>1.2 in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from beautifulsoup4->nbconvert>=5->notebook->-r requirements.txt (line 7)) (2.3.2.post1)\n",
+      "Requirement already satisfied: webencodings in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from bleach->nbconvert>=5->notebook->-r requirements.txt (line 7)) (0.5.1)\n",
+      "Requirement already satisfied: executing in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from stack-data->IPython->-r requirements.txt (line 5)) (0.8.3)\n",
+      "Requirement already satisfied: asttokens in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from stack-data->IPython->-r requirements.txt (line 5)) (2.0.5)\n",
+      "Requirement already satisfied: pure-eval in c:\\users\\di872\\anaconda3\\envs\\bda\\lib\\site-packages (from stack-data->IPython->-r requirements.txt (line 5)) (0.2.2)\n"
+     ]
+    }
+   ],
+   "source": [
+    "!pip install -r requirements.txt"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import numpy as np  # linear algebra\n",
+    "import pandas as pd  # data processing, CSV file I/O (e.g. pd.read_csv)\n",
+    "from scipy import stats  # statistical functions\n",
+    "import os  # access to operating system related functions\n",
+    "\n",
+    "# plotting libraries\n",
+    "import seaborn as sns\n",
+    "import matplotlib.pyplot as plt\n",
+    "\n",
+    "# ml related libraries\n",
+    "from sklearn.impute import SimpleImputer\n",
+    "from sklearn.model_selection import train_test_split\n",
+    "from sklearn.linear_model import Lasso\n",
+    "from sklearn.pipeline import make_pipeline\n",
+    "from sklearn.preprocessing import RobustScaler\n",
+    "from sklearn.ensemble import RandomForestRegressor\n",
+    "from sklearn.metrics import mean_squared_error, make_scorer\n",
+    "from sklearn.model_selection import GridSearchCV\n",
+    "from category_encoders.target_encoder import TargetEncoder"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# plot inline\n",
+    "%matplotlib inline "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Read data\n",
+    "\n",
+    "In the next cell, we will download the data from an url and differentiate between the features X and the target variable y. Then we will create a train and test set."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# download original data\n",
+    "data = pd.read_csv(\"http://jse.amstat.org/v19n3/decock/AmesHousing.txt\", sep='\\t')\n",
+    "\n",
+    "# get features and target\n",
+    "X, y = data.drop(['PID', 'Order', 'SalePrice'], axis=1), data['SalePrice']\n",
+    "\n",
+    "# split into train and testset\n",
+    "X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "MSSubClass: Identifies the type of dwelling involved in the sale.\t\n",
+      "\n",
+      "        20\t1-STORY 1946 & NEWER ALL STYLES\n",
+      "        30\t1-STORY 1945 & OLDER\n",
+      "        40\t1-STORY W/FINISHED ATTIC ALL AGES\n",
+      "        45\t1-1/2 STORY - UNFINISHED ALL AGES\n",
+      "        50\t1-1/2 STORY FINISHED ALL AGES\n",
+      "        60\t2-STORY 1946 & NEWER\n",
+      "        70\t2-STORY 1945 & OLDER\n",
+      "        75\t2-1/2 STORY ALL AGES\n",
+      "        80\tSPLIT OR MULTI-LEVEL\n",
+      "        85\tSPLIT FOYER\n",
+      "        90\tDUPLEX - ALL STYLES AND AGES\n",
+      "       120\t1-STORY PUD (Planned Unit Development) - 1946 & NEWER\n",
+      "       150\t1-1/2 STORY PUD - ALL AGES\n",
+      "       160\t2-STORY PUD - 1946 & NEWER\n",
+      "       180\tPUD - MULTILEVEL - INCL SPLIT LEV/FOYER\n",
+      "       190\t2 FAMILY CONVERSION - ALL STYLES AND AGES\n",
+      "\n",
+      "MSZoning: Identifies the general zoning classification of the sale.\n",
+      "\t\t\n",
+      "       A\tAgriculture\n",
+      "       C\tCommercial\n",
+      "       FV\tFloating Village Residential\n",
+      "       I\tIndustrial\n",
+      "       RH\tResidential High Density\n",
+      "       RL\tResidential Low Density\n",
+      "       RP\tResidential Low Density Park \n",
+      "       RM\tResidential Medium Density\n",
+      "\t\n",
+      "LotFrontage: Linear feet of street connected to property\n",
+      "\n",
+      "LotArea: Lot size in square feet\n",
+      "\n",
+      "Street: Type of road access to property\n",
+      "\n",
+      "       Grvl\tGravel\t\n",
+      "       Pave\tPaved\n",
+      "       \t\n",
+      "Alley: Type of alley access to property\n",
+      "\n",
+      "       Grvl\tGravel\n",
+      "       Pave\tPaved\n",
+      "       NA \tNo alley access\n",
+      "\t\t\n",
+      "LotShape: General shape of property\n",
+      "\n",
+      "       Reg\tRegular\t\n",
+      "       IR1\tSlightly irregular\n",
+      "       IR2\tModerately Irregular\n",
+      "       IR3\tIrregular\n",
+      "       \n",
+      "LandContour: Flatness of the property\n",
+      "\n",
+      "       Lvl\tNear Flat/Level\t\n",
+      "       Bnk\tBanked - Quick and significant rise from street grade to building\n",
+      "       HLS\tHillside - Significant slope from side to side\n",
+      "       Low\tDepression\n",
+      "\t\t\n",
+      "Utilities: Type of utilities available\n",
+      "\t\t\n",
+      "       AllPub\tAll public Utilities (E,G,W,& S)\t\n",
+      "       NoSewr\tElectricity, Gas, and Water (Septic Tank)\n",
+      "       NoSeWa\tElectricity and Gas Only\n",
+      "       ELO\tElectricity only\t\n",
+      "\t\n",
+      "LotConfig: Lot configuration\n",
+      "\n",
+      "       Inside\tInside lot\n",
+      "       Corner\tCorner lot\n",
+      "       CulDSac\tCul-de-sac\n",
+      "       FR2\tFrontage on 2 sides of property\n",
+      "       FR3\tFrontage on 3 sides of property\n",
+      "\t\n",
+      "LandSlope: Slope of property\n",
+      "\t\t\n",
+      "       Gtl\tGentle slope\n",
+      "       Mod\tModerate Slope\t\n",
+      "       Sev\tSevere Slope\n",
+      "\t\n",
+      "Neighborhood: Physical locations within Ames city limits\n",
+      "\n",
+      "       Blmngtn\tBloomington Heights\n",
+      "       Blueste\tBluestem\n",
+      "       BrDale\tBriardale\n",
+      "       BrkSide\tBrookside\n",
+      "       ClearCr\tClear Creek\n",
+      "       CollgCr\tCollege Creek\n",
+      "       Crawfor\tCrawford\n",
+      "       Edwards\tEdwards\n",
+      "       Gilbert\tGilbert\n",
+      "       IDOTRR\tIowa DOT and Rail Road\n",
+      "       MeadowV\tMeadow Village\n",
+      "       Mitchel\tMitchell\n",
+      "       Names\tNorth Ames\n",
+      "       NoRidge\tNorthridge\n",
+      "       NPkVill\tNorthpark Villa\n",
+      "       NridgHt\tNorthridge Heights\n",
+      "       NWAmes\tNorthwest Ames\n",
+      "       OldTown\tOld Town\n",
+      "       SWISU\tSouth & West of Iowa State University\n",
+      "       Sawyer\tSawyer\n",
+      "       SawyerW\tSawyer West\n",
+      "       Somerst\tSomerset\n",
+      "       StoneBr\tStone Brook\n",
+      "       Timber\tTimberland\n",
+      "       Veenker\tVeenker\n",
+      "\t\t\t\n",
+      "Condition1: Proximity to various conditions\n",
+      "\t\n",
+      "       Artery\tAdjacent to arterial street\n",
+      "       Feedr\tAdjacent to feeder street\t\n",
+      "       Norm\tNormal\t\n",
+      "       RRNn\tWithin 200' of North-South Railroad\n",
+      "       RRAn\tAdjacent to North-South Railroad\n",
+      "       PosN\tNear positive off-site feature--park, greenbelt, etc.\n",
+      "       PosA\tAdjacent to postive off-site feature\n",
+      "       RRNe\tWithin 200' of East-West Railroad\n",
+      "       RRAe\tAdjacent to East-West Railroad\n",
+      "\t\n",
+      "Condition2: Proximity to various conditions (if more than one is present)\n",
+      "\t\t\n",
+      "       Artery\tAdjacent to arterial street\n",
+      "       Feedr\tAdjacent to feeder street\t\n",
+      "       Norm\tNormal\t\n",
+      "       RRNn\tWithin 200' of North-South Railroad\n",
+      "       RRAn\tAdjacent to North-South Railroad\n",
+      "       PosN\tNear positive off-site feature--park, greenbelt, etc.\n",
+      "       PosA\tAdjacent to postive off-site feature\n",
+      "       RRNe\tWithin 200' of East-West Railroad\n",
+      "       RRAe\tAdjacent to East-West Railroad\n",
+      "\t\n",
+      "BldgType: Type of dwelling\n",
+      "\t\t\n",
+      "       1Fam\tSingle-family Detached\t\n",
+      "       2FmCon\tTwo-family Conversion; originally built as one-family dwelling\n",
+      "       Duplx\tDuplex\n",
+      "       TwnhsE\tTownhouse End Unit\n",
+      "       TwnhsI\tTownhouse Inside Unit\n",
+      "\t\n",
+      "HouseStyle: Style of dwelling\n",
+      "\t\n",
+      "       1Story\tOne story\n",
+      "       1.5Fin\tOne and one-half story: 2nd level finished\n",
+      "       1.5Unf\tOne and one-half story: 2nd level unfinished\n",
+      "       2Story\tTwo story\n",
+      "       2.5Fin\tTwo and one-half story: 2nd level finished\n",
+      "       2.5Unf\tTwo and one-half story: 2nd level unfinished\n",
+      "       SFoyer\tSplit Foyer\n",
+      "       SLvl\tSplit Level\n",
+      "\t\n",
+      "OverallQual: Rates the overall material and finish of the house\n",
+      "\n",
+      "       10\tVery Excellent\n",
+      "       9\tExcellent\n",
+      "       8\tVery Good\n",
+      "       7\tGood\n",
+      "       6\tAbove Average\n",
+      "       5\tAverage\n",
+      "       4\tBelow Average\n",
+      "       3\tFair\n",
+      "       2\tPoor\n",
+      "       1\tVery Poor\n",
+      "\t\n",
+      "OverallCond: Rates the overall condition of the house\n",
+      "\n",
+      "       10\tVery Excellent\n",
+      "       9\tExcellent\n",
+      "       8\tVery Good\n",
+      "       7\tGood\n",
+      "       6\tAbove Average\t\n",
+      "       5\tAverage\n",
+      "       4\tBelow Average\t\n",
+      "       3\tFair\n",
+      "       2\tPoor\n",
+      "       1\tVery Poor\n",
+      "\t\t\n",
+      "YearBuilt: Original construction date\n",
+      "\n",
+      "YearRemodAdd: Remodel date (same as construction date if no remodeling or additions)\n",
+      "\n",
+      "RoofStyle: Type of roof\n",
+      "\n",
+      "       Flat\tFlat\n",
+      "       Gable\tGable\n",
+      "       Gambrel\tGabrel (Barn)\n",
+      "       Hip\tHip\n",
+      "       Mansard\tMansard\n",
+      "       Shed\tShed\n",
+      "\t\t\n",
+      "RoofMatl: Roof material\n",
+      "\n",
+      "       ClyTile\tClay or Tile\n",
+      "       CompShg\tStandard (Composite) Shingle\n",
+      "       Membran\tMembrane\n",
+      "       Metal\tMetal\n",
+      "       Roll\tRoll\n",
+      "       Tar&Grv\tGravel & Tar\n",
+      "       WdShake\tWood Shakes\n",
+      "       WdShngl\tWood Shingles\n",
+      "\t\t\n",
+      "Exterior1st: Exterior covering on house\n",
+      "\n",
+      "       AsbShng\tAsbestos Shingles\n",
+      "       AsphShn\tAsphalt Shingles\n",
+      "       BrkComm\tBrick Common\n",
+      "       BrkFace\tBrick Face\n",
+      "       CBlock\tCinder Block\n",
+      "       CemntBd\tCement Board\n",
+      "       HdBoard\tHard Board\n",
+      "       ImStucc\tImitation Stucco\n",
+      "       MetalSd\tMetal Siding\n",
+      "       Other\tOther\n",
+      "       Plywood\tPlywood\n",
+      "       PreCast\tPreCast\t\n",
+      "       Stone\tStone\n",
+      "       Stucco\tStucco\n",
+      "       VinylSd\tVinyl Siding\n",
+      "       Wd Sdng\tWood Siding\n",
+      "       WdShing\tWood Shingles\n",
+      "\t\n",
+      "Exterior2nd: Exterior covering on house (if more than one material)\n",
+      "\n",
+      "       AsbShng\tAsbestos Shingles\n",
+      "       AsphShn\tAsphalt Shingles\n",
+      "       BrkComm\tBrick Common\n",
+      "       BrkFace\tBrick Face\n",
+      "       CBlock\tCinder Block\n",
+      "       CemntBd\tCement Board\n",
+      "       HdBoard\tHard Board\n",
+      "       ImStucc\tImitation Stucco\n",
+      "       MetalSd\tMetal Siding\n",
+      "       Other\tOther\n",
+      "       Plywood\tPlywood\n",
+      "       PreCast\tPreCast\n",
+      "       Stone\tStone\n",
+      "       Stucco\tStucco\n",
+      "       VinylSd\tVinyl Siding\n",
+      "       Wd Sdng\tWood Siding\n",
+      "       WdShing\tWood Shingles\n",
+      "\t\n",
+      "MasVnrType: Masonry veneer type\n",
+      "\n",
+      "       BrkCmn\tBrick Common\n",
+      "       BrkFace\tBrick Face\n",
+      "       CBlock\tCinder Block\n",
+      "       None\tNone\n",
+      "       Stone\tStone\n",
+      "\t\n",
+      "MasVnrArea: Masonry veneer area in square feet\n",
+      "\n",
+      "ExterQual: Evaluates the quality of the material on the exterior \n",
+      "\t\t\n",
+      "       Ex\tExcellent\n",
+      "       Gd\tGood\n",
+      "       TA\tAverage/Typical\n",
+      "       Fa\tFair\n",
+      "       Po\tPoor\n",
+      "\t\t\n",
+      "ExterCond: Evaluates the present condition of the material on the exterior\n",
+      "\t\t\n",
+      "       Ex\tExcellent\n",
+      "       Gd\tGood\n",
+      "       TA\tAverage/Typical\n",
+      "       Fa\tFair\n",
+      "       Po\tPoor\n",
+      "\t\t\n",
+      "Foundation: Type of foundation\n",
+      "\t\t\n",
+      "       BrkTil\tBrick & Tile\n",
+      "       CBlock\tCinder Block\n",
+      "       PConc\tPoured Contrete\t\n",
+      "       Slab\tSlab\n",
+      "       Stone\tStone\n",
+      "       Wood\tWood\n",
+      "\t\t\n",
+      "BsmtQual: Evaluates the height of the basement\n",
+      "\n",
+      "       Ex\tExcellent (100+ inches)\t\n",
+      "       Gd\tGood (90-99 inches)\n",
+      "       TA\tTypical (80-89 inches)\n",
+      "       Fa\tFair (70-79 inches)\n",
+      "       Po\tPoor (<70 inches\n",
+      "       NA\tNo Basement\n",
+      "\t\t\n",
+      "BsmtCond: Evaluates the general condition of the basement\n",
+      "\n",
+      "       Ex\tExcellent\n",
+      "       Gd\tGood\n",
+      "       TA\tTypical - slight dampness allowed\n",
+      "       Fa\tFair - dampness or some cracking or settling\n",
+      "       Po\tPoor - Severe cracking, settling, or wetness\n",
+      "       NA\tNo Basement\n",
+      "\t\n",
+      "BsmtExposure: Refers to walkout or garden level walls\n",
+      "\n",
+      "       Gd\tGood Exposure\n",
+      "       Av\tAverage Exposure (split levels or foyers typically score average or above)\t\n",
+      "       Mn\tMimimum Exposure\n",
+      "       No\tNo Exposure\n",
+      "       NA\tNo Basement\n",
+      "\t\n",
+      "BsmtFinType1: Rating of basement finished area\n",
+      "\n",
+      "       GLQ\tGood Living Quarters\n",
+      "       ALQ\tAverage Living Quarters\n",
+      "       BLQ\tBelow Average Living Quarters\t\n",
+      "       Rec\tAverage Rec Room\n",
+      "       LwQ\tLow Quality\n",
+      "       Unf\tUnfinshed\n",
+      "       NA\tNo Basement\n",
+      "\t\t\n",
+      "BsmtFinSF1: Type 1 finished square feet\n",
+      "\n",
+      "BsmtFinType2: Rating of basement finished area (if multiple types)\n",
+      "\n",
+      "       GLQ\tGood Living Quarters\n",
+      "       ALQ\tAverage Living Quarters\n",
+      "       BLQ\tBelow Average Living Quarters\t\n",
+      "       Rec\tAverage Rec Room\n",
+      "       LwQ\tLow Quality\n",
+      "       Unf\tUnfinshed\n",
+      "       NA\tNo Basement\n",
+      "\n",
+      "BsmtFinSF2: Type 2 finished square feet\n",
+      "\n",
+      "BsmtUnfSF: Unfinished square feet of basement area\n",
+      "\n",
+      "TotalBsmtSF: Total square feet of basement area\n",
+      "\n",
+      "Heating: Type of heating\n",
+      "\t\t\n",
+      "       Floor\tFloor Furnace\n",
+      "       GasA\tGas forced warm air furnace\n",
+      "       GasW\tGas hot water or steam heat\n",
+      "       Grav\tGravity furnace\t\n",
+      "       OthW\tHot water or steam heat other than gas\n",
+      "       Wall\tWall furnace\n",
+      "\t\t\n",
+      "HeatingQC: Heating quality and condition\n",
+      "\n",
+      "       Ex\tExcellent\n",
+      "       Gd\tGood\n",
+      "       TA\tAverage/Typical\n",
+      "       Fa\tFair\n",
+      "       Po\tPoor\n",
+      "\t\t\n",
+      "CentralAir: Central air conditioning\n",
+      "\n",
+      "       N\tNo\n",
+      "       Y\tYes\n",
+      "\t\t\n",
+      "Electrical: Electrical system\n",
+      "\n",
+      "       SBrkr\tStandard Circuit Breakers & Romex\n",
+      "       FuseA\tFuse Box over 60 AMP and all Romex wiring (Average)\t\n",
+      "       FuseF\t60 AMP Fuse Box and mostly Romex wiring (Fair)\n",
+      "       FuseP\t60 AMP Fuse Box and mostly knob & tube wiring (poor)\n",
+      "       Mix\tMixed\n",
+      "\t\t\n",
+      "1stFlrSF: First Floor square feet\n",
+      " \n",
+      "2ndFlrSF: Second floor square feet\n",
+      "\n",
+      "LowQualFinSF: Low quality finished square feet (all floors)\n",
+      "\n",
+      "GrLivArea: Above grade (ground) living area square feet\n",
+      "\n",
+      "BsmtFullBath: Basement full bathrooms\n",
+      "\n",
+      "BsmtHalfBath: Basement half bathrooms\n",
+      "\n",
+      "FullBath: Full bathrooms above grade\n",
+      "\n",
+      "HalfBath: Half baths above grade\n",
+      "\n",
+      "Bedroom: Bedrooms above grade (does NOT include basement bedrooms)\n",
+      "\n",
+      "Kitchen: Kitchens above grade\n",
+      "\n",
+      "KitchenQual: Kitchen quality\n",
+      "\n",
+      "       Ex\tExcellent\n",
+      "       Gd\tGood\n",
+      "       TA\tTypical/Average\n",
+      "       Fa\tFair\n",
+      "       Po\tPoor\n",
+      "       \t\n",
+      "TotRmsAbvGrd: Total rooms above grade (does not include bathrooms)\n",
+      "\n",
+      "Functional: Home functionality (Assume typical unless deductions are warranted)\n",
+      "\n",
+      "       Typ\tTypical Functionality\n",
+      "       Min1\tMinor Deductions 1\n",
+      "       Min2\tMinor Deductions 2\n",
+      "       Mod\tModerate Deductions\n",
+      "       Maj1\tMajor Deductions 1\n",
+      "       Maj2\tMajor Deductions 2\n",
+      "       Sev\tSeverely Damaged\n",
+      "       Sal\tSalvage only\n",
+      "\t\t\n",
+      "Fireplaces: Number of fireplaces\n",
+      "\n",
+      "FireplaceQu: Fireplace quality\n",
+      "\n",
+      "       Ex\tExcellent - Exceptional Masonry Fireplace\n",
+      "       Gd\tGood - Masonry Fireplace in main level\n",
+      "       TA\tAverage - Prefabricated Fireplace in main living area or Masonry Fireplace in basement\n",
+      "       Fa\tFair - Prefabricated Fireplace in basement\n",
+      "       Po\tPoor - Ben Franklin Stove\n",
+      "       NA\tNo Fireplace\n",
+      "\t\t\n",
+      "GarageType: Garage location\n",
+      "\t\t\n",
+      "       2Types\tMore than one type of garage\n",
+      "       Attchd\tAttached to home\n",
+      "       Basment\tBasement Garage\n",
+      "       BuiltIn\tBuilt-In (Garage part of house - typically has room above garage)\n",
+      "       CarPort\tCar Port\n",
+      "       Detchd\tDetached from home\n",
+      "       NA\tNo Garage\n",
+      "\t\t\n",
+      "GarageYrBlt: Year garage was built\n",
+      "\t\t\n",
+      "GarageFinish: Interior finish of the garage\n",
+      "\n",
+      "       Fin\tFinished\n",
+      "       RFn\tRough Finished\t\n",
+      "       Unf\tUnfinished\n",
+      "       NA\tNo Garage\n",
+      "\t\t\n",
+      "GarageCars: Size of garage in car capacity\n",
+      "\n",
+      "GarageArea: Size of garage in square feet\n",
+      "\n",
+      "GarageQual: Garage quality\n",
+      "\n",
+      "       Ex\tExcellent\n",
+      "       Gd\tGood\n",
+      "       TA\tTypical/Average\n",
+      "       Fa\tFair\n",
+      "       Po\tPoor\n",
+      "       NA\tNo Garage\n",
+      "\t\t\n",
+      "GarageCond: Garage condition\n",
+      "\n",
+      "       Ex\tExcellent\n",
+      "       Gd\tGood\n",
+      "       TA\tTypical/Average\n",
+      "       Fa\tFair\n",
+      "       Po\tPoor\n",
+      "       NA\tNo Garage\n",
+      "\t\t\n",
+      "PavedDrive: Paved driveway\n",
+      "\n",
+      "       Y\tPaved \n",
+      "       P\tPartial Pavement\n",
+      "       N\tDirt/Gravel\n",
+      "\t\t\n",
+      "WoodDeckSF: Wood deck area in square feet\n",
+      "\n",
+      "OpenPorchSF: Open porch area in square feet\n",
+      "\n",
+      "EnclosedPorch: Enclosed porch area in square feet\n",
+      "\n",
+      "3SsnPorch: Three season porch area in square feet\n",
+      "\n",
+      "ScreenPorch: Screen porch area in square feet\n",
+      "\n",
+      "PoolArea: Pool area in square feet\n",
+      "\n",
+      "PoolQC: Pool quality\n",
+      "\t\t\n",
+      "       Ex\tExcellent\n",
+      "       Gd\tGood\n",
+      "       TA\tAverage/Typical\n",
+      "       Fa\tFair\n",
+      "       NA\tNo Pool\n",
+      "\t\t\n",
+      "Fence: Fence quality\n",
+      "\t\t\n",
+      "       GdPrv\tGood Privacy\n",
+      "       MnPrv\tMinimum Privacy\n",
+      "       GdWo\tGood Wood\n",
+      "       MnWw\tMinimum Wood/Wire\n",
+      "       NA\tNo Fence\n",
+      "\t\n",
+      "MiscFeature: Miscellaneous feature not covered in other categories\n",
+      "\t\t\n",
+      "       Elev\tElevator\n",
+      "       Gar2\t2nd Garage (if not described in garage section)\n",
+      "       Othr\tOther\n",
+      "       Shed\tShed (over 100 SF)\n",
+      "       TenC\tTennis Court\n",
+      "       NA\tNone\n",
+      "\t\t\n",
+      "MiscVal: $Value of miscellaneous feature\n",
+      "\n",
+      "MoSold: Month Sold (MM)\n",
+      "\n",
+      "YrSold: Year Sold (YYYY)\n",
+      "\n",
+      "SaleType: Type of sale\n",
+      "\t\t\n",
+      "       WD \tWarranty Deed - Conventional\n",
+      "       CWD\tWarranty Deed - Cash\n",
+      "       VWD\tWarranty Deed - VA Loan\n",
+      "       New\tHome just constructed and sold\n",
+      "       COD\tCourt Officer Deed/Estate\n",
+      "       Con\tContract 15% Down payment regular terms\n",
+      "       ConLw\tContract Low Down payment and low interest\n",
+      "       ConLI\tContract Low Interest\n",
+      "       ConLD\tContract Low Down\n",
+      "       Oth\tOther\n",
+      "\t\t\n",
+      "SaleCondition: Condition of sale\n",
+      "\n",
+      "       Normal\tNormal Sale\n",
+      "       Abnorml\tAbnormal Sale -  trade, foreclosure, short sale\n",
+      "       AdjLand\tAdjoining Land Purchase\n",
+      "       Alloca\tAllocation - two linked properties with separate deeds, typically condo with a garage unit\t\n",
+      "       Family\tSale between family members\n",
+      "       Partial\tHome was not completed when last assessed (associated with New Homes)\n",
+      "\n"
+     ]
+    }
+   ],
+   "source": [
+    "# read more about the data\n",
+    "with open('./data_description.txt', 'r') as file:\n",
+    "    description = file.read()\n",
+    "    \n",
+    "print(description)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Data Understanding\n",
+    "\n",
+    "### Gathering basic information about our data"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 6,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<div>\n",
+       "<style scoped>\n",
+       "    .dataframe tbody tr th:only-of-type {\n",
+       "        vertical-align: middle;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe tbody tr th {\n",
+       "        vertical-align: top;\n",
+       "    }\n",
+       "\n",
+       "    .dataframe thead th {\n",
+       "        text-align: right;\n",
+       "    }\n",
+       "</style>\n",
+       "<table border=\"1\" class=\"dataframe\">\n",
+       "  <thead>\n",
+       "    <tr style=\"text-align: right;\">\n",
+       "      <th></th>\n",
+       "      <th>MS SubClass</th>\n",
+       "      <th>MS Zoning</th>\n",
+       "      <th>Lot Frontage</th>\n",
+       "      <th>Lot Area</th>\n",
+       "      <th>Street</th>\n",
+       "      <th>Alley</th>\n",
+       "      <th>Lot Shape</th>\n",
+       "      <th>Land Contour</th>\n",
+       "      <th>Utilities</th>\n",
+       "      <th>Lot Config</th>\n",
+       "      <th>...</th>\n",
+       "      <th>Screen Porch</th>\n",
+       "      <th>Pool Area</th>\n",
+       "      <th>Pool QC</th>\n",
+       "      <th>Fence</th>\n",
+       "      <th>Misc Feature</th>\n",
+       "      <th>Misc Val</th>\n",
+       "      <th>Mo Sold</th>\n",
+       "      <th>Yr Sold</th>\n",
+       "      <th>Sale Type</th>\n",
+       "      <th>Sale Condition</th>\n",
+       "    </tr>\n",
+       "  </thead>\n",
+       "  <tbody>\n",
+       "    <tr>\n",
+       "      <th>844</th>\n",
+       "      <td>20</td>\n",
+       "      <td>RL</td>\n",
+       "      <td>68.0</td>\n",
+       "      <td>9017</td>\n",
+       "      <td>Pave</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>IR1</td>\n",
+       "      <td>Lvl</td>\n",
+       "      <td>AllPub</td>\n",
+       "      <td>Inside</td>\n",
+       "      <td>...</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0</td>\n",
+       "      <td>9</td>\n",
+       "      <td>2009</td>\n",
+       "      <td>WD</td>\n",
+       "      <td>Normal</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2730</th>\n",
+       "      <td>150</td>\n",
+       "      <td>RL</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>1700</td>\n",
+       "      <td>Pave</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>Reg</td>\n",
+       "      <td>HLS</td>\n",
+       "      <td>AllPub</td>\n",
+       "      <td>Inside</td>\n",
+       "      <td>...</td>\n",
+       "      <td>200</td>\n",
+       "      <td>0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0</td>\n",
+       "      <td>4</td>\n",
+       "      <td>2006</td>\n",
+       "      <td>WD</td>\n",
+       "      <td>Normal</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2793</th>\n",
+       "      <td>20</td>\n",
+       "      <td>RL</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>14781</td>\n",
+       "      <td>Pave</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>IR2</td>\n",
+       "      <td>Lvl</td>\n",
+       "      <td>AllPub</td>\n",
+       "      <td>CulDSac</td>\n",
+       "      <td>...</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0</td>\n",
+       "      <td>8</td>\n",
+       "      <td>2006</td>\n",
+       "      <td>WD</td>\n",
+       "      <td>Normal</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>1187</th>\n",
+       "      <td>20</td>\n",
+       "      <td>RL</td>\n",
+       "      <td>85.0</td>\n",
+       "      <td>11050</td>\n",
+       "      <td>Pave</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>Reg</td>\n",
+       "      <td>Lvl</td>\n",
+       "      <td>AllPub</td>\n",
+       "      <td>Inside</td>\n",
+       "      <td>...</td>\n",
+       "      <td>192</td>\n",
+       "      <td>0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>GdWo</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0</td>\n",
+       "      <td>10</td>\n",
+       "      <td>2008</td>\n",
+       "      <td>WD</td>\n",
+       "      <td>Family</td>\n",
+       "    </tr>\n",
+       "    <tr>\n",
+       "      <th>2770</th>\n",
+       "      <td>60</td>\n",
+       "      <td>RL</td>\n",
+       "      <td>65.0</td>\n",
+       "      <td>12438</td>\n",
+       "      <td>Pave</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>IR1</td>\n",
+       "      <td>Lvl</td>\n",
+       "      <td>AllPub</td>\n",
+       "      <td>Inside</td>\n",
+       "      <td>...</td>\n",
+       "      <td>0</td>\n",
+       "      <td>0</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>NaN</td>\n",
+       "      <td>0</td>\n",
+       "      <td>8</td>\n",
+       "      <td>2006</td>\n",
+       "      <td>WD</td>\n",
+       "      <td>Normal</td>\n",
+       "    </tr>\n",
+       "  </tbody>\n",
+       "</table>\n",
+       "<p>5 rows × 79 columns</p>\n",
+       "</div>"
+      ],
+      "text/plain": [
+       "      MS SubClass MS Zoning  Lot Frontage  Lot Area Street Alley Lot Shape  \\\n",
+       "844            20        RL          68.0      9017   Pave   NaN       IR1   \n",
+       "2730          150        RL           NaN      1700   Pave   NaN       Reg   \n",
+       "2793           20        RL           NaN     14781   Pave   NaN       IR2   \n",
+       "1187           20        RL          85.0     11050   Pave   NaN       Reg   \n",
+       "2770           60        RL          65.0     12438   Pave   NaN       IR1   \n",
+       "\n",
+       "     Land Contour Utilities Lot Config  ... Screen Porch Pool Area Pool QC  \\\n",
+       "844           Lvl    AllPub     Inside  ...            0         0     NaN   \n",
+       "2730          HLS    AllPub     Inside  ...          200         0     NaN   \n",
+       "2793          Lvl    AllPub    CulDSac  ...            0         0     NaN   \n",
+       "1187          Lvl    AllPub     Inside  ...          192         0     NaN   \n",
+       "2770          Lvl    AllPub     Inside  ...            0         0     NaN   \n",
+       "\n",
+       "     Fence Misc Feature Misc Val  Mo Sold  Yr Sold  Sale Type  Sale Condition  \n",
+       "844    NaN          NaN        0        9     2009        WD           Normal  \n",
+       "2730   NaN          NaN        0        4     2006        WD           Normal  \n",
+       "2793   NaN          NaN        0        8     2006        WD           Normal  \n",
+       "1187  GdWo          NaN        0       10     2008        WD           Family  \n",
+       "2770   NaN          NaN        0        8     2006        WD           Normal  \n",
+       "\n",
+       "[5 rows x 79 columns]"
+      ]
+     },
+     "execution_count": 6,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "# displaying first rows of data set\n",
+    "X_train.head(5)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "<class 'pandas.core.frame.DataFrame'>\n",
+      "Int64Index: 2197 entries, 844 to 860\n",
+      "Data columns (total 79 columns):\n",
+      " #   Column           Non-Null Count  Dtype  \n",
+      "---  ------           --------------  -----  \n",
+      " 0   MS SubClass      2197 non-null   int64  \n",
+      " 1   MS Zoning        2197 non-null   object \n",
+      " 2   Lot Frontage     1828 non-null   float64\n",
+      " 3   Lot Area         2197 non-null   int64  \n",
+      " 4   Street           2197 non-null   object \n",
+      " 5   Alley            154 non-null    object \n",
+      " 6   Lot Shape        2197 non-null   object \n",
+      " 7   Land Contour     2197 non-null   object \n",
+      " 8   Utilities        2197 non-null   object \n",
+      " 9   Lot Config       2197 non-null   object \n",
+      " 10  Land Slope       2197 non-null   object \n",
+      " 11  Neighborhood     2197 non-null   object \n",
+      " 12  Condition 1      2197 non-null   object \n",
+      " 13  Condition 2      2197 non-null   object \n",
+      " 14  Bldg Type        2197 non-null   object \n",
+      " 15  House Style      2197 non-null   object \n",
+      " 16  Overall Qual     2197 non-null   int64  \n",
+      " 17  Overall Cond     2197 non-null   int64  \n",
+      " 18  Year Built       2197 non-null   int64  \n",
+      " 19  Year Remod/Add   2197 non-null   int64  \n",
+      " 20  Roof Style       2197 non-null   object \n",
+      " 21  Roof Matl        2197 non-null   object \n",
+      " 22  Exterior 1st     2197 non-null   object \n",
+      " 23  Exterior 2nd     2197 non-null   object \n",
+      " 24  Mas Vnr Type     2180 non-null   object \n",
+      " 25  Mas Vnr Area     2180 non-null   float64\n",
+      " 26  Exter Qual       2197 non-null   object \n",
+      " 27  Exter Cond       2197 non-null   object \n",
+      " 28  Foundation       2197 non-null   object \n",
+      " 29  Bsmt Qual        2139 non-null   object \n",
+      " 30  Bsmt Cond        2139 non-null   object \n",
+      " 31  Bsmt Exposure    2137 non-null   object \n",
+      " 32  BsmtFin Type 1   2139 non-null   object \n",
+      " 33  BsmtFin SF 1     2196 non-null   float64\n",
+      " 34  BsmtFin Type 2   2138 non-null   object \n",
+      " 35  BsmtFin SF 2     2196 non-null   float64\n",
+      " 36  Bsmt Unf SF      2196 non-null   float64\n",
+      " 37  Total Bsmt SF    2196 non-null   float64\n",
+      " 38  Heating          2197 non-null   object \n",
+      " 39  Heating QC       2197 non-null   object \n",
+      " 40  Central Air      2197 non-null   object \n",
+      " 41  Electrical       2197 non-null   object \n",
+      " 42  1st Flr SF       2197 non-null   int64  \n",
+      " 43  2nd Flr SF       2197 non-null   int64  \n",
+      " 44  Low Qual Fin SF  2197 non-null   int64  \n",
+      " 45  Gr Liv Area      2197 non-null   int64  \n",
+      " 46  Bsmt Full Bath   2196 non-null   float64\n",
+      " 47  Bsmt Half Bath   2196 non-null   float64\n",
+      " 48  Full Bath        2197 non-null   int64  \n",
+      " 49  Half Bath        2197 non-null   int64  \n",
+      " 50  Bedroom AbvGr    2197 non-null   int64  \n",
+      " 51  Kitchen AbvGr    2197 non-null   int64  \n",
+      " 52  Kitchen Qual     2197 non-null   object \n",
+      " 53  TotRms AbvGrd    2197 non-null   int64  \n",
+      " 54  Functional       2197 non-null   object \n",
+      " 55  Fireplaces       2197 non-null   int64  \n",
+      " 56  Fireplace Qu     1117 non-null   object \n",
+      " 57  Garage Type      2085 non-null   object \n",
+      " 58  Garage Yr Blt    2083 non-null   float64\n",
+      " 59  Garage Finish    2083 non-null   object \n",
+      " 60  Garage Cars      2196 non-null   float64\n",
+      " 61  Garage Area      2196 non-null   float64\n",
+      " 62  Garage Qual      2083 non-null   object \n",
+      " 63  Garage Cond      2083 non-null   object \n",
+      " 64  Paved Drive      2197 non-null   object \n",
+      " 65  Wood Deck SF     2197 non-null   int64  \n",
+      " 66  Open Porch SF    2197 non-null   int64  \n",
+      " 67  Enclosed Porch   2197 non-null   int64  \n",
+      " 68  3Ssn Porch       2197 non-null   int64  \n",
+      " 69  Screen Porch     2197 non-null   int64  \n",
+      " 70  Pool Area        2197 non-null   int64  \n",
+      " 71  Pool QC          10 non-null     object \n",
+      " 72  Fence            437 non-null    object \n",
+      " 73  Misc Feature     89 non-null     object \n",
+      " 74  Misc Val         2197 non-null   int64  \n",
+      " 75  Mo Sold          2197 non-null   int64  \n",
+      " 76  Yr Sold          2197 non-null   int64  \n",
+      " 77  Sale Type        2197 non-null   object \n",
+      " 78  Sale Condition   2197 non-null   object \n",
+      "dtypes: float64(11), int64(25), object(43)\n",
+      "memory usage: 1.3+ MB\n"
+     ]
+    }
+   ],
+   "source": [
+    "# get information about data types\n",
+    "X_train.info()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "The X_train data size is : (2197, 79) \n",
+      "The X_test data size is : (733, 79) \n"
+     ]
+    }
+   ],
+   "source": [
+    "#check the numbers of samples and features\n",
+    "print(\"The X_train data size is : {} \".format(X_train.shape))\n",
+    "print(\"The X_test data size is : {} \".format(X_test.shape))"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Plotting target variable\n",
+    "\n",
+    "Since we are interested in forecasting the house price, we will first have a look at the distribution of the house prices themselves. The first plot shows the distribution of the sales price, while the second plot shows the probability of our data against the quantiles of a specified theoretical distribution. If our target variable followed a (perfect) normal distribution, all blue points would be on the red line. For more information on the second plot, click [here](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.probplot.html)."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 9,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "C:\\Users\\di872\\Anaconda3\\envs\\bda\\lib\\site-packages\\seaborn\\distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).\n",
+      "  warnings.warn(msg, FutureWarning)\n"
+     ]
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEWCAYAAABollyxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABHAUlEQVR4nO3dd3xUVfr48c8z6b1TkgAJvYQiXWmKil0RUFB3QWzrLu66q7tr/a5ld133p2tlXSyrawFEBcSKIoqASK/SpAUIoYSQBJJM6pzfH3MTAqRMkplMyvN+veaVmTvnnvvMnckzZ84991wxxqCUUqr5snk7AKWUUp6liV4ppZo5TfRKKdXMaaJXSqlmThO9Uko1c5rolVKqmdNErxqEiKSKyCUeqHeEiOx0d72VbKc8fhF5WETecGPduSLS0br/PxH5mxvrniEi/+eu+lTTpIleuUxEhovIChHJEZETIvKDiAxy8zaSRMRYyS/XSrAPVlXeGLPMGNPNnTHUxBjzlDHmjprKicgSEamxnDEm1Bizt75xicitIrL8rLrvNsb8tb51q6bN19sBqKZBRMKBz4BfAx8A/sAIoNBDm4w0xpSIyPnAYhHZaIxZeFZMvsaYEg9t3+Oaevyq6dAWvXJVVwBjzGxjTKkxxm6M+doYsxlARDqJyLcikikix0VkpohEVlaRiNhE5EER2WOV/0BEoisra4z5EdgKpIjIhSKSJiIPiMgR4K2yZRXqbici80Qkw6p7eoXnbhOR7SKSJSJfiUiHql6siPxSRPZbdTxy1nOPi8h71v1AEXnPKpctImtEpLWI/B3nF+F065fJdKu8EZFpIrIL2FVhWecKm4gVkUUickpEvi+Ls8KvHd8KsSwRkTtEpAcwAzjf2l629fwZXUEicqeI7LZ+kX0iIvEVnjMicreI7LJey79FRKraR6rp0ESvXPUzUCoib4vIFSISddbzAvwDiAd6AO2Ax6uo67fAWGCUVT4L+PfZhcRpGNAL2GAtbgNEAx2Au84q74PzV8d+IAlIAN63nrsOeBgYB8QBy4DZlQUnIj2B/wC/tOKLARKreC1TgAjr9cYAdwN2Y8wj1jbusbpm7qmwzlhgCNCzijpvAf4KxAIbgZlVlCtnjNlubftHa3uRlbyu0TjfoxuBtjj30/tnFbsaGAT0scpdVtO2VePX6BK9iLwpIsdE5Cc31ddeRL62WnLbRCTJHfW2NMaYk8BwwACvAxlWi7C19fxuY8wiY0yhMSYDeA5nIq/M3cAjxpg0Y0whzi+ECRVbqsBx4ATwBvCgMWaxtdwBPGZtx35WvYNxJuY/GWPyjDEFxpiyPuu7gX8YY7Zb3SVPAf2qaNVPAD4zxiy14vs/a7uVKcaZ4Dtbv3TWWfuqOv8wxpyoJP4yn1fY9iM4W+ntaqjTFbcAbxpj1lt1P2TVnVShzNPGmGxjzAHgO6CfG7arvKzRJXrgf8DlbqzvHeAZY0wPnIngmBvrblGsJHmrMSYRSMGZVF8AsLor3heRQyJyEngPZ4u0Mh2A+Vb3QDawHSgFWlcoE2uMiTLG9DDGvFRheYYxpqCKetsB+6vo9+4AvFhhmydw/gpJqKRsPHCwwuvOAzKr2Oa7wFfA+yKSLiL/T0T8qihb5qCrzxtjcq1Y46su7rJ4nK34inVncuY+OFLhfj4Q6obtKi9rdIneGLMU5we7nNX/u1BE1onIMhHp7kpd1k9wX2PMIqvuXGNMvvujbnmMMTtwfimnWIuewtna722MCQd+gTORVuYgcIUxJrLCLdAYc8iVTVfz3EGg/Vm/DCo+96uzthlkjFlRSdnDOL80ABCRYJyt9nODMabYGPOEMaYncAHOro/JNcRa05SxFbcdirOrKh3IsxYHVyjbphb1puP8wiurOwTn63Jlv6smrNEl+iq8BvzWGDMA+CPwiovrdQWyrYNzG0TkGasfV9WSiHQXkftFJNF63A64CVhpFQkDcoEcEUkA/lRNdTOAv1c4yBhn9aHX12qcSfppEQmxDpQOq7DNh0Skl7XNCBG5oYp6PgKuFudwUn/gSar4XxGRi0Skt/W5OomzK6esm+co0LEOr+PKCtv+K7DSGHPQ6hI7BPxCRHxE5DagU4X1jgKJ1nqVmQ1MFZF+IhKA88t5lTEmtQ4xqiak0Sd6q0VzAfChiGwEXsV5IAkRGSciP1Vy+8pa3RfnyIc/4jzA1BG4taFfQzNxCucBxFUikoczwf8E3G89/wTQH8gBPgfmVVPXi8AnwNcicsqqa0h9AzTGlALXAJ2BA0AaMNF6bj7wT5xdLCet2K+oop6twDRgFs4vjiyrrsq0wfnFcBJnF9T3OLtzwPk6J4hzlM9LVaxfmVnAYzh/2Q7A+euozJ04v0QzcR6krviL5FucI5SOiMjxSl7XNziPN8y1XlcnYFIt4lJNlDTGC49YB4c+M8akiHP89k5jTNs61DMU+KcxZpT1+JfAUGPMNLcGrJRSjVijb9FbIxj2lf3Mtobc9XVx9TVApIjEWY9HA9s8EKZSSjVajS7Ri8hs4EegmzhPjrkd57Cw20VkE86fpi7151o/5f+I88zKLTgPDr7umciVUqpxapRdN0oppdyn0bXolVJKuVejmtQsNjbWJCUleTsMpZRqMtatW3fcGBNXXZlGleiTkpJYu3att8NQSqkmQ0T211RGu26UUqqZ00SvlFLNnCZ6pZRq5hpVH31TV1xcTFpaGgUFVU2uqJRSdRMYGEhiYiJ+fjVNjnouTfRulJaWRlhYGElJSeiFeZRS7mKMITMzk7S0NJKTk2u9vnbduFFBQQExMTGa5JVSbiUixMTE1Lm3QBO9m2mSV0p5Qn1yiyZ6pZRq5jTRK6VUM6cHY5uwzNzCc5bFhAZ4IRKlVGOmLfpmSES4//77yx8/++yzPP744w0aQ2hozdeUfvzxx3n22WcBuOCCC6osl52dzSuvuHr1SLDb7YwaNYrS0lKX16mt2267jVatWpGSknLG8p07d9KvX7/yW3h4OC+88AIAL774IikpKfTq1at8GcDChQvp1q0bnTt35umnnz6jvuzsbCZMmED37t3p0aMHP/74Y7XLXYnj+eefp1evXqSkpHDTTTd5ZDhwxfe2IVT1euuyH6pbp6r3vaLq9m9N6xcVFTFy5EhKSiq7vn09GGMazW3AgAGmKdu2bVuDbu/4qYJzbsYYExAQYJKSkkxGRoYxxphnnnnGPPbYYy7V6XA4TGlpab1jCwkJqbHMY489Zp555pkay+3bt8/06tXL5W1Pnz7dvPDCCy6Xr4vvv//erFu3rtq4SkpKTOvWrU1qaqrZsmWL6dWrl8nLyzPFxcXm4osvNrt27TIlJSWmY8eOZs+ePaawsND06dPHbN26tbyOyZMnm9dff90YY0xhYaHJysqqdnlNcaSlpZmkpCSTn59vjDHmhhtuMG+99Vb9dkYlXH1vPaHi661quav74ey6anrfa6rXlc/N448/bt57771Kn6ssxwBrTQ25VVv0zZCvry933XUXzz///DnPPffcc6SkpJCSklLeSklNTaVbt25MnjyZlJQUli1bRvfu3bn11lvp2rUrt9xyC9988w3Dhg2jS5curF69ury+sWPHMmDAAHr16sVrr71WY2x///vf6dq1K8OHD2fnzp3ly8t+AeTl5XHVVVfRt29fUlJSmDNnDg8++CB79uyhX79+/OlP1V1z3GnmzJlcd93pa9NceOGF7NixA4DMzMxqW2OuGjlyJNHR0dWWWbx4MZ06daJDhw5s376dIUOGEBwcjK+vL6NGjWLevHmsXr2azp0707FjR/z9/Zk0aRILFiwAICcnh6VLl3L77bcD4O/vT2RkZJXLXYkDoKSkBLvdTklJCfn5+cTHx1e6XmXvbWpqKj169ODOO++kV69ejBkzBrvdDlT93p5t06ZNjBw5kp49e2Kz2RAR/vKXv1S7L2vj7Ndb1XJX9sPZ67jyvldXryvrjx07lpkzZ7r0Wl2lffQe8sSnW9mWftKtdfaMD+exa3q5VHbatGn06dOHP//5z+XL1q1bx1tvvcWqVaswxjBkyBBGjRpFVFQUu3bt4u2332bo0KGkpqaye/duPvzwQ958800GDRrErFmzWL58OZ988glPPfUUH3/8MQBvvvkm0dHR2O12Bg0axPjx44mJiak0pnXr1vH++++zceNGSkpK6N+/PwMGDDijzMKFC4mPj+fzzz8HnMluyJAh/PTTT2zcuLHG111UVMTevXupON317t276dq1KwCbN2+md+/eZ6wzYsQITp06dU5dzz77LJdcckmN26zK+++/z0033QRASkoKjzzyCJmZmQQFBfHFF18wcOBADh06RLt27crXSUxMZNWqVQDs27ePuLg4pk6dyqZNmxgwYAAvvvhilctDQkJqjCMhIYE//vGPtG/fnqCgIMaMGcOYMWMqXa+y9xZg165dzJ49m9dff50bb7yRuXPn0qNHjxrfW3CeazJx4kTeeecdBg8ezP/93/9RUFDAE088UV6mvu9Hxddb3/1QVV1Vqc3+rUpKSgpr1qyp1To10RZ9MxUeHs7kyZN56aWXypctX76c66+/npCQEEJDQxk3bhzLli0DoEOHDgwdOrS8bHJyMr1798Zms9GrVy8uvvhiRITevXuTmppaXu6ll16ib9++DB06lIMHD7Jr164qY1q2bBnXX389wcHBhIeHc+21155Tpnfv3ixatIgHHniAZcuWERERUavXffz48TNat/v37ychIQGbzflR37x5M3369Dknro0bN55zq0+SLyoq4pNPPuGGG24AoEePHjzwwAOMGTOGyy+/nH79+uHj41NtHSUlJaxfv55f//rXbNiwgZCQEJ5++ukql7sSR1ZWFgsWLGDfvn2kp6eTl5fHe++9V+m6Vb23ycnJ9OvXD4ABAwaQmprq0nsL8M0339C/f38GDx4MQJ8+fThx4sQZY8Tr836c/Xrrsx+qqqs6tdm/VfHx8cHf37/SL7u60ha9h7ja8vak3//+9/Tv35+pU6fWWPbs1mBAwOnROzabrfyxzWYrP1C0ZMkSvvnmG3788UeCg4O58MIL631gr2vXrqxfv54vvviCRx99lIsvvpjJkye7vH5QUNAZMWzatOmMxL5u3TomTpx4xjqeaNF/+eWX9O/fn9atW5cvu/3228u7Wx5++GESExNJSEjg4MGD5WXS0tJISEgAnK37xMREhgwZAsCECRN4+umnmTZtWqXLXYnjm2++ITk5mbg453Uqxo0bx4oVK/jFL35xxnrVvbcVPxs+Pj7lXTeu+Omnn874RbV+/Xr69+9/Rpn6vB+V7ffKlruyH6qqqzqu7t+aFBYWEhgYWKt1qqMt+mYsOjqaG2+8kf/+97+A8x/o448/Jj8/n7y8PObPn8+IESPqXH9OTg5RUVEEBwezY8cOVq5cWW35kSNH8vHHH2O32zl16hSffvrpOWXS09MJDg7mF7/4BX/6059Yv349YWFhLrduoqKiKC0tLU9KGzduLL+/a9cuFixYcE7XjSda9LNnzz7nJ/+xY8cAOHDgAPPmzePmm29m0KBB7Nq1i3379lFUVMT7779f3hpu06YN7dq1K+/vXrx4MT179qxyuStxtG/fnpUrV5Kfn48xhsWLF9OjR49z1vPEewsQExPD5s2bAfj555+ZN28ekyZNOqNMfd6PyvZ7XfdDVXVVx9X9W53MzExiY2PrNHlZVTTRN3P3338/x48fB6B///7ceuutDB48mCFDhnDHHXdw3nnn1bnuyy+/nJKSEnr06MGDDz54RtdPZfr378/EiRPp27cvV1xxBYMGDTqnzJYtWxg8eDD9+vXjiSee4NFHHyUmJoZhw4aRkpJSfjD2yiuvJD09vdLtjBkzhuXLlwPOFr3D4aBv3748+eST9OzZk7fffrvOr7nMTTfdxPnnn8/OnTtJTEws/zIF5wHlRYsWMW7cuDPWGT9+PD179uSaa67h3//+N5GRkfj6+jJ9+nQuu+wyevTowY033kivXqd/Db788svccsst9OnTh40bN/Lwww9Xu7zivqksjiFDhjBhwgT69+9P7969cTgc3HXXXee8Pk+8t2X7LTc3l5SUFO666y5mz55d5TGd2qpqv9dlP1RVV1Xve9k+r6ne6j43Zb777juuuuoqt+yTMuIcndM4DBw40DTlSwlu37691t/e9aEnTFVu/fr1PP/887z77rt06dKl/FeBUk3BuHHjePrpp8sHEFRUWY4RkXXGmIHV1aktetXs9O/fn4suuoicnBxERJO8ajKKiooYO3ZspUm+PvRgrGqWbrvtNsDZD6xUU+Hv71+rwQeu0ha9Uko1cx5N9CLyBxHZKiI/ichsEXHfeCGllFIu8ViiF5EE4HfAQGNMCuADTKp+raavMR3cVko1H/XJLZ7uuvEFgkTEFwgGKh8P10wEBgaSmZmpyV4p5VbGumZsXU+i8tjBWGPMIRF5FjgA2IGvjTFfn11ORO4C7gLnyQZNWWJiImlpaWRkZDTI9vIKz53K9FiAHl9XqjkKDAwkMTGxTut6LCuISBRwHZAMZAMfisgvjDFnTPxgjHkNeA2c4+g9FU9D8PPzq9MV2utq1qoD5yy7uV/T/rJUSrmfJ7tuLgH2GWMyjDHFwDyg6qtLKKWU8ghPJvoDwFARCRbn1HQXA9s9uD2llFKV8FiiN8asAj4C1gNbrG3VfGUKpZRSbuXRI3fGmMeAxzy5jZagsr54pZRylZ4Zq5RSzZwmeqWUauY00SulVDOnib4ZKHUYShwOb4ehlGqk9DTKJu5wjp3Zqw/gMDB5aAdvh6OUaoS0Rd+EHT1ZwH+W7KGwxEFRiYMZS/ew66j7rhyvlGoeNNE3YT/uyQRg2oWd+c2FnTAGpn+328tRKaUaG030TVRhSSkb07LpkxhBeJAfkcH+DEqK5rPNh0nLyvd2eEqpRkQTfRO1+WAORSUOBidFly8b1jkWAd5Yts97gSmlGh1N9E3U+gNZtA4PoF10cPmyiCA/ru7Tlnnr0ygu1VE4SiknTfRNUFGJg7QsO91ah+OcL+60q/rEc7KghJV7M70UnVKqsdFE3wSlZeVTagxJscHnPDeiSyzB/j58tfWIFyJTSjVGmuiboNTMPAToEB1yznOBfj6M6hrH11uP4nA06eu4KKXcRBN9E7Q/M5/W4YEE+ftU+vxlvdpw7FQhGw5mN2xgSqlGSc+MbWJKHYb9J/I5r11kpc/PWnUAe1EpAvz7u91c0qM1ADcP0UsMKtVSaYu+iTlysoCiEgdJsed225QJ8vchMSqI3cdyGzAypVRjpYm+iUnPsgPQLurcA7EVdYoLJS0rn4Li0oYISynViGmib2KOnCrA39dGZLBfteU6tQrFYWDf8bwGikwp1Vhpom9ijuYU0DosANtZ4+fP1j46GD8fYU+Gdt8o1dJpom9ijp4soHV4YI3l/HxsJMWEaD+9UkoTfVOSW1hCXlGpS4keoGNsCMdOFZJbWOLhyJRSjZkm+ibk6MkCAJcTfdnInP2Z2k+vVEumib4JOZ3oA1wqnxAVhK9NSNUDskq1aJrom5CjJwsI9vchNMC189x8bTbaRQeTmqnz0yvVkmmib0KOniykdXjgOTNWVicpJoT0bDunCoo9GJlSqjHTRN+EZJwqJC7MtW6bMsmxIRhg/YFsj8SklGr8NNE3EflFJdiLS4kN8a/Veu2jg7EJrN6n89Mr1VJpom8iMnOLAIgJrV2L3t/XRnxkEKv3nfBEWEqpJkATfRORmedM9NG1bNEDJMeEsOlgjs57o1QLpYm+icjMK0SoW6JPig2hqNTBJp2fXqkWSRN9E3Eit4iIID/8fGr/lnWIcc50uSZVu2+Uaok00TcRmXlFRIfWvjUPEOzvS/c2YazSfnqlWiRN9E1EZm4hMSG1OxBb0aCkaNbvz6Kk1OHGqJRSTYEm+iagoLiUvKJSYurQP19mcHI0eUWlbDt80o2RKaWaAk30TcDpoZX1S/SADrNUqgXSRN8EZOYVAnUbcVOmdXggHWKCtZ9eqRZIE30TkJXvnKemPokeYHBSNGtTT+BwGHeEpZRqIjTRNwFZ+UUE+/sQ4OtTr3oGJ0eTlV/Mbr28oFItikcTvYhEishHIrJDRLaLyPme3F5zlZ1fRFRw/VrzcLqfXrtvlGpZPN2ifxFYaIzpDvQFtnt4e81SVl4xUcF+9a6nfXQwrcMDWKOJXqkWxWOJXkQigJHAfwGMMUXGmGxPba+5MsaQ5aYWvYgwODmG1ftOYIz20yvVUniyRZ8MZABvicgGEXlDREI8uL1mKSO3kBKHIbKeB2LLDE6K4sjJAg6esLulPqVU4+fJRO8L9Af+Y4w5D8gDHjy7kIjcJSJrRWRtRkaGB8NpmtKynAnZHV03AIOTYwBYrfPeKNVieDLRpwFpxphV1uOPcCb+MxhjXjPGDDTGDIyLi/NgOE3T6UTvnhZ9l1ahRAT56YVIlGpBXLvKdB0YY46IyEER6WaM2QlcDGzz1Paaq7Qs54W9I+vZop+16kD5/fiIQBZvP1av+pRSTYenR938FpgpIpuBfsBTHt5es5OWZXfLGPqKkmJDyMwr4tipArfVqZRqvDzWogcwxmwEBnpyG81dWpbdbd02ZTrEOI+Jr0vN4orebd1at1Kq8dEzYxu5tKx8tx2ILRMfGYivTVi7P8ut9SqlGidN9I2YMYZDWXYi3dyi97XZSIwK0kSvVAvh0a4bVT8n8oooLHHU+0BsZTrEhLBsVwb/+yEVf9/T3/c3D2nv9m0ppbxLW/SNWHq282BpZJAHEn10MA4Dadn5bq9bKdW4aKJvxA5lO8fQR7i56wagvXXB8P2ZmuiVau400Tdi6Vai90SLPtjfl1ZhAezPzHN73UqpxsWlRC8ivT0diDpXeradQD8bwf7uG0NfUYeYYA6cyMehE5wp1ay52qJ/RURWi8hvrFkpVQNIz7ETHxmEiHik/g7RIRQUOzh2qtAj9SulGgeXEr0xZgRwC9AOWCcis0TkUo9GpjiUXUBCZJDH6u9Q3k+v3TdKNWcu99EbY3YBjwIPAKOAl6wrR43zVHAtXXq2nfgIzyX66BB/QgN89YCsUs2cq330fUTkeZxXiBoNXGOM6WHdf96D8bVYhSWlZJwqJN6DLXoRoUNMsLbolWrmXG3RvwysB/oaY6YZY9YDGGPScbbylZsdyXGOoY+PDPTodjpEB5OVX8zJgmKPbkcp5T2uJvqrgFnGGDuAiNhEJBjAGPOup4JrycrG0Huyjx5OT3Cm3TdKNV+uJvpvgIoZJ9hapjyk7KxYT3bdlNXv5yPafaNUM+bqXDeBxpjcsgfGmNyyFr3yjLKTpdpEeKbrpriokKyMw/j4+BIf6qMteqWaMVcTfZ6I9C/rmxeRAYBeXdqD0rPtxIYGEOjnvpOljMPB1tXfs37JF+zfuQXKTpQSG47YTmwJnogZfLPHxu0rpbzD1UT/e+BDEUkHBGgDTPRUUMrZR5/gxgOxx9MP8Ombz5O2extRrdoy/OpJxCV0wOFwsHPnz2xbs4yP//M3Dq7+kn/+858kJCS4bdtKKe9yKdEbY9aISHegm7VopzFGh2l4UHq2na6tw9xS154ta5n7yt+x+fhy7e3302fYJYjt9OGZLgMvZGP4+fQq3sHPP3zE+PHjeeGFFxg6dKhbtq+U8q7aTGo2COgD9AduEpHJnglJGWNIzy5wy4HYnetXMPv5/yMytg13PvFv+o4Yc0aSBwjy96FVZDBF7Yfw4YcfEhcXx69+9St++OGHem9fKeV9rp4w9S7wLDAcZ8IfhF4L1mOy84uxF5fWO9Hv27aRua88RXxSV6Y8/C8iYlpVWbZ9dAgHTuTTrl173nnnHTp27Mi0adPYsGFDvWJQSnmfq330A4Gexug0h542a9WB8hE3e47lMmvVgTrVk5VxhI/+/Vei2yRw0/1/IyCo+kFSHaKDWZN6gj0ZuXRpHcWbb77JpEmT+N3vfscHH3xA27Z6EXGlmipXu25+wnkAVjWA7Hzn4Y+6XkKwpKiID19+EgxM/N3jBIXU3NdfdiGSddZ1ZKOiopg+fTp2u53f//73FBfrIRmlmipXE30ssE1EvhKRT8pungysJcu2FwHU+aLg3819i6MH9jD2Vw8Q1cq1lnhMiD/B/j7liR6gS5cu/PWvf2Xz5s3MmDGjTrEopbzP1a6bxz0ZhDpTTn4xvjYhpA4XHNm/cwsrv57PgNFX06XvYJfXExHaRwez7kDWGcuvuOIKlixZwowZMxg1ahR9+vSpdUxKKe9ydT7674FUwM+6vwbnJGfKA7LtxUQE+dX6xKWS4iI+e/N5omLbcMmNd9R6ux2ig9mbkceJvKIzlj/66KPExMTw+OOPU1JSUut6lVLe5eqomzuBj4BXrUUJwMceiqnFy84vqlP//I9ffsSJo4e4YvI9+AfWfsROe2uCsw1nterDwsJ45JFH2L59OzNnzqx1vUop73K1j34aMAw4CeUXIal6rJ6qlxx7MZFBteufz8k8xvLP3qf7wOF06l23ka8JkUH42oT1ZyV6gDFjxjBy5EimT5/OiRMn6lS/Uso7XE30hcaY8t/zIuIL6FBLDygpdXCqoISIWrboly6YiXE4uHTSXXXetr+vjV7x4WcckC0jIjzwwAPY7XamT59e520opRqeq4n+exF5GAiyrhX7IfCp58JquXLsxRgguhYjbo4fPsimZV8z4KKriIxtXa/t9+8QxaaDORSXOs55rmPHjkyaNIkPPviAPXv21Gs7SqmG42qifxDIALYAvwK+QK8s5RFZZWPoQ1xv0X8//x18/f0Zfs1N9d7+gA5R2ItL2XH4VKXPT5s2jYCAAF555ZV6b0sp1TBcHXXjMMa8boy5wRgzwbqvXTcekJ3v7CGLcrGP/nDqLratXsqQMeMICY+s9/YHdIgCYN3+yvvho6KiuPnmm/nyyy+1Va9UE+HqqJt9IrL37Jung2uJsvKLsAmEB7nWol8y720CQ0I5/4oJbtl+24gg2kYEsu5AdpVlpk6dSmBgIK+++mqVZZRSjYerXTcDOT2Z2QjgJeA9TwXVkmXlFxMe5IePreYx9Gm7t7F78xqGXTWRwOAQt8XQv0MU6ys5IFsmOjqam266ic8//5x9+/a5bbtKKc9wtesms8LtkDHmBZwXDFdulpVfRJSLB2J/+PwDgkLCGHjxtW6NYUD7KA5l2zmSU1Blmdtuuw1/f3+dGkGpJsDVrpv+FW4DReRuXJ8+QdVCdn4xUS4MrTx++CA/b1zJwIuvwT/AvdeVLeunr2w8fZmYmBgmTZrEZ599Rmpqqlu3r5RyL1e7bv5V4fYPYABwo6eCaqmKShyctBe7NJnZyoVz8fX1Y9Al17k9jp7x4QT62SodT1/Rbbfdhq+vL2+//bbbY1BKuY+rlxK8yNOBKDicY8dAjS363OwTbP7hG/oOv9QtI23O5udjo09iZI2JPi4ujquvvpoFCxZw7733Ehnp/liUUvXnUqIXkfuqe94Y85x7wmnZDmU5LzhSU4t+9TcLKC0tYejl7hlpU5kBHaJ4Y9leCopLCfSrehbNyZMnM2/ePD788EPuvPNOj8WjlKq72oy6+TXOycwSgLtxXjs2zLopN0izEn11B2OLCuys++4zuve/gJg2CR6LZUD7KIpLDRsPZldbrlu3bgwdOpSZM2fqxUmUaqRcTfSJQH9jzP3GmPtx9tG3N8Y8YYx5oroVRcRHRDaIyGf1Dba5S8vKR4CIasbQb1q+iIK8XLeNm6/KoORobAIr92bWWHby5MkcPXqUr7/+2qMxKaXqxtVE3xqoOEl5kbXMFfcC22sTVEuVlmUnopox9MYY1n77KW2Tu5LYuadHY4kI8qNXfAQr9tSc6EeNGkWHDh145513PBqTUqpuXE307wCrReRxEXkcWAXUONRCRBJxjrd/o84RtiBpWfZq++f379jM8fQDDBx9dYPEc36nGDYeyKaguLTacjabjV/+8pds3ryZDRs2NEhsSinXuXrC1N+BqUCWdZtqjHnKhVVfAP4MnDsVokVE7hKRtSKyNiMjw5Vwmq20rPxqR9ysXfwpQSFh9BpyYYPEc37HGIpKHTWOvgEYO3YsoaGhzJ49uwEiU0rVhqsteoBg4KQx5kUgTUSSqyssIlcDx4wx66orZ4x5zRgz0BgzMC4urhbhNC/FpQ6OnCyoskV/KiuTHet/oN+Iy/DzD2iQmAYlR+NjE350ofsmJCSE6667joULF5KVVfMXg1Kq4bh6ZuxjwAPAQ9YiP2qe62YYcK2IpALvA6NFROfHqcKRnAIcpuox9OuXfIExhv6jG27midAAX3onRPCjCwdkAW688UaKi4v5+OOPPRuYUqpWXG3RXw9cC+QBGGPSqWFYpTHmIWNMojEmCZgEfGuM+UU9Ym3WDmblAxAVcm6LvrSkhPXff0Hn3gOJbhXfoHGd3ymGTQezySus+aLgXbt2ZcCAAcyZMweHo8reOqVUA3M10RdZ888bABFx31SJCqh+DP3ODT+Sm32CgaOvaeiwOL9jDCUOw1oX+unB2arfv38/q1at8nBkSilXuZroPxCRV4FIEbkT+AZ43dWNGGOWGGMaZqhIE5WWZbfmoT/3ZOWNSxcSHh1Hpz51u+h3fQxMisLPR1ix57hL5S+77DIiIiKYM2eOhyNTSrmqxkQvIgLMAT4C5gLdgL8YY172cGwtSlpWPq3DA/G1nfmW5GQeY89P6+g7/FJstqqnIvCUYH9f+iZGstKFA7IAAQEBjBs3jsWLF3Ps2DEPR6eUckWNc90YY4yIfGGM6Q0saoCYWqS0LDuJUUHnLN/8wzdgDH1HXNYgccxadeCcZWGBvnz/cwYnC4oJD6x5CuUbb7yRt956i3nz5nH33Xd7IkylVC242nWzXkQGeTSSFu5Qlp3EqOAzlhmHg43LviKpRz+i4tp4KTLoGBeKw+Byqz4pKYnBgwczb948PSirVCPgaqIfAqwUkT0isllEtojIZk8G1pKUjaFPiDyzRb9/52ayM47Qb2TDtOar0iEmmBB/H5b87PoJbePGjePgwYOsXbvWg5EppVxRbaIXkfbW3cuAjsBo4BrgauuvcoNDWXZKHYYOMWe26Dcs/YqAoBC6DxjmpcicfG02Lugcy/c7M3AOvqrZmDFjCAkJYd68eR6OTilVk5pa9B8DGGP2A88ZY/ZXvHk8uhYiNTMPgKTY06NWC/Jy2bF2Ob3PH91gZ8JW56JurTiUbWfXsVyXygcFBXHVVVfx1VdfkZvr2jpKKc+oKdFXnEaxoycDacn2ZzpPlqrYov9p1XeUFBd5vdumzIXdnNNTLNnp+kia8ePHU1BQwBdffOGpsJRSLqgp0Zsq7is3Ss3MI9jfh7jQ0y33jcu+pnW7jrTp0NmLkZ0WHxlEt9ZhfLvD9UTfu3dvOnfuzNy5cz0YmVKqJjUl+r4iclJETgF9rPsnReSUiJxsiABbgv2Z+XSICcF5ygIcPbiXw/t+pt/Iy8qXNQaX9GzFmtQsTuQV1VwYEBHGjx/P5s2b2bVrl4ejU0pVpdpEb4zxMcaEG2PCjDG+1v2yx+ENFWRzl5qZR1KFbpuNS7/Cx9ePlPNHezGqMznH1wulDsPfPttW6Xj7ylxzzTX4+voyf/58zwaolKpSbaYpVh5Q6jAcPOFs0QOUFBexZcViuvU/n+DQxvVdGh8RSFSwH1vTXf8xFxMTw0UXXcSCBQv0mrJKeYkmei9Lz7ZTXGrKW/Q/b1iJPe8U/UZe7uXIziUi9IqPYHdGbo1Xnapo3LhxnDhxgu+//96D0SmlqqKJ3stOj7hxtujLJjBL7tnPi1FVrVd8OKUOw84jp1xeZ/jw4cTFxemYeqW8RBO9l50eQx9Meno6e7aup++IMV6ZwMwV7aKDCQvw5af0HJfX8fX1ZezYsSxdulQnOlPKCzTRe1nq8TwCfG20Dgt0XpnJGPoOH+PtsKpkE6FnfDg/Hz2Fvcj17pvrr7+e0tJSFixY4MHolFKV0UTvZXuP55EcGwIY5s2bR3JP705g5ope8REUlxqW7nJ97pvk5GQGDBjAvHnzXJ5GQSnlHprovWxPRi6dWoWyevVqDh061GDTEddHcmwIQX4+LPzpSK3WGz9+PKmpqWzYsMFDkSmlKqOJ3osKiks5eCKfTnGhzJ07l/DwcK9PYOYKH5uz+2bRtqO16r4ZM2YMwcHBeqasUg1ME70X7c/Mx2GgbZCDr7/+mquuuqpRTGDmin7tIsktLGHR9qMurxMSEsKVV17JwoULycvL82B0SqmKNNF70Z4M56yO6Zt/oKioiPHjx3s5Itclx4bQNiKQ+evTarXe+PHjyc/P14nOlGpAmui9aI815e8Pi7+ge/fu9OzZ08sRuc4mwnX9Eli66zgZpwpdXq9v37506tRJu2+UakCa6L1oT0YurR2ZbN+2jfHjxzeqCcxcMa5/AqUOw6eb0l1eR0SYMGECmzZt0onOlGogmui9aE9GHoFpa/Dz8+Oqq67ydji11rV1GL3iw5m/4VCt1rv22mvx8/PTVr1SDUQTvZcYY9h9JIvsHSu59NJLiYqK8nZIdXL9eQlsOZTD7mOuT4kQHR3N6NGj+eSTTygqcm3KY6VU3Wmi95LDOQUU7d9IkT2XCRMmeDucOru2Xzw2gXnra9eqHz9+PFlZWXz33XceikwpVUYTvZfsPHIKn/2riGsTz5AhQ7wdTp21CgtkRJc4Pt5wiFKH62e8XnDBBbRt21a7b5RqAJrovWTVlp34HN/D+PHjsdma5tswa9UBZq06QHxkEOk5BTz56VaX1/Xx8WHs2LEsX76c9HTXD+YqpWqvaWaYZmDZ15+DCDfd2HS7bcr0aBtGSIAvq/edqNV648aNwxijV59SysM00XtBSUkJ+9d/R2THvrRq1crb4dSbr83GwA5R7DhyiiM5BS6vl5iYyNChQ5k/fz4Oh8ODESrVsmmi94Jvv1tCaf7JRnkVqboa2CEKA8xZc7BW602YMIFDhw6xcuVKzwSmlNJE7w3vzZ6DCQjnogsv9HYobhMTGkDnVqHMWXOgVgdlL7nkEiIiIvSgrFIepIm+gR09epS1K1dQ0n4QPRMivR2OWw1OiiY9p4Dvf3b9KlIBAQFcc801LFq0iKysLA9Gp1TLpYm+gc2fPx9jHDiSBtG5Vai3w3GrHm3DiQ0NYNaq2nXfjB8/nuLiYj777DMPRaZUy6aJvgE5HA7mzp1LRIeeJHXoQKBf47wubF352ISJgxL5dsdRDlgXPXdF9+7dSUlJ4YMPPtCrTynlAZroG9CPP/5IWloaJe0HkxIf4e1wPGLy+Un42IQ3f9hXq/UmTpzI7t27WbdunYciU6rl0kTfgGbNmkVUdDTHI7rTKz7c2+F4ROvwQK7rl8CcNQfJynN9Hpsrr7ySsLAw3n//fQ9Gp1TL5OvtAFqKQ4cOsWTJEi4bfwvzinxJSYhg1qoD3g7LI+4c0ZGP1qUxc9V+7hndxaV1goODGTt2LO+//z7Hjx8nNjbWw1Eq1XJoi74BzFp1gMdeeANj4ESrAQBsP3zSy1F5Trc2YVzYLY7/rdhPQbHr15SdNGkSxcXFzJs3z4PRKdXyaKJvACXFRWxcupAu/QaTaUKIDPYj2L95/5i6a0RHjucWsmCj67NaduzYkaFDhzJnzhxKS13/glBKVc9jiV5E2onIdyKyTUS2isi9ntpWY7dj3Q/kncxm4OhrOJxjJz4iyNshedz5nWLoFR/Oa0v34qjFCVSTJk0iPT2dpUuXejA6pVoWT7boS4D7jTE9gaHANBFpOhdFdaO1335KVKu2JHTrS2ZuEfGRgd4OyWPKZrScvfogvRMi2JORx0Pzt7i8/ujRo4mLi2P27NkejFKplsVjid4Yc9gYs966fwrYDiR4anuN1Y4dOzj481YGXHQ16ScLMUB8ZPNv0QOkJETQOjyAxduPUVLq2qRlfn5+TJw4kWXLlrF3714PR6hUy9AgffQikgScB6yq5Lm7RGStiKzNyMhoiHAa1Ntvv41fQCD9Rl5G2gk7AIlRwV6OqmHYRLikR2uO5xbW6rqykyZNwt/fn3fffdeD0SnVcng80YtIKDAX+L0x5pyhJsaY14wxA40xA+Pi4jwdToM6duwYn3/+Of2GjyEoJIyDWflEh/gTGtC8D8RW1LNtOIlRQTy36GfsRa4dYI2JieHqq69mwYIFZGdnezZApVoAjyZ6EfHDmeRnGmNa3Ji5WbNmUVJSwuAxYwFIy7KTGNUyum3KiAhXpLTlcE4Bry9zvStmypQp2O12PvzwQw9Gp1TL4MlRNwL8F9hujHnOU9tprOx2O3PmzGH06NFEt07gpL2YHHsx7VpIt01FybEhXJHShv8s2cOhbLtL63Tt2pWhQ4cyc+ZMiouLPRyhUs2bJ1v0w4BfAqNFZKN1u9KD22tUPvnkE7Kzs7n11lsBSMtyTvLV0lr0ZR6+sgci8Mj8LS5PXDZlyhSOHj3KV1995eHolGrePDnqZrkxRowxfYwx/azbF57aXmPicDh4++23SUlJYcAA55mwB7Ps2KTljLg5W7voYP44phtLdmawYKNrFwMfOXIkSUlJ/O9//9NZLZWqBz0z1gOWLFnCvn37mDJlCs4eLDhwIp+2EUH4+bTcXT7lgiTOax/JE59uJTO3sMbyNpuNqVOnsnXrVlasWNEAESrVPLXcrOMhxhheffVVEhMTufxy5zVhSxwO0rLy6RDT8vrnK/KxCf9vfB/yCkt54tNtLq0zduxYWrduzauvvurh6JRqvjTRu9mKFSvYvHkzd955J76+zmGUh7MLKC41dIgJ8XJ03lN2xuya1CxGdo3lk03pLs2D4+/vz9SpU1mzZg3r169vgEiVan400bvZjBkzaNOmDWPHji1flpqZB9DiW/RlRnVtRYfoYB6et4W9Gbk1lr/hhhuIiorSVr1SdaSJ3o3WrFnD2rVruf322/H39y9fvj/TeaJUeKCfF6NrPJyXHGyHv6+NabM21DiVcXBwMJMnT2bp0qVs3769gaJUqvnQRO9Gr776KjExMUyYMKF8mTGG1Mw8krQ1f4bIYH+eu7Ef2w+f5MnPau6vv/nmmwkNDeW1115rgOiUal400bvJpk2b+OGHH5g6dSqBgadnp9yTkUd+USkdoltu/3xVDucUMLJLHLNWHeD+DzZWe8Wt8PBwbrnlFhYuXKiteqVqSRO9GxhjeO6554iOjmbSpElnPPfj3kwAkuM00Vfm0p6t6RwXyscb09lvHcuoym233UZERAQvvPBCwwSnVDOhid4Nli9fzurVq/nNb35DSMiZCX3F7uNEBPkRE+Jfxdotm49NmDS4HRFBfsxcdYD0aqZICA8P54477mDp0qWsWbOmAaNUqmnTRF9PDoeD5557jnbt2nHDDTec9Zzhx72ZdIoLLT9xSp0r2N+XXw7tQHGpg7veXVvtLJe33HILcXFxPP/883q2rFIu0kRfT59//jk7duzg3nvvPWOkDcC2wyfJzi+mk3bb1Kh1eCATB7Zja/pJ/vTRpiqTeFBQENOmTWPDhg0sWbKkYYNUqonSRF8PRUVFvPjii/To0YMrrrjinOd/3OPsn+8UF9rQoTVJ3duG8+fLuvPZ5sNM/3Z3leXGjRtH+/btef755ykpKWnACJVqmjTR18PMmTM5dOgQ9913Hzbbubty+e7jdIwLITxIx8+76u5RHRl3XgL/WvQzc9ZUPgrHz8+P++67j127djFnzpwGjlCppkcTfR0dPXqU6dOnM2rUKIYNG3bO8/aiUlbuzeTCrq28EF3TJSI8Pb4PI7vG8dC8LXy19Uil5caMGcPQoUN58cUXyczMbOAolWpaNNHX0dNPP01paSmPPPJIpQdaV+w5TmGJg9HdNdHXlr+vjRm/6E+fxEh+O3tDeRdYRSLCo48+it1u57nnWtx1bZSqlZZz8VI3WrFiBQsXLuSee+6hXbt2lZb5dscxgv19GJQcxYET+Q0cYdNV8aSpq3u35VC2nSlvruatqYMY1jn2jLKrjvsx6NLrmTfvQyJ6jiSxcw8Abh7SvkFjVqqx0xZ9LRUVFfHXv/6V9u3bc8cdd1RaxhjDdzuOMbxzLAG+Pg0cYfMRHODLHcOTiQrxY+pba/hk07kXLBlx7c2ERcbw5bvTcZS6dvFxpVoaTfS19Nprr5Gamsqjjz5KQEBApWV2HDlFek6Bdtu4QVigH3eO6EjfdhH8bvYG/vHldopKHOXPBwQFM+bmuzmyfzcrvtQLiStVGU30tbB582ZmzJjBtddey4gRI6os9+VPR7AJXNyjdQNG13wF+/sy846h3DykPa9+v5drpy9nS1pO+fM9B4+k5+CRfD//XY4c2OPFSJVqnDTRu8hut/PAAw/QqlUrHn300SrLGWP4fHM6Q5JjiAurvMWvas/f18ZT1/fmv1MGkpVfxNhXfuCrrUfKW/dX/PIegkLCWPD6MxQVFXk5WqUaF030Lnr22WdJTU3lqaeeIiwsrMpyO46cYk9GHlf1aduA0bUcF/dozdd/GMW48xL4/ucMXlz8M9sPnyQ4LIKrp/6eYwf38corr3g7TKUaFU30Lli6dCmzZs1iypQpDB06tNqyn28+jE3g8pQ2DRRdyxMR5MczN/TlzhEd8fOx8e7K/bzzYyptewyg74gxvP7666xcudLbYSrVaGiir8GBAwf485//TNeuXfnDH/5QbVmHw7Bg0yHO7xRDbKh223hacmwIvx3dhStS2rD7WC4vfbubTpf+kuTkZO677z7S088dpaNUS6SJvhp5eXlMmzYNgOnTp1c5yqbMD3uOc/CEnRsHVj62Xrmfj00Y0SWO31zUmdAAH2auO0qPcfdSXFzMvffeS2FhobdDVMrr9ISpKhhjeOihh9i7dy+vv/56lSdGVfT+6oNEBvtxWS/ttnG36q4+BdAmPJDfXNiZL386zIc/n6D7RVP56dOXefLJJ/nb3/6m00SrFk1b9FV46aWXWLRoEX/605+44IILaix/PLeQr7cdYXz/RAL99CQpb/DzsXFt3wSen9iXvf7JBPa5nHnz5jFjxgxvh6aUV2mLvhL//e9/mTFjBuPHj2fKlCkurfPuj/spLjWEBfjW2PpUnnX9eYl0igvlzrd9Kcg+zksvvVR+zVmlWiJt0Z9l9uzZPPvss1xxxRU88cQTLv3kzy0s4X8rUrm0Z2tahQfWWF55Xp/ESD793Qh6XHMnpW168be//Y1PPvnE22Ep5RXaoq9g7ty5PPnkk1x44YX885//xMfHtS6YWav2k2MvZtpFndmWftLDUaqaVPxFNbZ/ezC/5acPnuGBBx/iVEEJt9w4zovRKdXwtEWP88Drv//9bx599FGGDRvGCy+8gJ+faxcLybEX8+r3exneOZZ+7SI9G6iqNV8fG+MHJfHnJ/4fjtiO/O2xR7jnsX9RWKwToKmWo8W36IuLi3niiSeYO3cuY8eO5cknn3Q5yQO88M3PnMgv4sErunswSlUfIsIdo3tyQZf/MXXaH1j8wRsM2bKHKXf/jmv6JZxz8fbKjrHo1MeqKWvRif7o0aM88MADrFq1it/85jfcc889tRqGt+PISd75cT83D25PSkKEByNV7tCzXQwr5r/Fbx98jO8+m8t//pbGi/1vIjY2lq6tw0iODSE5NoT9mflEh/gTHeKPn4/+6FVNX4tN9N9++y2PPPIIRUVF/OMf/2Ds2LG1Wt9eVMpvZ20gKtiPP47p5pkgldtUbKUPG38nIXHtWTTrP4SvfJle1/2Gk8XBfLb5MDn24jPWiwsLoF1UMAbDkOQYOsWF6Jh81eS0uESflZXFc889x0cffUSPHj3417/+RXJycq3qMMbwlwU/sTsjl3duG0xUiL+HolWeICKcN+py7hx7Iffddx9r3n2KiRMn8ta992L8gnlt6V4y84rIzC3kULadHUdO8sj8LADiIwIZ3iWW4V3iGNYphhid6kI1AWKM8XYM5QYOHGjWrl3rkbpLSkqYM2cOL7/8Mrm5uUyZMoV7770Xf//aJ+nnFv3MS4t38dvRnbn/rNa8jqFvWooKC/juo7dY880nBIWGcfENt9N3+KWI7XSXjTGGE3lF7M7IZfexXPZk5FJQ7JweuVd8OMO7xDKicxwDk6L0ZDnV4ERknTFmYLVlmnuiLyoq4vPPP+eNN95g7969DB06lIcffpguXbrUui5jDM9/s4uXFu/ixoGJ9E2M1J/xzcSRA3v48p3ppO3eRmx8e4ZffRO9hozCVskQW4cxHMqyExLgw7Jdx1l/IIviUkOAr43BydEM7xzL8C6x9GgTjs2mnw/lWS060WdkZPDpp5/y3nvvcfjwYbp3786vf/1rLr300jol5xx7MY/M38Jnmw8zYUAiT4/rzQdr09wSq2ocjMPB1tVLWf7ZbDLSUolq1ZaBF19L7/NHExIeWeV6hSWlpB7PY/exXHYdy+XYKedEaoF+NhIig0iMCmZc/wSSY0NIig0hPND1UV1K1aTFJfqcnByWL1/Op59+yvLlyyktLWXAgAHcddddjBgxok4J3uEwPDx/C19sOUxuYQmX9mzDyC6x2pJvxozDwc8bV/LD5x9waM92bD6+dO03hJ5DRtEpZSCBwSHVrn/SXszujFwOZOZzKNvOkZwCSiv8n4UG+BIR5Ed4kB9hgb4E+/sQ5Oe8Bfr7sP94HoF+PuUjf2JDA7hzZEdPv2zVRLWIRF9YWMg777zD999/z8aNGyktLaV169Zce+21XHfddXTq1KlOseQWlvDF5sO8tSKV7YdP0iY8kHH9E0iMCq5TfappOpaWyqZlX7F5xWLyT+Vg8/GhfdfeJPfsR7suvYhP7opfQPXTXpSUOhjSMYbUzDxSj+dx5GQBOfZitqWfpKDYQYnDQVGJg+JSB8WlhuJS5+OK/5ltIwLpFR9Br/hwUhIiSEkIp014oDY4lPcTvYhcDrwI+ABvGGOerq58XRK9w+Fg1KhRxMXFMXLkSEaNGkWfPn1cnr6gTGFJKbuO5rJq3wm+23GMVfsyKS41dGkVSr92kfRtF4lN/6laLIejlEN7dvDzxlXs2rSKjLRUAGw+PsS2bU9sfHviEtoTG9+B2LbtCI+OIyAouM6JuKTUwYn8Ik7kFZFxqpAAXxs/pZ9kT0YuZf+yMSH+9EqIIMVK/r3iw2kfXfdtqqbJq4leRHyAn4FLgTRgDXCTMWZbVevUtesmLy+PkBDnz2ljDKUOQ4nj9N/iUgcn7cWcLCghx17MSXsxGacKSc+2k55jZ8+xPPZk5FLicO6LuNAAurUJo0fbcJJi9B9HnSs/9yRpu7eRtnsbxw7uIyP9ANnHj0KF/ye/gEDComIJj4ohJDyKgKBgAoNDCQgOITA4hMDgUPwDgvD188PHz9/519cPX18/fP388fHzw2bzQWw2RAQRGyUOOHqqkMOnCjmSU0h6TgHHThXhwPkZ9REhLiyAmFB/IoL88Pe14e9jw8cmFJU4KCp1UFji/MVQVOIgI7eQUut/xeEw+NiEqBB//H1s+PvaCPC1EeBnI9DXhwA/GwG+PgT62fC1OevcdfQUNhFEBJs4h672bReBjwg2m+Bjk9P3Bfx9fcrrDCi772sjwM95P9Dv3GW+NnH7/6AxBodxHlh3GENxqcFeVEpBcSn24lLsRaXkV3hcVOJg2a6M8rziMM6L3gzrFINfhX0V6OdDYFk3nJ/1evxs1mMfj5yA5+1Efz7wuDHmMuvxQwDGmH9UtU5dE33/vy4it7Ck/APrqkA/G/GRQXSIDqZnfDg92oaTetx5VqRStVVcWMDxI2lkHk7jVFYGp7IyOZl1nFNZmeSfyqEgP5eC/DwcpSWeCcD6MhARDAJW50/Zf8S5qbLm5Fm+rlXd2f9ddcseriZtqV3xSmqvND5v91ZX8np8gsLYunpZ3apzIdF78oSpBOBghcdpwJCzC4nIXcBd1sNcEdnpwZjOFrsTjjfg9pqiWHQfVUf3T/V0/1SvfP/U41dLh5oKeP3MWGPMa8Br3ti2iKyt6ZuwpdN9VD3dP9XT/VO9hto/npyx6RBQ8UKridYypZRSDciTiX4N0EVEkkXEH5gE6CV+lFKqgXms68YYUyIi9wBf4Rxe+aYxZquntldHXukyamJ0H1VP90/1dP9Ur0H2T6M6YUoppZT76VUVlFKqmdNEr5RSzVyLTfQicrmI7BSR3SLyoLfjcScRaSci34nINhHZKiL3WsujRWSRiOyy/kZZy0VEXrL2xWYR6V+hrilW+V0iMqXC8gEissVa5yWxBgFXtY3GSER8RGSDiHxmPU4WkVXWa5pjDSJARAKsx7ut55Mq1PGQtXyniFxWYXmln6+qttEYiUikiHwkIjtEZLuInK+fodNE5A/W/9dPIjJbRAIb7WfIGNPibjgPDu8BOgL+wCagp7fjcuPrawv0t+6H4ZyKoifw/4AHreUPAv+07l8JfInznL2hwCpreTSw1/obZd2Psp5bbZUVa90rrOWVbqMx3oD7gFnAZ9bjD4BJ1v0ZwK+t+78BZlj3JwFzrPs9rc9OAJBsfaZ8qvt8VbWNxngD3gbusO77A5H6GSrfNwnAPiCowvt6a2P9DHl9h3npTTof+KrC44eAh7wdlwdf7wKccw7tBNpay9oCO637r+Kch6is/E7r+ZuAVyssf9Va1hbYUWF5ebmqttHYbjjP61gMjAY+s5LNccD37M8IzpFj51v3fa1ycvbnpqxcVZ+v6rbR2G5AhJXI5Kzl+hky5Yn+IM4vMF/rM3RZY/0MtdSum8qmZ0jwUiweZf1EPA9YBbQ2xhy2njoCtLbuV7U/qlueVslyqtlGY/MC8GfAYT2OAbKNMWUT0VR8TeX7wXo+xypf2/1W3TYam2QgA3jL6t56Q0RC0M8QAMaYQ8CzwAHgMM7PxDoa6WeopSb6FkFEQoG5wO+NMScrPmeczQGPjq1tiG3UhYhcDRwzxqzzdiyNmC/QH/iPMeY8IA9nN0q5Fv4ZigKuw/mFGA+EAJd7NahqtNRE3+ynZxARP5xJfqYxZp61+KiItLWebwscs5ZXtT+qW55YyfLqttGYDAOuFZFU4H2c3TcvApEiUnYSYcXXVL4frOcjgExqv98yq9lGY5MGpBljVlmPP8KZ+PUz5HQJsM8Yk2GMKQbm4fxcNcrPUEtN9M16egZr9MJ/ge3GmOcqPPUJUDbqYQrOvvuy5ZOtkRNDgRzrp/NXwBgRibJaMGNw9gceBk6KyFBrW5PPqquybTQaxpiHjDGJxpgknO/9t8aYW4DvgAlWsbP3T9lrmmCVN9bySdaIimSgC84DjJV+vqx1qtpGo2KMOQIcFJFu1qKLgW3oZ6jMAWCoiARb8Zftn8b5GfL2QQ0vHky5EudolD3AI96Ox82vbTjOn7ubgY3W7Uqc/XuLgV3AN0C0VV6Af1v7YgswsEJdtwG7rdvUCssHAj9Z60zn9FnWlW6jsd6ACzk96qaj9U+2G/gQCLCWB1qPd1vPd6yw/iPWPtiJNWqkus9XVdtojDegH7DW+hx9jHPUjH6GTsf/BLDDeg3v4hw50yg/QzoFglJKNXMttetGKaVaDE30SinVzGmiV0qpZk4TvVJKNXOa6JVSqpnTRK+aHRF5xJpVcLOIbBSRIdWU/Z+ITKjq+Qpl9ll1rReR86so96SIXFLf+JVyN49dSlApb7CS8NU4Z+8sFJFYnLP/1defjDEficgYnBNz9Tlruz7GmL+4YTtKuZ226FVz0xY4bowpBDDGHDfGpIvIX0RkjTV3+Gtlc59XJM750b8XkXUi8lXZafhnWQp0tsqnisg/RWQ9cEPFXwciMkhEVojIJhFZLSJh4pz//hkrjs0i8ivP7QalTtNEr5qbr4F2IvKziLwiIqOs5dONMYOMMSlAEM5WfzlrbqCXgQnGmAHAm8DfK6n/GpxnfpbJNMb0N8a8X6Euf2AOcK8xpi/OeVHswO04pwYYBAwC7rROe1fKo7TrRjUrxphcERkAjAAuAuZYV+c5JSJ/BoJxziG+Ffi0wqrdgBRgkdXY98E5/WyZZ0TkUZxT995eYfmcSsLoBhw2xqyxYjoJYHX79KlwTCAC59wm++r+ipWqmSZ61ewYY0qBJcASEdkC/Apnn/pAY8xBEXkc59wjFQmw1RhT6YFWrD76Spbn1SI0AX5rjPmqFusoVW/adaOaFRHpJiJdKizqh3OyKIDj1hz9lY2y2QnElY2oERE/EelVxzB2Am1FZJBVV5g1rexXwK+tbiJEpKs4L+ahlEdpi141N6HAyyISCZTgnOHvLiAb5yyDR3BOAXsGY0yR1aXykohE4PzfeAFnF0+tWHVNtOIIwtk/fwnwBpAErLcOBmcAY2tbv1K1pbNXKqVUM6ddN0op1cxpoldKqWZOE71SSjVzmuiVUqqZ00SvlFLNnCZ6pZRq5jTRK6VUM/f/AavMz3O9fqT/AAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEWCAYAAACqitpwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAuD0lEQVR4nO3deZzVddn/8dfFALKJC1oKAqOEC3q70JhmZeZKbqi5horKQKl5c5e/vE0rK9PSLJdKkxl2BozQFHcRl+x2BTEV1CBkZHMDWUfZ5vr98fkeOQxnzpzDfM+cZd7Px2Me53w/57tcjHguPru5OyIiInFqk+8ARESk9Ci5iIhI7JRcREQkdkouIiISOyUXERGJnZKLiIjETslFpBnMzM3sS9t47QIzO7aRz75hZu+kOtfMrjGz6m2LOKv4jjKzRbl+jpQmJRdpdaIv6k/NbI2ZfWBmY8ysS77jSubuz7n7Po18dqO7VwKYWXmU4Npuy3PM7CIz2xT9LlaZ2WtmdvI23GeMmf16W2KQ0qTkIq3VKe7eBegPVAA/bXjCtn5hF6EXot/FjsBIYLKZ7ZTfkKTYKblIq+bui4FHgQPg82auy81sLjA3KhtqZvPMbLmZTTWz7g1uc6KZzTezj83sd2bWJrquj5k9ZWbLos9qzGzHBtceamZzzOwTMxttZh2iaxttkjKzX5jZhOjwH9Hriqj28c0ozv9KOv8LZlZnZrs28buoB0YBHYE+KZ67n5k9Y2YrzGy2mZ0alQ8DBgFXRTE8mO450joouUirZmY9gROBWUnFpwGHAf3M7GjgN8DZwO5ALXBPg9ucTqj99AcGApckbh9d2x3YD+gJ/KLBtYOAEwhf5nuTogbVhCOj1x3dvYu7PxvFd37SOecB0939o3Q3impqlcAaosSa9Fk74EHgCeALwBVAjZnt4+4jgBrg5iiGU7L8M0gJUnKR1up+M1sB/BN4Frgx6bPfuPtyd/+U8OU/yt1fdfd1wE+Ar5pZedL5N0XnvwfcRvgyx93nufs0d18XfbH/Afhmgzj+5O4L3X05cEPi2mYaC5xnZhYdXwCMT3P+4dHv4v3o+ae7+8qG5wBdgN+6+3p3fwp4KKZ4pQS1ljZlkYZOc/cnG/lsYdL77sCriQN3X2Nmy4AewIIU59dG12BmXwRuB74BbE/4x9wnaZ71+bXN4e4vmVkdcJSZLQW+BExNc8mL7v71Jm7bHVgYNZ0l1BJ+DyJbUc1FZGvJS4UvAXonDsysM9ANWJx0Ts+k972iayDUhhz4L3fvSmiqMrbU2LXbEmuysdHzLgCmuPtnWd63oSVAz0R/UqQXm38PWl5dtqDkIpLeJOBiMzvYzLYjJIyX3H1B0jk/NrOdov6b4cBfo/LtCf0XK82sB/DjFPe/3Mz2MLOdgWuTrs3UR0A9sFeD8gmEvqDzgXFZ3jOVl4A6Qqd9OzM7CjiFzf1PH6SIQVoxJReRNKKms58B9wJLCR3v5zY47QFgJvAa8DBhOC/ALwmd/Cuj8vtSPGIioZN8PvAfIKu5Iu5eR+ir+b9oFNfhUflCQnOeA89lc89GnrOekEy+DXwM3Alc6O5vR6eMJAyAWGFm9zf3eVL8TJuFiZQmMxsFLHH3bEegiTSbOvRFSlA0mu0M4JA8hyKtlJrFREqMmV0PvAn8zt3fzXc80jqpWUxERGKnmouIiMROfS6RXXbZxcvLy/MdhohIUZk5c+bH7r7VunVKLpHy8nJmzJiR7zBERIqKmdWmKlezmIiIxE7JRUREYqfkIiIisVNyERGR2Cm5iIhI7JRcRERaoZoaKC+HNm3Ca01NvPfXUGQRkVampgaGDYO6unBcWxuOAQYNiucZqrmIiLQy1167ObEk1NWF8rgouYiIlIhMm7reey+78m2h5CIiUgISTV21teC+uakrVYLp1Sv1PRor3xZKLiIiJSCbpq4bboBOnbYs69QplMdFyUVEpARk09Q1aBCMGAG9e4NZeB0xIr7OfNBoMRGRktCrV2gKS1WeyqBB8SaThlRzEREpAS3R1JUNJRcRkRLQEk1d2VCzmIhIich1U1c2VHMREZHYKbmIiEjslFxERCR2Si4iIhI7JRcREYmdkouIiMROyUVERGKn5CIiIrFTchERkdgpuYiISOyUXEREJHZKLiIiEjslFxERiZ2Si4iIxE7JRUREYqfkIiIisVNyERGR2Cm5iIhI7JRcREQkdkouIiISOyUXERGJnZKLiIjETslFRERip+QiIlJkamqgvBzatAmvNTX5jmhrbfMdgIiIZK6mBoYNg7q6cFxbG44BBg3KX1wNqeYiIlJErr12c2JJqKsL5YUkp8nFzHY0sylm9raZvWVmXzWznc1smpnNjV53is41M7vDzOaZ2etm1j/pPoOj8+ea2eCk8i+b2RvRNXeYmUXlKZ8hIlLs3nsvu/J8yXXN5XbgMXffFzgIeAu4Gpju7n2B6dExwLeBvtHPMOAuCIkCuA44DPgKcF1SsrgLGJp03YCovLFniIgUtV69sivPl5wlFzPbATgSGAng7uvdfQUwEBgbnTYWOC16PxAY58GLwI5mtjtwAjDN3Ze7+yfANGBA9FlXd3/R3R0Y1+BeqZ4hIlJ0kjvw16yB9u23/LxTJ7jhhryE1qhc1lz2BD4CRpvZLDOrNrPOwBfdfWl0zvvAF6P3PYCFSdcvisrSlS9KUU6aZ2zBzIaZ2Qwzm/HRRx9ty59RRCSnEh34tbXgDsuWhddu3cAMeveGESMKqzMfcptc2gL9gbvc/RBgLQ2ap6Iah+cwhrTPcPcR7l7h7hW77rprLsMQEclYck1l8OCtO/A3bIAuXaC+HhYsKLzEArlNLouARe7+UnQ8hZBsPoiatIheP4w+Xwz0TLp+j6gsXfkeKcpJ8wwRkYLWsKayaVPq8wqtA7+hnCUXd38fWGhm+0RFxwBzgKlAYsTXYOCB6P1U4MJo1NjhwMqoaetx4Hgz2ynqyD8eeDz6bJWZHR6NEruwwb1SPUNEpKClGmqcSqF14DeU60mUVwA1ZtYemA9cTEhok81sCFALnB2d+whwIjAPqIvOxd2Xm9n1wCvReb9y9+XR+8uAMUBH4NHoB+C3jTxDRKSgZVIjKcQO/IYsdElIRUWFz5gxI99hiEgrV14emsQaKisLfSy9eoXEUij9LGY2090rGpZrhr6ISAG54YZQM0nWqROMHVvYHfgNKbmIiBSQQYPC0OLevQt7qHFTlFxERApEYgjyBReE4/Hji6em0pBWRRYRKQDFstpxplRzERHJo0Rt5fzzi2O140yp5iIikicNayupFPpkycYouYiI5EFNTVjapbEZ+AmFPlmyMWoWExFpQTU1sMsuoRmsqcRSDJMlG6PkIiLSQhLNYMuWNX1usQ5BTlCzmIhIC8lk3bBOnYo7qSSo5iIi0kKa6pwvKyuNxAJKLiIiLSZd53xiiZdSSCyg5CIi0mJSrRsGYVfJUqmxJCi5iIi0kFTrhk2YAB9/XFqJBdShLyLSogYNKr1EkopqLiIiOZZY4sUM2rYNr+XlobxUqeYiIpJDDZd4SUycLPaFKZuimouISA6lm9tSzAtTNkXJRUQkh5qa21KsC1M2JavkYmZtzKxrroIRESk1TS08WawLUzalyeRiZhPNrKuZdQbeBOaY2Y9zH5qISPE78cTQgZ9KMS9M2ZRMai793H0VcBrwKLAncEEugxIRKWbJo8Puugvctz6n2BembEomo8XamVk7QnL5k7tvMLMUvyoREclkA7DevWHBghYLKS8yqbncDSwAOgP/MLPewKpcBiUiUmyS92lpauXjUu3ET9ZkzcXd7wDuSCqqNbNv5S4kEZHiUVMD3/serF2b+TWl2omfLJMO/S+a2UgzezQ67gcMznlkIiIFLrFVcTaJxax0O/GTZdIsNgZ4HOgeHf8b+J8cxSMiUhRqauCCC5reqjiZGXz/+6XbiZ8sk+Syi7tPBuoB3H0jkMWvU0SktBx7bOhbSTUKrDG9e8P48XDnnbmLq5BkMlpsrZl1AxzAzA4HVuY0KhGRAnXssTB9eubnt28Po0a1jtpKskySy4+AqUAfM/s/YFfgzJxGJSJSgGpqskss3brB7be3vsQCmY0We9XMvgnsAxjwjrtvyHlkIiIFJNHHkolLL209zV+NaTK5mNmFDYr6mxnuPi5HMYmIFJSaGrjwwsz6WJRYgkyaxQ5Net8BOAZ4FVByEZFWYfhwqK9Pf06HDlBd3TqbwFLJpFnsiuRjM9sRuCdXAYmIFJLLLoNly9Kfc8wx8OSTLRNPsdiW/VzWEhavFBEpaZddFhaeTMesiBNLXR1MmZLdmOoMZdLn8iDRMGRCMuoHTI49EhGRApLpkOPvfz/3scRu1iyoqgqdSatWwcsvw6GHNn1dFjLpc7kl6f1GoNbdF8UahYhIAdl/f5gzp+nziqrzfuVKmDQpJJVXXw2dRGedBZWVUFER++My6XN5NvaniogUqB49YMmSps/r1q0IEos7PP98GGkweXJoBjvoIPjTn+C734WddsrZoxtNLma2ms3NYVt8BLi7a7tjESkZiXksmXY/3H57buNplo8+CmvNVFfDW29Bly5hvZqhQ+HLX258a8wYNdqh7+7bu3vXFD/bZ5NYzKzMzGaZ2UPR8Z5m9pKZzTOzv5pZ+6h8u+h4XvR5edI9fhKVv2NmJySVD4jK5pnZ1UnlKZ8hIpJKtonl0ksLcMhxfT1MmwbnnBOqX1deCTvuCCNHwtKlcPfdofmrBRILZDFazMy+YGa9Ej9ZPGM48FbS8U3Are7+JeATYEhUPgT4JCq/NTovscT/ucD+wADgzihhlQF/Br5NGGRwXnRuumeIiGzloosySywdOsCECQXWHLZ4Mfz619CnDxx/fBi6dvnl8OaboUnskktCzaWFZbKfy6lmNhd4F3iWsCvlo5nc3Mz2AE4CqqNjA44GpkSnjCVsnwwwMDom+vyY6PyBwD3uvs7d3wXmAV+Jfua5+3x3X0+YezOwiWeIiHyupgbatIGNG5s+t18/+PTTAqmxbNwIU6fCKaeEncd+9rOQXCZNCh1Gt94aRiXkUSajxa4HDgeedPdDol0oz8/w/rcBVwHbR8fdgBXRsv0Ai4Ae0fsewEIIy/qb2cro/B7Ai0n3TL5mYYPyw5p4xhbMbBgwDKBXa9gaTkQ+l01TWPfuMHt27mNq0n/+E5ZYHj06NHXtvjtcfXWonfTpk+/otpBJctng7svMrI2ZtXH3p83stqYuMrOTgQ/dfaaZHdXMOHPC3UcAIwAqKirin0UkIgUpk8mRCd27h5anvFm3Dv7+99A5P316qGqddFIYQnziidA2k6/xlpdJVCvMrAvwD6DGzD4kzNJvyteAU83sRMKaZF2B24EdzaxtVLPYA0j8Z1sM9AQWmVlbYAdgWVJ5QvI1qcqXpXmGiLRy2ezHktdlXWbPDgll3DhYvhzKy0PfykUXhQ77Atdon4uZnWVmHQh9HnXAD4HHgP8ApzR1Y3f/ibvv4e7lhA75p9x9EPA0m/eDGQw8EL2fGh0Tff6Uu3tUfm40mmxPoC/wMvAK0DcaGdY+esbU6JrGniEirVRNTfhHfqaJpV+/PCSWtWtDs9cRR8ABB8Cf/xyy4bRpoUns2muLIrFA+prLdwmjsR4HJgGPu/vYNOdn6n+Be8zs18AsYGRUPhIYb2bzgOWEZIG7zzazycAcwgoBl7v7JgAz+0EUXxkwyt1nN/EMEWllsh1mDC3cx+IOM2eGmfOTJsHq1bDffvD734fAd921hQKJl3ma37iZdQVOJ3zRH0yoAUwqxVn7FRUVPmPGjHyHISIxqqkJcwez0b596ObIuU8+gYkTQ1L517+gY8cwR6WyMtRcWmg+SnOZ2Ux332r9mLR9Lu6+ijCUd6yZdSM0Nd1hZju7e89014qI5Nu2LCo5alT8cXzOHZ57LiSUKVPgs8+gf/8wuuC882CHHXL48JaV0TADM9sJOAM4B9iZzXNIREQK0mWXwZo1mZ/fti2MGZOjeSwffghjx4YO+n//G7p2DcOHhwwJyaUEpVtbrAuhSew84BBCx/r1wDOeri1NRCTPshlqDDkaFbZpU+iIr66GBx4IEx+//vXQKX/mmdCpU8wPLCzpai4LCKPD7iR05m9okYhERJqhpia7xBL7svkLF4a2tVGj4L33YJddwj7JlZWw774xPqiwpUsuPd390xaLREQkBpl24MeaVDZsgIceCn0pjz0Wyo47Dm65BQYODKMEWplGk4sSi4gUm0y3J5kwIaa+lblzQ7PXmDGhX6VHD/jpT0N/Snl5DA8oXoW5boCISJZ69IAVK5o+r1+/ZiaWTz+F++4LtZRnn4WysrCAZGUlnHBCwS7H0tL0WxCRotepU/jOb8qOOzZjcuTrr4dayoQJYY5Knz7wm9/A4MFhAUnZQrrRYg+SeidKANz91JxEJCKShWwSyyefZHnz1avhnntCUnn55dB38p3vhB0dv/nNsIikpJSu5nJL9HoGsBswITo+D/ggl0GJiDQlm9n37dplkVjcQyKpqgqJZe3asDfKbbeFB3brtq0htyrpOvSfBTCz3zeY2v+gmWmdFBHJi2znsACsX5/BScuXhyavqqqwi2PnznDuuaEv5bDDimY5lkKRSZ9LZzPby93nQ9ifHuic27BERLa0LeuEQZgg2aj6+tApX1UVOunXrYNDD4URI0Ji2X77NBdLOpkklx8Cz5jZfMCA3sD3chqViEiS/feHOXOyv67RZfOXLt28HMt//hM6ZIYNC8uxHHRQc8MVMkgu7v6YmfUFElNL33b3llgzVESEnXbKbIhxQ1tNkty0KUxwrK6GBx8Mx9/8Jvzyl3DGGWFVYolNk8nFzDoBPwJ6u/tQM+trZvu4+0O5D09EWrNjj40hsSxYsHk5lsWL4QtfgCuvDLWUvfeOMVpJlkmz2GhgJvDV6Hgx8DdAyUVEcqZHD1iyJPvrJkyAQWethylTQ1/KtGnhgwED4I47woTHdu3iDVa2kkly6ePu55jZeQDuXmemYRMikjtlZaGvPRv9+sHse9+GkSPhh2Pho4+gZ0+47jq4+GLo1Ss3wUpKmSSX9WbWkWhCpZn1AdTnIiI50b59donlxKPqePjiKaGWst8/w/Irp54aJjoed1zIVNLiMpleeh1h6f2eZlYDTAeuymlUItLqXHZZmEqyIcPNPfrbLPyyy3l4VvewBMuHH8LNN8OiRXDvvaEZTIklb9LWXMysDZDYhfJwwlDk4e7+cQvEJiKtRKZLuHRlJecxie9ZFYf4qzCqQ9h4a+hQ+MY3NNGxgKRNLu5eb2ZXuftk4OEWiklEWonMZts7X+UFhlLF2UymM3XwXwfC0D+G5Y0zXWdfWlQmfS5Pmtn/A/4KrE0UuvvynEUlIiUtk0mR3fiYCxlHJdX04y1W04WJbc5n6IuVUFGhWkqByyS5nBO9Xp5U5sBe8YcjIqUuXU4w6jmapxhKFafzd9qzgef5Kpcwkid2OJtFK7q0XKDSLJnM0N+zJQIRkdLXWGLpzmIuYgxDGMlevMsydubPXM5IhjCbA+jYEepWtGio0kzZzNDv5e7DoqVgNENfRLLSMLGUsZETeYRKqjmJhymjnukczTXcyP2cxjo6AGHhyZTrg0lBy2aG/hHRsWboi0jGGs6035P5DGEkFzOa7ixlKbtxE//LSIYwnz6fn9emTVj+S4pTJvNc+rj7zcAGCDP0CUOSRUQaVVMTaitLlkB71nEO9zCNY5lPH67mt8zky5zKA/RkIddy4xaJ5ZhjlFiKnWboi0jsEk1g/ZhNJdVcwHh2YRnvUs5PuZ7RXMwSemx13TZtRSwFKZPk0nCG/teAi3IZlIgUr862louYzFCqOIIXWE87/s7pVFPJdI7BUzSYqAms9GQyWmyamb2KZuiLSGPcYeZM/nJoNUuZSFdW8xb78iN+z3gu4GN2bfTSjh2hrq4FY5UW0WhyMbP+DYqWRq+9zKyXu7+au7BEpCisWME15TWctbKaQ3iNC+nIZM6miqE8zxE01T3brp0SS6lKV3P5ffTaAagA/kX4m3IgMIPN+7uISGviDs89x/xrq9n9n3/jRj5jJv25lDuZyHdZxQ4Z3aZfP5g9O8exSt40mlzc/VsAZnYf0N/d34iODwB+0SLRiUjh+PBDGDuWD26o5osr/003ujKai6mmklk0bOhonDrtW4dMOvT3SSQWAHd/08z2y2FMIlIoNm0KMxirquCBB2DjRv7N17mKa/gbZ/EpnbK6nXuO4pSCk0lyecPMqoEJ0fEg4PXchSQiebdwIYweHXZ1fO89PmIXxjKckQzhbbL/t6WSSuuTSXK5CLgUGB4d/wNocpFsESkyGzbAQw9BdTU89hjU1/PWHsfxc25hKqeynu226bZKLK1TU5uFlQGPRv0vt7ZMSCLSoubODTWUMWPggw+o26k7v6+/hlFcwoJFzVu3Voml9Wpqs7BNZlZvZju4+8qWCkpEcuyzz8JWwNXV8MwzYTvgk0/mlKlDefSTE9iUUaNGau3awfr18YUqxSmTv0FrCP0u09hys7D/zllUIpIbb7wROucnTAhDtvbaC268kd2vuYj3H9i92bdXTUUSMlm48j7gZ4S+lplJP2mZWU8ze9rM5pjZbDMbHpXvbGbTzGxu9LpTVG5mdoeZzTOz15MncZrZ4Oj8uWY2OKn8y2b2RnTNHWZhRaPGniHSKq1eHWoohx0GBx4Id98NAwbA9Om0mT8Xu+YnvE/zEou7EotsKZPk8lc2J5S/uvtYdx+bwXUbgSvdvR9h6ZjLzawfcDUw3d37AtOjY4BvA32jn2FEgwbMbGfC+maHAV8BrktKFncBQ5OuGxCVN/YMkdbBHV56CYYOhd13D69r18Jtt8GSJdikidgxR6dc5ysbxxyjpCKpNfo3y8zamtnNwCJgLDAOWGhmN5tZu6Zu7O5LE0vEuPtq4C2gBzAwuh/R62nR+4HAOA9eBHY0s92BE4Bp7r7c3T8BpgEDos+6uvuL7u5RfMn3SvUMkdK2fDnccQccdBAcfjhMmgTnngsvvABvvEHZj4Zju3Rr9mP69QtJRZt4SWPS9bn8Dtge2DNKDphZV+CW6Gd4mmu3YGblwCHAS8AX3T2xTtn7wBej9z2AhUmXLYrK0pUvSlFOmmc0jGsYoZZEr169Mv3jiBQW99ApX10dOunXrYNDD4URI+Ccc7AdusLIeB8n0pR0deKTgaGJxALg7qsIc15OzPQBZtYFuBf4n+j6z0U1jpz+VU33DHcf4e4V7l6x666Nr9oqUpDefx9++1vYe284+mh45JHQ/PXaa5TNfBkbNjQklhgk+lSUWCRT6ZKLR1/MDQs3kWFCiJrP7gVq3P2+qPiDqEmL6PXDqHwx0DPp8j2isnTle6QoT/cMkeK2aVNIIqefDnvsAT/5SdhHePx4Oq5Ygv3pj9jBB1FfH8/j2rVTQpFtky65zDGzCxsWmtn5wNtN3TgauTUSeMvd/5D00VQgMeJrMPBAUvmF0aixw4GVUdPW48DxZrZT1JF/PPB49NkqMzs8etaFDe6V6hkixam2Fn7+cygvh5NOguefhyuvZP+272DPPoNdcD6f0TG2x3XvHpKK5qvItrIUlZPwgVkPwjDkT9k89LgC6Aic7u6LU164+fqvA88BbwCJf0ddQ+h3mQz0AmqBs919eZQg/kQY8VUHXOzuM6J7XRJdC3CDu4+OyiuAMVFMjwJXuLubWbdUz0gXb0VFhc+YMSPdKSIta/16mDo1zEuZNi2UDRjAGY9W8hAns4H2sT9ywgQYNCj220oJM7OZ7l6xVXljySXpwqOB/aPDOe4+PQfx5Z2SixSMt98Oy7GMHQsffQQ9e8KQIfT6xcUsJDcDT7QMvmyrxpJLJtscPwU8lZOoRCSoq4MpU8KIr+eeg7Zt4dRTOfmBoTy68Djqf1GWk8dq73rJlW1fQEhEmm/WrJBQampg5Uro25eruImxGwfz4X0pR9A3m2op0hKUXERa2qpVMHFiSCozZ/IpHZjCmVRTyT/mHklT+85vC9VQpKUpuYi0BPcwS76qCiZPhro6/sWBVPFHahjECuJf/k571Es+KbmI5NLHH8P48cz+UTX7M4fVdGEi51NNJTOoIBe1FM1LkUKg5CISt/p6rqp4iv6zqjmdv7Md61nF4VzCSCZzNmvpEuvjtH+KFCIlF5FmsqjysTtLuJjRDGEkN/Muy9iZu7iUaiqZzQGxP7d7d1icdraZSP4ouYhk4bLL4K67Nh+XsZFTeIRKqjmJhymjnukczTXcyP2cxjo6xB6Dmr2kGCi5iDSiRw9YsiT1Z3synyGM5GJG052lLGU3buJ/GcUl/IcvxRrHpZfCnXfGekuRnFNyEQHat4cNG5o4h3Wcxv0MpYpjmc4m2vAIJ3IplTzCiWykyW2OMqbaiRQ7JRdpdY49FqZnsYjRfsyhkmouZBy7sIx3KeenXM8YLmLxFgtzb7uOHcMkfZFSoeQirYJlOeK3E2s5m8lUUs3XeJ71tON+TqOKoUznmFi2B9YujlLKlFykpNTUwPnnb+vVTn9eZShVfJeJdGU1b7EvV3IL47iQj2nehnJq6pLWRMlFilZZGbFsirUDKxhEDZVUcwivUUdHJnM2VQzleY4g24mOmhkvouQiRaLhEODmc77OPxlKFWfxNzryGa9yCJdyJxP5LqvYIfM7qUYishUlFylY++8Pc+bEe89d+ZALGUcl1ezLO6ykK6O5mGoqmUX/Jq9XIhHJjJKLFJTm9ZmkZtRzHNOopJqBPEB7NvBPvsZgfsIUzqSOzltdo2XpRZpHyUXyLv4mr6AHi7iEUVzCKMqp5WO68UeuoJpK3ma/Lc5VjUQkXkou0uLSzXxvrrZs4GQeopJqBvAYZdTzBMdxFTfzAANZz3aAkolIrim5SE5kO1Gxufowj0qquYgx7MYHLKY7N3INo7iEd31Pjm+5UEQEmjkTTFq1mhrYbrswQbHhT0sklu34jPOYyFN8i3n05eqyW9ht4OHw4IP02FDLz/x63vU9cx+IiGxFNRfJWE0NXHJJ/vcOOYA3GN65msr240Ov+157QeWNMHhwWIdeRPJOyUWa1NJNXKl0YTW/2PevXNm1Cl5+GTa0h1POgKFD4aijwibxIlIwlFxkK7kavZU956RdXuah06rhnnvg7TVh8sttt4Xxyt265TtAEWmEkksrdtll8Je/FN7Iqa/us5znL5sA1dXwxhswsROce26opRx2WParUIpIi1NyaWVqamD4cFi2LN+RBJ+vw+UOzz4LVVVw770wfB0ceijcfXdILF275jtUEcmCkkuJK4Rk0rYtjBkDgwal+PD99+GmsaGWMm9emBo/dChUVsJBB7VwpCISFyWXEpOvZNKhQ8gPKRNIQ5s2weOPhwsefBA2boQjj4TrroPvfCfsnCUiRU3JpQTU1MC110Jtbcs9s0uX0F+TUTJJqK2FUaPCz6JFsOuu8MMfhlrK3nvnLFYRaXlKLkWupgaGDWuZLXLbtIHvfQ/uvDOLi9avh6lTQy3liSdC2QknwO23w8knh83rRaTkKLkUkeQaSllZaF3KpW1KJgnvvBMSytix8NFH0LMn/PznYRZmr16xxyoihUXJJc8SCeO998J37g03hPJE2c47h+Nly8II3MSw4TgTS7duoSKRVRNXKnV1YaRXVRU891zoyT/11NDsdfzxISOKSKug5JJHDZu0amvh4otDEkkssZLcMR/nfJTYEgrAa6+FWsqECbByJfTtCzfdBBdeCLvtFsMDRKTYKLnk0bXXbt1XsmFDvM9I1HZ69w61oliSCcCqVTBpUqilzJwZVrA866xQSznySE10FGnllFzy6L33cnfv2JMJhCz1wguhlvLXv4bMeOCB8Mc/hgfttFOMDxORYqbkkke9esU7fLhTJxgxIuaEAvDxxzB+fEgqc+aEcciDBoXJjhUVqqWIyFa0lGwz1NRAeXkYVVVeHo6zOfeGG0JCSNauXfrRuYnv8UTfeOK1d++YE0t9PTz5ZFh6pUcP+NGPwhIs1dWwdGl42KGHKrGISEpKLtso0RlfWxtai2prw3GqBNPYuRC+o3v3Dt/RvXvD6NFhjmGirFu38JP4fPz4cI+NG7d8XbAgpsSyZAnceGPolD/uOJg2DS69FF5/PTSJDRkSai4iImmYF9qSuHlSUVHhM2bMyPj88vLUTVq9e4cv+m09Ny82boRHHw21kocfDuOcjz46dM6ffnpY20VEJAUzm+nuFQ3LS7bPxcwGALcDZUC1u/82zvs31hmfqjybc1vU/PmhmjR6dKix7LYbXHVVmOj4pS/lOTgRKWYlmVzMrAz4M3AcsAh4xcymuvucuJ7RWGd8qsnn2Zybc+vWwf33h1rKk0+GTqBvfztMwz/xxNDpIyLSTKXa5/IVYJ67z3f39cA9wMA4H5CqM75Tp80z7Lf13JyZMyd0yvfoETrp586FX/0qZL2HHoKBA5VYRCQ2JVlzAXoAC5OOFwGHNTzJzIYBwwB6ZVmNSHSeN1y6JVWnejbnxmrtWpg8OdRSnn8+JI/TTgt9Kcceq33nRSRnSrJD38zOBAa4e2V0fAFwmLv/oLFrsu3QL2gzZ4aZ8xMnwurVsO++IaFccAF84Qv5jk5ESkhr69BfDPRMOt4jKitdK1aEZFJdDbNmhQ23zj47JJWvfU3zUUSkRZVqcnkF6GtmexKSyrnAd/MbUg64wz//GRLK3/4Gn34KhxwSOufPOy9sGSwikgclmVzcfaOZ/QB4nDAUeZS7z85zWPH58EMYNy4klXfeCTPnBw8Oy7H075/v6ERESjO5ALj7I8Aj+Y4jNvX1YbZ8dTU88EBYPvlrX4Orrw6rEXfunO8IRUQ+V7LJpWQsWrR53/na2rAWzBVXhGVY+vXLd3QiIikpuRSiDRvCMixVVfDYY6HWctxxcPPNYT7KdtvlO0IRkbSUXArJvHkwciSMGQPvvw/du8M114TlWPbcM9/RiYhkTMkl3z77DO67L/SlPP10WEP/5JPDEOIBA8I+9CIiRUbfXPnyxhshoYwfD598AnvtFZa6Hzw41FhERIqYkktLWrMG7rknJJWXXgq7gp1xRqilfOtbWo5FREqGkkuuucMrr4TO+XvuCQmmXz+49dawHEu3bvmOUEQkdkouubJ8ediCsqoqNIF16hRWI66shMMP13IsIlLSlFzi5A7PPhuavaZMCXunVFTA3XeHxNK1a74jFBFpEUoucfjggzB8uLo6DCfeccewFMuQIXDwwXkOTkSk5Sm5NNf3vx/mpmzcCEceCdddB9/5TliVWESklVJyaa7ycvjhD0MtZZ998h2NiEhBUHJprquvzncEIiIFRxMrREQkdkouIiISOyUXERGJnZKLiIjETslFRERip+QiIiKxU3IREZHYKbmIiEjszN3zHUNBMLOPgNp8xwHsAnyc7yCyUGzxQvHFXGzxQvHFXGzxQuHE3Nvdd21YqORSYMxshrtX5DuOTBVbvFB8MRdbvFB8MRdbvFD4MatZTEREYqfkIiIisVNyKTwj8h1AlootXii+mIstXii+mIstXijwmNXnIiIisVPNRUREYqfkIiIisVNyKTBmdr2ZvW5mr5nZE2bWPd8xNcXMfmdmb0dx/93Mdsx3TOmY2VlmNtvM6s2sYIdyApjZADN7x8zmmVnB70xnZqPM7EMzezPfsWTCzHqa2dNmNif6OzE83zGlY2YdzOxlM/tXFO8v8x1TY9TnUmDMrKu7r4re/zfQz92/n+ew0jKz44Gn3H2jmd0E4O7/m+ewGmVm+wH1wN3A/3P3GXkOKSUzKwP+DRwHLAJeAc5z9zl5DSwNMzsSWAOMc/cD8h1PU8xsd2B3d3/VzLYHZgKnFerv2MwM6Ozua8ysHfBPYLi7v5jn0LaimkuBSSSWSGeg4LO/uz/h7hujwxeBPfIZT1Pc/S13fyffcWTgK8A8d5/v7uuBe4CBeY4pLXf/B7A833Fkyt2Xuvur0fvVwFtAj/xG1TgP1kSH7aKfgvyOUHIpQGZ2g5ktBAYBP893PFm6BHg030GUiB7AwqTjRRTwF1+xM7Ny4BDgpTyHkpaZlZnZa8CHwDR3L8h4lVzywMyeNLM3U/wMBHD3a929J1AD/CC/0QZNxRydcy2wkRB3XmUSr0iCmXUB7gX+p0HrQcFx903ufjChheArZlaQzY9t8x1Aa+Tux2Z4ag3wCHBdDsPJSFMxm9lFwMnAMV4AHXlZ/I4L2WKgZ9LxHlGZxCjqu7gXqHH3+/IdT6bcfYWZPQ0MAApuAIVqLgXGzPomHQ4E3s5XLJkyswHAVcCp7l6X73hKyCtAXzPb08zaA+cCU/McU0mJOshHAm+5+x/yHU9TzGzXxGhMM+tIGOxRkN8RGi1WYMzsXmAfwmimWuD77l7Q/1o1s3nAdsCyqOjFQh7hZmanA38EdgVWAK+5+wl5DaoRZnYicBtQBoxy9xvyG1F6ZjYJOIqwHPwHwHXuPjKvQaVhZl8HngPeIPw/B3CNuz+Sv6gaZ2YHAmMJfx/aAJPd/Vf5jSo1JRcREYmdmsVERCR2Si4iIhI7JRcREYmdkouIiMROyUVERGKn5CIlx8y6RatKv2Zm75vZ4uj9CjNr0QUJzew0M+uXdPwrM8t6gqeZledzpWEzu6bB8fPRa17jksKl5CIlx92XufvB0RIZfwFujd4fzOa5DLExs3QrXZwGfJ5c3P3n7v5k3DG0gC2Si7sfka9ApDgouUhrU2ZmVdFeGE9Es5wxsz5m9piZzTSz58xs36i83MyeivaqmW5mvaLyMWb2FzN7Cbg51fVmdgRwKvC7qObUJ7ruzOgeh5rZ89HeHC+b2fbR854zs1ejn7Rf4hb8ycKeL0+a2SNJ919gZrtE7yvM7Jno/VfM7AUzmxU9f5+o/CIzuy/6c8w1s5uj8t8CHaM/Q01UtiZFLGUW9vZ5Jfp9fS8q393M/hFd/6aZfaOZ/w2lGLi7fvRTsj/ALwh7tgCUExbWPDg6ngycH72fDvSN3h9G2J8G4EFgcPT+EuD+6P0Y4CGgrInrxwBnJsUzBjgTaA/MBw6NyrsS1vrrBHSIyvoCM5JifzPFn+8MYBphxnZ3wooDZ0afLQB2id5XAM8kPyt6fyxwb/T+oiimHYAOhBUiekafrWnw3DUN4wKGAT+N3m8HzAD2BK4Ero3Ky4Dt8/33Qj+5/9HCldLavOvur0XvZwLl0Yq4RwB/C0tNAeHLEeCrhC9wgPHAzUn3+pu7b2ri+sbsAyx191dg8z4+ZtYZ+JOZHQxsAvZu4j5HApPcfROwxMyeauJ8CMljbLSOnRP2BEmY7u4ro1jmAL3Zctn/dI4HDkzUnKLn9CWskTYqWiDy/qTfv5QwJRdpbdYlvd8EdCQ0D6/w0C+TjbXR67Zen8oPCWtyHRTd97Nm3Gsjm5u+OySVXw887e6nW9jD5Jmkzxr+frL5jjDgCnd/fKsPwg6VJwFjzOwP7j4ui/tKEVKfi7R6Ua3hXTM7Cz7vxzgo+vh5wmrEEDZvey7L61cD26d47DvA7mZ2aHTN9tHAgB0INZp64AJCM1I6/wDOifo7dge+lfTZAuDL0fvvJJXvwOal+y9q4v4JG6KaRzqPA5cmzjOzvc2ss5n1Bj5w9yqgGuif4TOliCm5iASDgCFm9i9gNpu3E74CuNjMXid82Q/P8vp7gB9Hned9Eid72Lb4HOCP0TXTCLWLO4HBUdm+bK4dNebvwFxgDjAOeCHps18Ct5vZDEItJOFm4DdmNovMayYjgNcTHfqNqI7ieDUannx3dP+jgH9FzzsHuD3DZ0oR06rIIiXEzMYAD7n7lHzHIq2bai4iIhI71VxERCR2qrmIiEjslFxERCR2Si4iIhI7JRcREYmdkouIiMTu/wPq4R4rHem/AAAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# visualize SalesPrice (target variable)\n",
+    "sns.distplot(y_train , fit=stats.norm)\n",
+    "\n",
+    "#Now plot the distribution\n",
+    "(mu, sigma) = stats.norm.fit(y_train)\n",
+    "plt.legend(['Normal dist. ($\\mu=$ {:.2f} and $\\sigma=$ {:.2f} )'.format(mu, sigma)], loc='best')\n",
+    "plt.ylabel('Frequency')\n",
+    "plt.title('SalePrice distribution')\n",
+    "\n",
+    "#Get also the QQ-plot\n",
+    "fig = plt.figure()\n",
+    "res = stats.probplot(y_train, plot=plt)\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Task: What are the conclusions that we can draw from these two plots?\n",
+    "Use the cell below to answer this question"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The Sales Price distribution is not normally distributed. It has a \"tail\" on the right side of the distribution and is therefore right skewed.\n",
+    "\n",
+    "Additional background information: in some cases, it makes sense to transform the distribution to make it resemble a normal distribution. However, this is not always a good idea and depends a lot on the error metric. If you want to read more about transforming the target variable, read Florian Wilhelm's blogpost."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Visualize features\n",
+    "\n",
+    "Now that we have a better understanding of what we are looking at, we can explore our features visually."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 10,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABrsAAARuCAYAAABjmYymAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdeZhlVX3v//dHQcSJQUwFgWuTiOaqXKeOkJibdMQB0ATziyKGICg3ZACHpJPQmNxoHHIx1wljgsGAgEERUSMRohK0YswVVJCIiMYWW+mWQUZpcWr8/v7Yq+jTRVV1jWeoer+e5zxn77Wn7z51zqq919prrVQVkiRJkiRJkiRJ0ii6z6ADkCRJkiRJkiRJkubLyi5JkiRJkiRJkiSNLCu7JEmSJEmSJEmSNLKs7JIkSZIkSZIkSdLIsrJLkiRJkiRJkiRJI8vKLkmSJEmSJEmSJI0sK7u0JJKsSlJJdhjE9pIkSZIkSRqsJK9O8o9temjKepIck+TTg45D0mhJ8sok/9CmhyZPU8fKrmUiyYYkP0qyx6T0L7Qf3ao2v3eSDyS5OckdSb6U5JgZ9vvKJN9IsjnJxiTvW8SYH5Xk/T2xfDHJHyW572IdQ1J/tbzo6XPcZk2SjdtZ58yWx23ueb1gYdHe6xhepEgr0FLlWz3rvrrlLQfML0JJWphhKmi2cFnqj/ZbuyrJXUluSHJqkl0HHddsJPmtJJ9v93zXJ/mXJL806LgkLa4k/5jkXZPSfiXJLUn2XMLjHpPk7p6ypWuT/P5st6+qv6qq/zXNvseTTLlM/WFl1/LyDeCFEzNJ9gceMGmddwPXAY8AHgocBdw41c6SHN2WP72qHgSsBi5ZjECT/CxwWYtl/6raBXh+O8aDF+MYkpadv66qB/W8tql8T8f/a5KGRpIALwJube8zrWtFu7SMjHhB8+TY/y7JLoOOS9LsJFkLvAH4E2AX4EC6MqCLk9xvkY+1qNcvSf4IeCvwV8AY8N+AvwMOW8zjSBoKLwcOSfIMgCT3B94JrK2q6xfjADPkUZ+ZKFsCfhP46yRPXIxjarAsFFxe3s22BSlHA2dPWufngTOr6ntVtaWqvlBV/zLN/n4e+FhVfR2gqm6oqtMmFk5+Err3icEeL0ny7fY0zh/3pP8l8P+q6o8mMrCq+mpV/VZV3T45kCQvTnJNkjtbjfvv9izbI8lHktye5NYk/z5R4J3kxCSb2nZfTXLQNOcqaQkl2SnJW1t+8O02vVOSBwL/Ajy856mah89hv+NJXp/kP4C7gJ9J8otJPtdajH4uyS9OWv+1Sf6j5Qsfz9YWsZ9q77e3OH4hyc8m+UR7sujmJOf0FlQleVK6FrR3pmup+r4kr+tZ/pwkV7b86f8l+R8L+Bgl9dEi5Vv/E9gTeBlwRG8BUytM/o8kb0lyC/Dqtv83JvlWkhuTvCPJzm393dr1zneS3Nam917ij0HSPIx4QfNUsa8CPp5kx8U8lqTFl+QhdOUtL62qj1bVj6tqA3A43W/5t5M8PMn3k+zes90T2/3Ojm3+Ja0M5rYkH0vyiJ51K8nxSb4GfK2lnZLkuiTfTXJ5kv85j9h3AV4DHF9VH2zlVj+uqn+uqj9p60x5fdaWrUnXI9HaJDelK4d6cc/+H5rkghbjZ4GfnWuMkhZPVd0CvBQ4rd1jvQr4elWdmeTAVoZye5L/TLJmYrvMXEY8kQ+cmOQG4F1sR1V9AbgG+O+9++hdJz1l4Jm6/Jskr6e7/3t7u0d8+5w/FC2YlV3Ly6XAQ5L893RdAR4BTP7xXQr8bZIjkvy3WezvRUn+JMnqzK97wV8F9gOeCZyYrZVjTwfOn8N+bgKeAzwEeDHwliRPasvWAhuBh9E9+fNKoJI8GjgB+PmqejDwLGDDPM5B0sL9GV1hyROAxwNPAf68qr4HHAJ8u6fF1rfnuO+jgOPoWoXeCVwIvI2u9eqbgQuTPLRn/d+iy0d+CrgfMFER/8vtfdcWx2eAAP8HeDjdhc8+wKsBWmHVh4Azgd2B9wK/MXGQdE8FnQH8bovl74ELJm7GJA29xci3jgb+GTivzf/apOUHANfSXb+8HjgZeFQ75iOBvYC/aOveh+5m7RF0Tzl/H/AGShoyI17QPFPsP0N3DTXRvXTvwz3bFAolWZfk660Q6stJfgNJ/fKLwP2BD/YmVtVm4CLgGe265TN0rRkm/BZwflX9OMlhdOUq/x9dOcu/093r9Hou3XXMY9r85+iuX3YH3gO8P10rjbn4hRb7h2ZYZ8rrs57lP01XUb8XcCxd+ddubdnfAj+gexDpJe0laYCq6v3AFXR5zHHAcUn2oivXeR1dnvLHwAeSPKxtNlMZMXT5wO50903HbS+GJD9Pdw/2+QWey5/R5ZcntHvEExayP82PlV3Lz0TrrmfQ1UpvmrT8+XQ/vP8NfCNdi4Ofn2pHVfWPdDXszwL+DbgpyYlzjOcv29M4V9EV0Ex0s/hQYNZNUqvqwqr6enX+Dfg4XW05wI/pLlYe0W7I/r2qCrgb2Al4TJIdq2rDRCs1SX13JPCaqrqpqr5DV5By1Bz38cftqZ7bk9zck35mVV1dVVvoKta/VlXvbq1X3wt8hW0LmN9VVf9VVd+nK4B+wnQHrKr1VXVxVf2wxf1m4Ffa4gOBHYC3tbzng8BnezY/Dvj7qrqsqu6uqrOAH7btJA2/BeVbSR5Ad931nqr6Md1DPpO7Mvx2Vf1Ny79+QJdv/GFV3VpVd9J14XMEdE8+VtUHququtuz1bM2PJA2PUS5o3l7sz5zlfr5Od6+2C13e+Y9ZwrE3JG1jD+Dmdm0x2fVtOXT5xAvhnm6Xj2hpAL8H/J+quqbt56+AJ/RWurflt7Z7KqrqH9u1ypaqehNdWcyj5xj7Q2eIfcL2rs9+3Jb/uKouAjYDj24Pb/8m8BetjOpLwFlzjE/S0vgD4Gl0v93rgN8GLqqqi6rqJ1V1MV1F1KGw3TJigJ8Ar2rlON+f5pgHtrKlO+nKcd5Ne4BIo83KruXn3XQ3Ssdw7y4MqarbqmpdVT2W7iniK4F/ahc391JV51TV04Fd6S54XpvkWXOI57qe6W/StY4AuIWugmpWkhyS5NJ03RTeTpfBTVyk/V9gPV3XGtcmWddiXw+8gq4Vxk1Jzs0cukeTtKgeTpcHTOjND2brjVW1a3vt0ZPem89MPs7Esfbqmb+hZ/ou4EHTHTDJWMs7NiX5Ll1r2YljPxzY1CrXp4rlEcDangq62+lahpkPSaNhofnWbwBb6AqIAc6h65P+YT3r9OYZD6Mba/Xynjzjoy2dJA9I8vdJvtnyo08Bu86z5b2kpTPKBc3bi/1hU6TfS1W9v6q+3Qqo3kdXePSUOcYiaX5uBvbI1F2c7tmWA3wA+IVWEf3LdIXD/96WPQI4ped65Fa6Hi9676l6r2FI8setNeodbZtd2JrfzdYtM8Q+YXvXZ7dMysMm7vceRveg4uQyKkkDVlU30uVNV7ekRwDPn1SW8ku0cuTtlBEDfKeqfrCdw17aypYeTNcS7LF011sacVZ2LTNV9U3gG3Q/9A9uZ92bgTfSXRjsvp11f9yaln4ReFxL/h5docyEn55i0316pv8bMNHNz7+y7ZOM02pdfn2gxTpWVbvSFRylxXZnVa2tqp8Bfh34o7SxuarqPVX1S3QZZdH1Py+p/75N9zuc0Jsf1L1Xn5Pe7ScfZ+JYk1u5bm8/E/6qpe9fVQ+he8Jo4uGA64G9Jj0s0JvnXQe8vqeCbteqekBrbSZp+C003zqarnDlW+n6i38/sCOtG7Ap9nMzXdeEj+3JM3apbtBk6LptfjRwQMuPJrpenfKBJUkDM8oFzbONfUZJXpStY5beTnf/ONdYJM3PZ+h6k/j/ehOTPIiuG+ZLoHsQmq41xAvork3O7XmI7zrgdyfdx+xcVf+vZ5fVs+//CfwpXZenu7UymzuY+zXKROzPnWGdma7PZvIduoeQJpdRSRo+1wHvnpQHPbCqTt5eGXEzpzKmVtn2Abb2CLRNeXd7uHBWD/zM9dhafFZ2LU/HAk+rbkyJbSR5Q5LHJdkhyYOB3wfWVzco4OR1j0ny7CQPTnKfJIfQ1XRf1la5km6w9R2TrAaeN0Us/7s9ifxYun5U39fSXwX8YpL/m+Sn2/EemeQfk+w6aR/3o3sy8TvAlhbHPV1oJHlO2zZ0F1R3Az9J8ugkT2sZ4Q/oCpB+sr0PT9KC7Zjk/j2vHei63vnzJA9LsgfdGDQTYwreCDw03YDEC3UR8Kgkv9XyuRfQde/zkVls+x26POJnetIeTNf1xR3p+o3+k55ln6HLb05oxzqMbZ9afifwe0kOSOeBE3nq/E9P0hJZ1Hyr5RcH0fUl/wS2jivxBu7dlSEAVfUTunzjLUl+amI/PS3qH0x3LXN7unF+XrXAc5a0NJZDQfN0sY+3pGkfemytz95JN3byQ1ssX5pHLJLmoaruoOva72+SHNzKa1bRdd++ka43oAnvobsueR5bW5YCvAM4qZXjkGSXJM+f4bAPpqtI+g6wQ5K/oBtLZz6x/wXdOFvPbWVJO7ZWHH/dVpvp+mymfd9N90D4q9t+H0P3YJKk4fOPwK8leVaS+7b7szVJ9mY7ZcTzkW6M999ga8uy/wLu38pvdqQbF3C2Y6/fyLZlSuozK7uWodZv6XSD6j2AbrDP2+kGRH8EXWuoqXyXrq/4b7X1/xr4/ar6dFv+v4GfBW6ju5h6zxT7+De6LgYvoeuC7OMTMdINProKuDrJHXS16J8H7px0PncCL6O7OLuN7mbwgp5V9qNrKbaZ7gbt76rqk3QZ0cl0TyDeAPwUcNI05ypp8VxEVyA78Xo13cCin6drHXoV3QCkrwOoqq/Q3bRc254Annc3f63i/jl0LSBuoSv4eU5rybq9be+iGwPnP1ocB9LlbU+iKzC6kJ4Ws1X1I7rCoGPp8sjfpqtU+2Fb/nngd4C30+Vd6+m6mJU0fBY73zoKuLKqPl5VN0y8gLcB/yPJ45jaiXR5xaXpuir8V7Z2Q/ZWYGe665pL6bo4lDRklkFB83Sx30zXHSt0Dz0emmT39uDiK3p280C6irjvtNhfzNaeQST1QVX9NV1ZzhvpynUuo6tEP6iqftiz6gV05Sk3VNV/9mz/IboHdM5t1yNfoqvwns7H6K5L/ouua8AfMKn16RxifxPwR3SFy99p+zkB+Ke2yrTXZ7NwAl2r+xuAM+nGlZc0ZNq4XRPjl07kA38C3GcWZcSz9QtJNifZDFzTjvPSdvw76MYR+we6XoK+R3cNNxunAM9LcluSt80jLi1Qth1qRJIkzVeSy4B3VJU3TpIkrWBJjgX+kO7hwO/SFdSuay26JtbZGbgJ+FYbU7l3+6PoHtp5BN1DNxdX1UvasgL2a2MUT3Sv8066SrPvAW+hK6T5X1X1r0leDTyyqn67VV59A9hxmrG5emN/JN0DhP8G/FZVfbstvz9wFl3h9wa6AuO1VbV3W/56uh5EfkI3jvST6boj+ockx7S4fmlun6gkSZI0Myu7JEmapyS/AnyV7mnnI+mexP6Zqrp+oIFJkiQtgtYy6zXAU6vqW4OOR5IkSZrOVAPPSpKk2Xk0XfP5B9J1Dfs8K7okSdJyUVXvSrIF+EW67u0lSZKkoWTLLkmSJEmSJEmSJI2s+ww6AEmSJEmSJEmSJGm+rOySJEmSJEmSJEnSyBrqMbv22GOPWrVq1aDDmLPvfe97PPCBDxx0GH3j+S5Pl19++c1V9bBBxzEMBpUXDdN3bVhiGZY4wFims5ixmA9tNZt8aJi+B3M1yrHDaMdv7DMzH9pqGO7NRvH7asz9sZxjNh/aahjyoV6j+L2bynI5D/Bclor50FYLyYeG6W86YdhiGrZ4wJhma6ljmm0+NNSVXatWreLzn//8oMOYs/HxcdasWTPoMPrG812eknxz0DEMi0HlRcP0XRuWWIYlDjCW6SxmLOZDW80mHxqm78FcjXLsMNrxG/vMzIe2GoZ7s1H8vhpzfyznmM2HthqGfKjXKH7vprJczgM8l6ViPrTVQvKhYfqbThi2mIYtHjCm2VrqmGabD9mNoSRJ0iwkOSPJTUm+1JO2e5KLk3ytve/W0pPkbUnWJ/likif1bHN0W/9rSY4exLlIkiRJkiQtJ1Z2SZIkzc6ZwMGT0tYBl1TVfsAlbR7gEGC/9joOOBW6yjHgVcABwFOAV01UkEmSJEmSJGl+rOySJEmahar6FHDrpOTDgLPa9FnAc3vSz67OpcCuSfYEngVcXFW3VtVtwMXcuwJNkiRJkiRJc2BllyRJ0vyNVdX1bfoGYKxN7wVc17PexpY2XbokSdLQm6Zb5/+b5Cut6+YPJdm1Z9lJrVvnryZ5Vk/6wS1tfZJ1SJIkLdAOC9k4yR8C/wso4CrgxcCewLnAQ4HLgaOq6kdJdgLOBp4M3AK8oKo2LOT4kiRJw6KqKkkt1v6SHEfXBSJjY2OMj4/PuP7mzZu3u86wGuXYYbTjN3ZJ0hydCbydrnxnwsXASVW1JckbgJOAE5M8BjgCeCzwcOBfkzyqbfO3wDPoHvz5XJILqurLfToHSZK0DM27sivJXsDLgMdU1feTnEd3EXMo8JaqOjfJO4Bj6capOBa4raoemeQI4A3ACxZ8Bs2qdRduM7/h5Gcv1q4laSiYz0lD6cYke1bV9a2bwpta+iZgn5719m5pm4A1k9LHp9pxVZ0GnAawevXqWrNmzVSr3WN8fJzJ64xKvjFV7KNklOM3dmn0jEreruWpqj6VZNWktI/3zF4KPK9NHwacW1U/BL6RZD3dmKUA66vqWoAk57Z1rexaxsy7JGnl6Xfev9BuDHcAdk6yA/AA4HrgacD5bfnksSsmxrQ4HzgoSRZ4fEmSpEG6ADi6TR8NfLgn/UXpHAjc0bo7/BjwzCS7JdkNeGZLkyRJWg5eAvxLm7ZbZ0mS1DfzbtlVVZuSvBH4FvB94ON03RbeXlVb2mq9Fyz3XMy0pu130HV1eHPvfufaZc+Etftv2WZ+kF2arLQuVTxfSdJKkOS9dK2y9kiyEXgVcDJwXpJjgW8Ch7fVL6Jr7b4euIuuq2eq6tYkrwU+19Z7TVXd2reTkCRJWiJJ/gzYApyziPucVxlRPyyXsoF+nUc/yu2Wy98Elte5SFK/LKQbw93oWmvtC9wOvB84eKEBzbXLngnHTG4Sd+TstlsKK61LFc9XkrQSVNULp1l00BTrFnD8NPs5AzhjEUOTJEkaqCTHAM8BDmrXQTB9t87MkL6N+ZYR9cNyKRvo13n0o9xuufxNYHmdiyT1y0K6MXw68I2q+k5V/Rj4IPBUYNfWrSFse8Fyz0VOW74LcMsCji9JkiRJkqQBSnIw8KfAr1fVXT2LLgCOSLJTkn2B/YDP0rVw3y/JvknuRzf++wX9jluSJC0vC6ns+hZwYJIHtLG3DqIbTPSTbB2MdPLYFRNjWjwP+ETP0z6SJEmSpHlKsmuS85N8Jck1SX4hye5JLk7ytfa+W1s3Sd6WZH2SLyZ50qDjlzQaWrfOnwEenWRj68r57cCDgYuTXJnkHQBVdTVwHl1Z0UeB46vq7jb0xQl045ZeA5zX1pUkSZq3hYzZdVmS84Er6Ppk/gJd0/ILgXOTvK6lnd42OR14d5L1wK10T+5IkiRJkhbuFOCjVfW81lLiAcArgUuq6uQk64B1wInAIXQtLPYDDgBObe+SNKNpunU+fYq0ifVfD7x+ivSL6MY4lSRJWhTzruwCqKpX0Q3O3uta4ClTrPsD4PkLOZ4kSZIkaVtJdgF+GTgGoKp+BPwoyWHAmrbaWcA4XWXXYcDZraeNS1ursD2r6vo+hy5JkiRJi2JBlV2SJEmSpIHbF/gO8K4kjwcuB14OjPVUYN0AjLXpvYDrerbf2NK2qexKchxwHMDY2Bjj4+NLFf+sbN68eeAxzNVSxLx2/y3bzC/2/v2c+2MUY5YkSRpmVnZJkiRJ0mjbAXgS8NLW3fwpdF0W3qOqKsmcxkyuqtPouqpn9erVtWbNmkUKd37Gx8cZdAxztRQxH7Puwm3mNxy5uPv3c+6PUYxZkiRpmN1n0AFIkiRJkhZkI7Cxqi5r8+fTVX7dmGRPgPZ+U1u+CdinZ/u9W5okSZIkjSQruyRJkiRphFXVDcB1SR7dkg4CvgxcABzd0o4GPtymLwBelM6BwB2O1yVJkiRplFnZJUmSJEmj76XAOUm+CDwB+CvgZOAZSb4GPL3NA1wEXAusB94J/EHfo5UkSVpESfZJ8skkX05ydZKXt/RXJ9mU5Mr2OrRnm5OSrE/y1STPGlz0khaDY3ZJGllJ9gHOphtsvYDTquqUJK8GfoduoHaAV1bVRW2bk4BjgbuBl1XVx/oeuCRJ0iKrqiuB1VMsOmiKdQs4fqljkiRJ6qMtwNqquiLJg4HLk1zclr2lqt7Yu3KSxwBHAI8FHg78a5JHVdXdfY1a0qKxskvSKPNCRpIkSZIkaYVrXTJf36bvTHINsNcMmxwGnFtVPwS+kWQ98BTgM0serKQlYWWXpJHlhYwkSZK0cKvWXXjP9Nr9t7BmcKFIkrRgSVYBTwQuA54KnJDkRcDn6R6avo2u/OjSns02MnOZkqQhZ2WXpGVhsS9kkhwHHAcwNjbG+Pj4ksU+nc2bN29z3LX7b9lmeT9jmhzLoAxLHGAs0xmmWCRJkiRJK0uSBwEfAF5RVd9NcirwWrrhL14LvAl4yRz2tyjlQ8N4rzxsMQ1bPGBMszVdTP0uy7SyS9LIW+wLGYCqOg04DWD16tW1Zs2aRY15NsbHx+k97jE9T9wCbDhyDf0yOZZBGZY4wFimM0yxSJIkSZJWjiQ70pUPnVNVHwSoqht7lr8T+Eib3QTs07P53i1tG4tVPjSM98rDFtOwxQPGNFvTxdTvssz7LOneJWmJTXchU1V3V9VPgHfSdVUIs7yQkSRJkiRJ0uhIEuB04JqqenNP+p49q/0G8KU2fQFwRJKdkuwL7Ad8tl/xSlp8tuySNLJmupBp43nBvS9k3pPkzcDD8UJGkiRJkiRpOXgqcBRwVZIrW9orgRcmeQJd7z8bgN8FqKqrk5wHfBnYAhxfVXf3OWZJi8jKLkmjzAsZSZIkSZKkFa6qPg1kikUXzbDN64HXL1lQkvrKyi5JI8sLGUmSJEnqnyRnAM8Bbqqqx7W03YH3AavoHjY8vKpuaz1xnAIcCtwFHFNVV7Rtjgb+vO32dVV1Vj/PQ5IkLT+O2SVJkiRJkqTZOBM4eFLaOuCSqtoPuKTNAxxC13X8fsBxwKlwT+XYq4AD6MZXflWS3ZY8ckmStKxZ2SVJkrRASf4wydVJvpTkvUnun2TfJJclWZ/kfUnu19bdqc2vb8tXDTh8SZKkWamqTwG3Tko+DJhomXUW8Nye9LOrcymwa5I9gWcBF1fVrVV1G3Ax965AkyRJmhO7MZQkSVqAJHsBLwMeU1Xfb2MDHkHXZc9bqurcJO8AjqV7ovlY4LaqemSSI4A3AC8YUPiSJEkLNVZV17fpG4CxNr0XcF3Pehtb2nTp95LkOLpWYYyNjTE+Pr54US/Q5s2bhyqe+erXeazdf8s280txzOXyN4HldS6S1C9WdkmSJC3cDsDOSX4MPAC4Hnga8Ftt+VnAq+kquw5r0wDnA29PkqqqfgYsSZK02KqqkizaNU1VnQacBrB69epas2bNYu16wcbHxxmmeOarX+dxzLoLt5nfcOTiH3O5/E1geZ2LJPWLlV2SJEkLUFWbkrwR+BbwfeDjwOXA7VU18Qhr7xPL9zzNXFVbktwBPBS4uXe/c32SeaqnP/vxBO1iGPUnV0c5fmNfPpJsAO4E7ga2VNXqNi7O+4BVwAbg8Kq6LUmAU+haoN4FHFNVVwwibknLwo1J9qyq61s3hTe19E3APj3r7d3SNgFrJqWP9yFOSZK0jFnZJUmStABtQPXDgH2B24H3swjjTsz1Seapnv7sxxO0i2HUn1wd5fiNfdn51arqrThfB1xSVScnWdfmTwQOAfZrrwPoWp0e0O9gJS0bFwBHAye39w/3pJ+Q5Fy6POaOViH2MeCv2jUUwDOBk/ocsyRJWmbuM+gAJEmSRtzTgW9U1Xeq6sfAB4Gn0g3CPvFg0cSTzNDzlHNbvgtwS39DlrRCHEbXjSrt/bk96WdX51K6/GrPAcQnacQkeS/wGeDRSTYmOZaukusZSb5Gd110clv9IuBaYD3wTuAPAKrqVuC1wOfa6zUtTZIkad5s2SVJkrQw3wIOTPIAum4MDwI+D3wSeB5wLvd+yvlouoKi5wGfcLwuSYuggI+3sXL+vrUOHauq69vyG4CxNn1Pd6rNRFer1yNJM6iqF06z6KAp1i3g+Gn2cwZwxiKGJkmSVjgruyRJkhagqi5Lcj5wBbAF+AJd94MXAucmeV1LO71tcjrw7iTrgVuBI/oftaRl6JfaGII/BVyc5Cu9C6uqWkXYrM117MClNorjtC1FzEsxHmPvPsd2Ht4xHqfjd0OSJElWdkmSJC1QVb0KeNWk5GuBp0yx7g+A5/cjLkkrR1Vtau83JfkQXf5zY5I92xg5ewI3tdXv6U616e1qtXefcxo7cKmN4jhtSxHzUozH2LvPtftv4XA/5yU3ijFLkiQNMyu7JGmFWDW5YOTkZw8oEkmStJiSPBC4T1Xd2aafCbyGrd2mnsy9u1M9Icm5wAHAHT3dHUqSJEnSyFlQZVeSXYF/AB5H10f8S4CvAu8DVgEbgMOr6rYkAU4BDgXuAo6pqisWcnxJkiRJEmPAh7pbLnYA3lNVH03yOeC8JMcC3wQOb+tfRHdftp7u3uzF/Q9ZkiRJkhbPQlt2nQJ8tKqel+R+wAOAVwKXVNXJSdYB64ATgUOA/drrAODU9i5JkiRJmqequhZ4/BTptwAHTZFewPF9CE2SJEmS+uI+890wyS7AL9MGW6+qH1XV7cBhwFlttbOA57bpw4Czq3MpsGvrN16SJEmSJEmSJEmal4W07NoX+A7wriSPBy4HXg6M9fT3fgNdlxoAewHX9Wy/saVt0zd8kuOA4wDGxsYYHx+fVTBr99+yzfxst1sKmzdvHujx+83zlYaDY3JJkiRJkiRJWokWUtm1A/Ak4KVVdVmSU+i6LLxHVVWSmstOq+o04DSA1atX15o1a2a13TGTC3mPnN12S2F8fJzZxr0ceL4alCT7AGfTVaoXcFpVnZJkdxw7UJIkSZIkaUWwjEjSvLsxpGuZtbGqLmvz59NVft040T1he7+pLd8E7NOz/d4tTZLmawuwtqoeAxwIHJ/kMXQV75dU1X7AJWytiO8dO/A4urEDJUmSJEmSNNosI5JWuHlXdlXVDcB1SR7dkg4CvgxcABzd0o4GPtymLwBelM6BwB093R1K0pxV1fUTT91U1Z3ANXTdozp2oCRJkiRJ0gphGZGkhXRjCPBS4Jwk9wOuBV5MV4F2XpJjgW8Ch7d1L6JrFrqermnoixd4bEm6R5JVwBOBy1jg2IGStFw5tp8kSZKk5W4xy4iSHEfX8ouxsTHGx8fnFdPmzZvnve1SGbaYhi0eMKbZmi6mtftv2WZ+qeNeUGVXVV0JrJ5i0UFTrFvA8Qs5niRNJcmDgA8Ar6iq73bdLnfmM3Zg2+eiXMwsxOR/FNv7B7HQ5XOJZVCGJQ4wlukMUyySJEmSpJVlscuIquo04DSA1atX15o1a+YV1/j4OPPddqkMW0zDFg8Y02xNF9Mxkx+4PfLe6yymhbbskqSBSrIj3UXMOVX1wZZ8Y5I9q+r6+Y4duFgXMwsx+R/F9v5BLHT5XGIZlGGJA4xlOsMUiyRJkiRp5ViqMiJJo8HKLkkjK93jOacD11TVm3sWTYwdeDL3HjvwhCTnAgewzMcOnNxdmSRJkiRJ0nJkGZEkK7skjbKnAkcBVyW5sqW9ku4CxrEDJUmSpCHgmJErQ5I/BP4XUMBVdPdbewLnAg8FLgeOqqofJdkJOBt4MnAL8IKq2jCIuCUtG5YRSSuclV2SRlZVfRrINIuX/diBttySJEmSNAyS7AW8DHhMVX0/yXnAEXQFyW+pqnOTvAM4Fji1vd9WVY9McgTwBuAFAwpf0jKw0suIJMF9Bh2AJEmSJEmSRt4OwM5JdgAeAFwPPA04vy0/C3humz6szdOWH9S6IJMkSZoXW3ZJkiRJkiRp3qpqU5I3At8Cvg98nK7bwturaktbbSOwV5veC7iubbslyR10XR3e3LvfJMcBxwGMjY0xPj6+xGcye5s3bx6qeOarX+exdv8t28wvxTGXy98Elte5SFK/WNklSZIkSctAkvsCnwc2VdVzkuyLY+VI6oMku9G11toXuB14P3DwQvdbVacBpwGsXr261qxZs9BdLprx8XGGKZ756td5HDN57L4jF/+Yy+VvAsvrXCSpX+zGUJIkSZKWh5cD1/TMv4FurJxHArfRjZEDPWPlAG9p60nSQjwd+EZVfaeqfgx8EHgqsGvr1hBgb2BTm94E7APQlu9CV/kuSZI0L1Z2SZIkSdKIS7I38GzgH9p8cKwcSf3zLeDAJA9o+clBwJeBTwLPa+scDXy4TV/Q5mnLP1FV1cd4JUnSMmM3hpIkSQuUZFe6AubHAQW8BPgq8D5gFbABOLyqbmsFQKcAhwJ3AcdU1RX9j1rSMvNW4E+BB7f5h7LMxsoZxfFLliLmpRj3pnefYzsv/lg6Sz1Wj9+Nwauqy5KcD1wBbAG+QNf94IXAuUle19JOb5ucDrw7yXrgVuCI/kctSZKWEyu7JEmSFu4U4KNV9bwk9wMeALwSuKSqTk6yDlgHnAgcAuzXXgcAp7Z3SZqXJM8Bbqqqy5OsWaz9DttYOaM4fslSxLwU49707nPt/ls4fARi7uV3YzhU1auAV01KvhZ4yhTr/gB4fj/ikiRJK4PdGEqSJC1Akl2AX6Y9qVxVP6qq29m2m7DJ3YedXZ1L6cay2LOvQUtabp4K/HqSDcC5dN0XnoJj5UiSJElaIWzZJUmStDD7At8B3pXk8cDlwMuBsaq6vq1zAzDWpu/pPqyZ6Frs+p60OXcfNlV3SJO7jZpsWLpPGvWunEY5fmNfHqrqJOAkgNay64+r6sgk76cbC+dcph4r5zM4Vo4kSZKkZcDKLkmSpIXZAXgS8NI2XsUpdF0W3qOqKsmcCpLn2n3YVN0hTe42arLF7kZqvka9K6dRjt/Yl70TcawcSZIkSSuAlV2SJEkLsxHYWFWXtfnz6Sq7bkyyZ1Vd37opvKktv6f7sKa3azFJWpCqGgfG27Rj5UiSJElaERyzS5IkaQGq6gbguiSPbkkHAV9mazdhcO/uw16UzoHAHT3dHUqSJEmSJGmObNklSZK0cC8FzklyP+Ba4MV0DxWdl+RY4JvA4W3di4BDgfXAXW1dSZIkSZIkzZOVXZIkSQtUVVcCq6dYdNAU6xZw/FLHJEmSJEmStFJY2SVJkiRJkiRJkqR5W7XuwoEe3zG7JI20JGckuSnJl3rSXp1kU5Ir2+vQnmUnJVmf5KtJnjWYqCVJkiRJkrRYLB+SZGWXpFF3JnDwFOlvqaontNdFAEkeAxwBPLZt83dJ7tu3SCVJkiRJkrQUzsTyIWlFs7JL0kirqk8Bt85y9cOAc6vqh1X1DWA98JQlC06SJEmSJElLzvIhSY7ZJWm5OiHJi4DPA2ur6jZgL+DSnnU2tjRJkiRJkiQtPwsqH0pyHHAcwNjYGOPj4/MKYvPmzfPedqkMW0zDFg8Y02xNxLR2/y0zrrfUcVvZJWk5OhV4LVDt/U3AS+ayg8W6mFmIyf+8tvcPY67mck7D8o90WOIAY5nOMMUiSZIkSVrRFlw+VFWnAacBrF69utasWTOvQMbHx5nvtktl2GIatnjAmGZrIqZj1l0443objlyzpHEsuLKr9Wf6eWBTVT0nyb7AucBDgcuBo6rqR0l2As4GngzcArygqjYs9PijatWkP/yGk589oEik5aeqbpyYTvJO4CNtdhOwT8+qe7e0qfaxKBczCzH5n9f2/mHM1Vz+wQzLP9JhiQOMZTrDFIskSZL6J8muwD8Aj6MrWH4J8FXgfcAqYANweFXdliTAKcChwF3AMVV1Rf+jlrScLUb5kKTRsRhjdr0cuKZn/g10A/89ErgNOLalHwvc1tLf0taTpEWXZM+e2d8AvtSmLwCOSLJTq5jfD/hsv+OTJEmSpGXoFOCjVfVzwOPpyorWAZdU1X7AJW0e4BC6+7H96HrUOLX/4Upa7iwfklaWBVV2JdkbeDbdkzu0J3OeBpzfVjkLeG6bPqzN05Yf1NaXpHlL8l7gM8Cjk2xMcizw10muSvJF4FeBPwSoqquB84AvAx8Fjq+quwcUuiRJkiQtC0l2AX4ZOB2gqn5UVbezbVnQ5DKis6tzKbDrpEJpSZoTy4ckLbQbw7cCfwo8uM0/FLi9qiYGlukd3G8v4DqAqtqS5I62/s0LjEHSClZVL5wi+fQZ1n898Pqli0iSJKm/ktwf+BSwE9093vlV9Sq7mJfUR/sC3wHeleTxdHnOy4Gxqrq+rXMDMNam7ykjaibKj65HkubB8iFJ867sSvIc4KaqujzJmsUKKMlxdE3YGRsbm/Ug92v337LN/Gy3WwqbN2/e7vGHKd6Fms35Licr7XwlSZI09H4IPK2qNifZEfh0kn8B/oiui/lzk7yDrmv5U+npYj7JEXRdzL9gUMFLWhZ2AJ4EvLSqLktyClu7LASgqipJzWWn8y0j6oflUjbQr/PoRznYcvmbwPI6F0nql4W07Hoq8OtJDgXuDzyErn/mXZPs0Fp39Q7uNzHw38YkOwC70D1FuI2qOg04DWD16tU120Huj1l34TbzG46c3XZLYXx8nO3FPUzxLtRsznc5WWnnK0mSpOFWVQVsbrM7tlfRdTH/Wy39LODVdJVdh7Vp6LqYf3uStP1I0nxsBDZW1WVt/ny6yq4bk+xZVde3bgpvassnyogm9JYf3WO+ZUT9sFzKBvp1Hv0oB1sufxNYXuciSf0y7zG7quqkqtq7qlYBRwCfqKojgU8Cz2urHQ18uE1f0OZpyz/hzZQkSZIkLVyS+ya5kq4g+WLg68yyi3lgoot5SZqXqroBuC7Jo1vSQXRj4fSWBU0uI3pROgcCd/R0dyhJkjRnCx2zayonAucmeR3wBbb2jXo68O4k64Fb6SrIJEmSJEkL1AZVf0KSXYEPAT+30H0OW/dho9il01LEvBRdgfXuc2znxe9ebKm7L/O7MTReCpyT5H7AtcCL6R6yPi/JscA3gcPbuhcBhwLrgbvaupIkSfO2KJVdVTUOjLfpa4GnTLHOD4DnL8bxJEmSJEn3VlW3J/kk8AsMqIv5pTKKXTotRcxL0RVY7z7X7r+Fw0cg5l5+N4ZDVV0JrJ5i0UFTrFvA8UsdkyRJWjnm3Y2hJEmSJGnwkjystegiyc7AM4BrsIt5SZIkSSvEUnRjKEmSJEnqnz2Bs5Lcl9ZlWFV9JMmXsYt5SZIkSSuAlV2SJEmSNMKq6ovAE6dIt4t5SZIkSSuC3RhKkiRJkiRJkiRpZFnZJUmStEBJ7pvkC0k+0ub3TXJZkvVJ3pfkfi19pza/vi1fNdDAJUmSJEmSlgG7MZSkIbFq3YXbzJ958AMHFImkeXg5cA3wkDb/BuAtVXVukncAxwKntvfbquqRSY5o671gEAFLkiRJkiQtF7bskiRJWoAkewPPBv6hzQd4GnB+W+Us4Llt+rA2T1t+UFtfkiRJkiRJ82TLLkmSpIV5K/CnwIPb/EOB26tqS5vfCOzVpvcCrgOoqi1J7mjr3zx5p0mOA44DGBsbY3x8fMYgNm/efK911u6/ZeqVm+3ts1+min2UjHL8xi5JkiRJWg6s7JIkSZqnJM8Bbqqqy5OsWcx9V9VpwGkAq1evrjVrZt79+Pg4k9c5ZlL3qJNtOHLmffbLVLGPklGO39glSZIkScuBlV2SJEnz91Tg15McCtyfbsyuU4Bdk+zQWnftDWxq628C9gE2JtkB2AW4pf9hS5I0uhzrVpIkafAmrsnW7r9luw/b9oNjdkmSJM1TVZ1UVXtX1SrgCOATVXUk8EngeW21o4EPt+kL2jxt+SeqqvoYsiRJkiQtS0nOSHJTki/1pO2e5OIkX2vvu7X0JHlbkvVJvpjkSYOLXNJisLJL0kjzQkbSkDoR+KMk6+nG5Dq9pZ8OPLSl/xGwbkDxSZIkSdJycyZw8KS0dcAlVbUfcAlb78EOAfZrr+OAU/sUo6QlYjeGkkbdmcDbgbN70iYuZE5Osq7Nn8i2FzIH0F3IHNDXaOfgqk13DEUTYEmzU1XjwHibvhZ4yhTr/AB4fl8DkyRJkqQVoKo+lWTVpOTDgDVt+iy6e7YTW/rZraeNS5PsmmTPqrq+T+FKWmRWdkkaaV7ISJIkSZIkaRpjPeU+NwBjbXov4Lqe9Ta2NMuINC+TxxTdcPKzBxTJymVll6TlaMEXMkmOo2vGztjYGOPj40sW7IS1+2/ZZn5s53unLaa5nNPmzZv78hmMShxgLNMZplgkSZLUX0nuC3we2FRVz0myL3AuXbfOlwNHVdWPkuxE1zvHk4FbgBdU1YYBhS1phaiqSjKnMZMXq3xoGO+Vhy2mYYsH5hbT5DK8pTqXYfqcJs55tmWYSx23lV2SlrX5XMi07U4DTgNYvXp1rVmzZrFDu5fJXRau3X8Lb7pq6bLpDUeumfW64+Pj9OMzGJU4wFimM0yxSJIkqe9eDlwDPKTNvwF4S1Wdm+QdwLF03ckfC9xWVY9MckRb7wWDCFjLw6p1F7J2/y333FfbokI9bpzo1SfJnsBNLX0TsE/Penu3tG0sVvnQMN4rD1tMwxYPzC2myeV6cyl3m4th+pwmznm2ZZhL9ZlMuM+S7l2SBuPGdgHDfC5kJEmSRkmSfZJ8MsmXk1yd5OUtffckFyf5WnvfraUnyduSrE/yxSRPGuwZSFoOkuwNPBv4hzYf4GnA+W2Vs4DntunD2jxt+UFtfUlabBcAR7fpo4EP96S/qF0XHQjc4TAX6qdV6y7c5qWFs2WXpOVo4kLmZO59IXNCknOBA/BCRpIkLQ9bgLVVdUWSBwOXJ7kYOAa4pKpOTrIOWEc3jukhwH7tdQBdK4sDBhK5pOXkrcCfAg9u8w8Fbq+qiX6NJrqRh54u5qtqS5I72vo39+5wEN3Lz9YwdSO1EP06j6Xu3mvt/lu26UZr1P82y+X71W9J3ks3hvseSTYCr6IrGzovybHAN4HD2+oXAYcC64G7gBf3PWBJi8rKLkkjzQsZSZK00rWHd65v03cmuYauIPkwuusk6FpQjNNVdh0GnF1VBVyaZNeJ7n36Hbuk5SHJc4CbquryJGsWa7+D6F5+toapG6mF6Nd5LHX3Xse0bgwnutFa6q6yltpy+X71W1W9cJpFB02xbgHHL21EkvrJyi5JI80LGUmSpK2SrAKeCFwGjPVUYN0AjLXpe1pUNBOtLbap7Bq2FhWj+JT7UsS8FK0jevc5tvPStLjotdD9T96f342h8FTg15McCtyfbsyuU4Bdk+zQWnf1diM/0cX8xiQ7ALsAt/Q/bEmStFxY2SVJK9Tk/oAdwFeSpNGW5EHAB4BXVNV3e4e/qapKUnPZ37C1qBjFp9yXIualaB3Ru8+1+2/h8CGPefL+zjz4gX43BqyqTgJOAmgtu/64qo5M8n7gecC53LuL+aOBz7Tln2gPJ0qSJM2LlV2SJEmSNOKS7EhX0XVOVX2wJd840T1hkj2Bm1r6RIuKCb2tLSRpMZ0InJvkdcAXgNNb+unAu5OsB24FjhhQfJIkzcvkh8iHIYaV/iC7lV2SJEmSNMLSNeE6Hbimqt7cs2ii5cTJ3LtFxQlJzgUOAO5wvC5Ji6WqxunGCKSqrgWeMsU6PwCe39fAJEnqo7lWRFlxtXBWdkmSJEnSaHsqcBRwVZIrW9or6Sq5zktyLPBN4PC27CLgUGA9cBfw4r5GK0mSJEmLzMouSZIkSRphVfVpINMsPmiK9Qs4fkmDkiRJkqQ+mndlV5J9gLOBMaCA06rqlCS7A+8DVgEbgMOr6rbWtcYpdE8Q3gUcU1VXLCx8SZIkTRiGPsMlSZIkSZL67T4L2HYLsLaqHgMcCByf5DHAOuCSqtoPuKTNAxwC7NdexwGnLuDYkiRJkiRJkiRJ0vxbdrUBjK9v03cmuQbYCzgMWNNWO4tuUNITW/rZrcuMS5PsmmRPB0KWtFwsdOBJSZIkjb7ea7y1+2+55+ZYkiRJmq2pyg23V9a41DH0+/hztShjdiVZBTwRuAwY66nAuoGum0PoKsKu69lsY0tbFpVd3tBIkiRJkiRJkiT134Iru5I8CPgA8Iqq+m43NFenqipJzXF/x9F1c8jY2Bjj4+Oz2m7t/lu2mZ/tdoul9/hjO2//+IOOdzFt3rx5pOOfq5V2vpIkSZIkSSvZqLVukKSVaEGVXUl2pKvoOqeqPtiSb5zonjDJnsBNLX0TsE/P5nu3tG1U1WnAaQCrV6+uNWvWzCqWYyb/0zlydtstlmMmtew6fDtxDzrexTQ+Ps5s/07LwUo7X0mSJEmSJEmShtl95rthuiZcpwPXVNWbexZdABzdpo8GPtyT/qJ0DgTucLwuSZI06pLsk+STSb6c5OokL2/puye5OMnX2vtuLT1J3pZkfZIvJnnSYM9AkiRJkiRptC2kZddTgaOAq5Jc2dJeCZwMnJfkWOCbwOFt2UXAocB64C7gxQs4tiRJ0rDYAqytqiuSPBi4PMnFwDHAJVV1cpJ1wDrgROAQYL/2OgA4tb1LkiRJkrTs2BXoaJj8d5rr8kGbd2VXVX0ayDSLD5pi/QKOn+/xJEmShlFrqX59m74zyTXAXsBhwJq22lnAOF1l12HA2e3a6NIku050Ad3v2CVJkiRJkpaDeXdjKEmSpG0lWQU8EbgMGOupwLoBGGvTewHX9Wy2saVJkiRJkiRpHhbSjaEkDbUkG4A7gbuBLVW1OsnuwPuAVcAG4PCqum1QMUpaPpI8CPgA8Iqq+m43vGmnqipJzXF/xwHHAYyNjTE+Pj7j+ps3b2bt/nfPKebt7bNfNm/ePDSxzMcox2/skiRJWu4sH5JWBiu7JC13v1pVN/fMr2PqMXQkad6S7EhX0XVOVX2wJd840T1hkj2Bm1r6JmCfns33bmnbqKrTgNMAVq9eXWvWrJkxhvHxcd706e/NKe4NR868z34ZHx9ne+c3zEY5fmOXJEnSCmH5kOZk1boLWbv/Fo5p41QNwzhjk2PStqzskrTSTDeGzoo31SCTw/CPXBp26ZpwnQ5cU1Vv7ll0AXA0cHJ7/3BP+glJzgUOAO5wvC5JkjTKkuwDnE3XbXMBp1XVKdO1nGjXT6cAhwJ3AcdU1RWDiF3SimX5kLTMWNmloTW54N1Cd81DAR9vXYf9fWslMd0YOtuYa/dhAGv337LN/Pa2mbz+ZGM7b3+dpTZxDsPSVdSwxAHGMp1hiqWPngocBVyV5MqW9kq6Sq7zkhwLfBM4vC27iK5gZz1d4c6L+xqtpGUnyRnAc4CbqupxLc0CZkn9tAVYW1VXJHkwcHmSi4FjmLrlxCHAfu11AHBqe5ekpdDX8qGpDOO9cj9jmk2Z2bB9Rmv337JN2dzk2OZaZrfQ7SfMVF640M9vKWLqtdR/Xyu7JC1nv1RVm5L8FHBxkq/0LpxpDJ25dh8G3KsJ8fa6B9tek+O1+2/hTVcNNpueOIdh6SpqWOIAY5nOMMXSL1X1aSDTLD5oivULOH5Jg5K00pwJvJ2uVcWE6brmsYBZ0qJrBcbXt+k7k1wD7MX0LScOA85u10WXJtl1ovvnfscuaUXoa/nQVIbxXrmfMc2mzGzYPqNjWpeB95TNXTV52IC5ldlNPuf5dkU4U3nhQocqWIqYei31UApWdklatqpqU3u/KcmHgKcw/Rg6msJEC8uJ/oBtYSlJ0vCpqk8lWTUp2QJmSQPR8qMnApcxfcuJvYDrejbb2NK2yYsWq0XFUhi2Fgjz1a/zmGtPKPPZ/0wtMBZj/72W+jNbLt+vYWH50Gi4atMd21S2LLcyqKmGD9HisrJL0rKU5IHAfdpThQ8Engm8hunH0JGkFccug6VlbUEFzDB8hcyjUvDXWyA6tvNoFLiOWsyT9zcq341eoxjzbCR5EPAB4BVV9d2u59TOTC0nprNYLSqWwrC1QJivfp3HXHtCmc/+e1sWLMX+ey1164Tl8v0aBpYPScNjqcsgrOyStFyNAR9qN1c7AO+pqo8m+RxTj6EjSZK0LM2ngLltN1SFzKNS8NdbILp2/y0cvsgxL0WB66jFPHl/Zx78wJH4bvQale/zXCTZka6i65yq+mBLnq7lxCZgn57N925pkrTYLB+SVggruyQtS1V1LfD4KdJvYYoxdPrB5sqSJKmPLGCW1DfpSpFPB66pqjf3LJqu5cQFwAlJzqUbN/AOu1OVtBSGsXxIU5eRrd1/AIH0sNxu9FnZJUmSJEnLjwXMkvrpqcBRwFVJrmxpr6TLg6ZqOXERcCiwHrgLeHFfo5UkzYld4GsUrJjKrlH/QY56/JIkSZKWRpL3AmuAPZJsBF6FBczSgngPPjdV9Wkg0yy+V8uJqirg+CUNSpK0oq3E/+Ur8Zx7rZjKLkmSJElajqrqhdMssoBZkiRJ0opgZZe0hFZ6bbokSZIkSZKk5c0yUA0DK7uWMTMZSZIkSZIkSdKos6x77rb3mU1ePuqs7JIkzZoXFpIkSZIkSZKGjZVduoeF2JLmynxDkiRJkqSF672/Xrv/FtYMLhRpRVhurZoE9xl0AJIkSZIkSZIkSdJ8WdklSZIkSZIkSdIKsWrdhVy16Q5WrbvQFk5aNuzGUJK0aOzWUJIkSZIkSf1mpZ2s7JKWsakyeSsfJEmSJElauRwbStJKZGXY8v8MrOySpCWy3P+BSJIkSZIkSUvBcjXNlZVdK5gZhiRJkqSVzm6YJUmSpNFnZZckSZIAC3wlSZIkSQtnIwsNgpVdkqQlY8G5JEmSdO/r4jMPfuCAIpEkaXmwQk2T9b2yK8nBwCnAfYF/qKqT+x3DcuUPXJod86HBsfJL6pgPSRo08yFJg2Y+ND3vm7QU/F5NzbxIWj76WtmV5L7A3wLPADYCn0tyQVV9uZ9xLAYrljQMvFCZu+WUD61EV226g2N6vvd+5zWKzIckDdoo5UO917tr99/CmsGFImkRjVI+JGn5GmRetNAyvUGXCVo2rmHU75ZdTwHWV9W1AEnOBQ4DvJiR1C/mQ0NkexdHVmZpmRqZfGjQN1CSlszI5EOSli3zIUnDYNnkRQstX/HeT8tBvyu79gKu65nfCBzQ5xhmxR+4prJq3YWs3X/LPS1L/F6MpJHJh3TvvHjt/jMvn/ybnOuTRnPZfiIvMB/YPv+n3svI5kNL9fRe7//Wybb3u5zrcm3fcvyMRzHmJbZk+ZCftaRZGul8yLIBadlYkrxoqvumme55ptum10Lzmbney9lyS6MoVdW/gyXPAw6uqv/V5o8CDqiqE3rWOQ44rs0+Gvhq3wJcPHsANw86iD7yfJenR1TVwwYdxGKbTT7U0ochLxqm79qwxDIscYCxTGcxYzEfmls+NEzfg7ka5dhhtOM39pmZDw3+eqjXKH5fjbk/lnPM5kPDlQ/1GsXv3VSWy3mA57JUlmU+BH0vqx6mv+mEYYtp2OIBY5qtpY5pVvlQv1t2bQL26Znfu6Xdo6pOA07rZ1CLLcnnq2r1oOPoF89XI2a7+RAMR140TN+1YYllWOIAY5nOMMUyxJYkHxrlz36UY4fRjt/YV6yRuR7qNYp/c2PuD2MeSSOZD/VaLn/D5XIe4LloXvpWVj2Mf9Nhi2nY4gFjmq1hiek+fT7e54D9kuyb5H7AEcAFfY5B0spmPiRp0MyHJA2a+ZCkQTMfkjQMzIukZaSvLbuqakuSE4CPAfcFzqiqq/sZg6SVzXxI0qCZD0kaNPMhSYNmPiRpGJgXSctLv7sxpKouAi7q93H7bCib2C8hz1cjZYTyoWH6rg1LLMMSBxjLdIYplqG1RPnQKH/2oxw7jHb8xr5CjdD1UK9R/Jsbc38Y8wga0Xyo13L5Gy6X8wDPRfPQx7xoGP+mwxbTsMUDxjRbQxFTqmrQMUiSJEmSJEmSJEnz0u8xuyRJkiRJkiRJkqRFY2XXIkiyIclVSa5M8vmWtnuSi5N8rb3vNug45yvJGUluSvKlnrQpzy+dtyVZn+SLSZ40uMjnbppzfXWSTe3ve2WSQ3uWndTO9atJnjWYqLUcDDIfGabf+LD8BpPsk+STSb6c5OokL2/pff9cZohlEJ/L/ZN8Nsl/tlj+sqXvm+Sydsz3tYF9SbJTm1/flq9arFi0VZKD2996fZJ1A45l1nnZTL+bJEe39b+W5Oie9Ce3/a9v22aB8S5K/jfXeKc7xiLEPud8Ybrvz1L+rmfI10bis1d/Tfd9GQVJ7pvkC0k+MuhYZiPJrknOT/KVJNck+YVBx7Q9Sf6wfS++lOS9Se4/6JimMpf/Nxpuo5wnTWfU8qrpjGIeNpVRydc0bd7+hCSXtmvxzyd5Skv/k55r9C8luTvJ7m3Zve6hFjmmxyf5TDvGPyd5SM+yOd0jLHVMSZ6R5PKWfnmSp/VsM95imvgcf6pPMa1K8v2e476jZ5tFuT+dYzxH9sRyZZKfJHlCW7aYn9GS37MtiarytcAXsAHYY1LaXwPr2vQ64A2DjnMB5/fLwJOAL23v/IBDgX8BAhwIXDbo+BfhXF8N/PEU6z4G+E9gJ2Bf4OvAfQd9Dr5G8zXIfGSYfuPD8hsE9gSe1KYfDPxXO17fP5cZYhnE5xLgQW16R+Cydr7nAUe09HcAv9+m/wB4R5s+AnjfUnyHV/KLbhDlrwM/A9yv/e0fM8B4Zp2XTfe7AXYHrm3vu7Xp3dqyz7Z107Y9ZIHxLjj/m0+80x1jEWKfU74w0/dnKX/XLFIeO6jP3ld/X9N9XwYd1yxj/yPgPcBHBh3LLOM9C/hfbfp+wK6Djmk78e4FfAPYuc2fBxwz6LimiXXW/298DfdrlPOkGc5ppPKqGc5jpPKwac5hZPI1X9Pm7R/vue48FBifYrtfAz7RM7+BSfdQixzT54BfadMvAV7bpud8j9CHmJ4IPLxNPw7Y1LPNOLB6AJ/Tqt71Ju1nUe5P5xLPpO32B76+RJ/Rkt+zLcXLll1L5zC6f7S09+cOLpSFqapPAbdOSp7u/A4Dzq7OpcCuSfbsS6CLYJpznc5hwLlV9cOq+gawHnjKkgWnlagv+cgw/caH5TdYVddX1RVt+k7gGrobj75/LjPEMp2l/Fyqqja32R3bq4CnAee39Mmfy8TndT5w0HyfdNK0ngKsr6prq+pHwLl0n/swmevv5lnAxVV1a1XdBlwMHNyWPaSqLq3uqvlsFpgvLlL+N594F5y/L1J+OeX3p/1Ol+x3vYh57EA+e/XXPP4PDoUkewPPBv5h0LHMRpJd6ApaTgeoqh9V1e0DDWp2dgB2TrID8ADg2wOOZ0pz/H+jITaqedJ0Ri2vms4I52FTGYl8TdPm7QVMtJzahan/fi8E3tvHmB4FfKpNXwz8Zpue0z1CP2Kqqi9U1cRndjXdb2Gn+R57MWKazmLeny4gnhfS/X0W3VLfsy1FzGA3houlgI+35pXHtbSxqrq+Td8AjA0mtCUz3fntBVzXs95GRvjCr8cJrQnmGdnavcRyPVcNxrDlI8P2Gx/YbzBdF11PpGvFNNDPZVIsMIDPJV03J1cCN9FdpHwduL2qtkxxvHtiacvvAB66WLEIGL7/RXPJy6aLfab0jVOkL7Z+xLuU+ftc8oXp0h9Kn37XC8xjh+2z1xKb4v/gMHsr8KfATwYcx2ztC3wHeFe67sz+IckDBx3UTKpqE/BG4FvA9cAdVfXxwUY1J+ZHI27E8qTpvJXRyqumM3J52FSWQb4meAXwf5NcR/e3PKl3YZIH0BX0f6Aneap7qMV0NVsrq54P7NOm53qN3Y+Yev0mcEVV/bAn7V2te77/vQQP0s4U074tb/m3JP+zpS31/elsPqMXcO+K00X/jJbonm1JWNm1OH6pqp4EHAIcn+SXexe22t0aSGR9sNzPDzgV+FngCXQXG28aaDRaroY2HxmC3/jAfoNJHkR3EfqKqvpu77J+fy5TxDKQz6Wq7q6qJwB70z3x9XP9OK5GxtDmZfPRj3gX+Rgjdc0y6Dx21L6PK91M35dhk+Q5wE1VdfmgY5mDHei6zzm1qp4IfI+ua5qh1Sr0D6Mr5H448MAkvz3YqObH/Gj0jFKeNJ0RzaumM3J52FSWU762gv0+8IdVtQ/wh7TWhj1+DfiPquptxTPjPdQieAnwB0kup+uO7keLvP/5mDGmJI8F3gD8bk/ykVW1P/A/2+uoPsV0PfDfWt7yR8B70jPu2RLa3md0AHBXVX2pJ3nRP6NB37PNlZVdi6A9eUFV3QR8iK7w78aJLqza+02Di3BJTHd+m9i2pnnvljayqurGVrj7E+CdbO0ObNmdqwZnCPORofmND+o3mGRHun/o51TVB1vyQD6XqWIZdN7UugX5JPALdM3Td5jiePfE0pbvAtyy2LGscEP1v2iOedl0sc+UvvcU6YutH/EuSf4+j3xhuvRbWOLf9SLlsUPz2WtpTfN9GWZPBX49yQa6rmWeluQfBxvSdm0ENlbVRAuV8+kKjofZ04FvVNV3qurHwAeBXxxwTHNhfjSiRjBPms4o5lXTGcU8bCqjnq8Jjqb7uwG8n3sPKXAEk1riTHMPtWiq6itV9cyqenI79tfborleY/cjponuVT8EvKiqvt6zzcTndCfdOIN9+Zyq6+bxljZ9eUt/FEt8fzrTZ9TM9F1alM9oie/ZloSVXQuU5IFJHjwxDTwT+BJwAV0GR3v/8GAiXDLTnd8FwIvSOZCuyfX1U+1gVEz8gJvfoPv7QneuRyTZKcm+wH50AxNKczKk+cjQ/MYH8RtsTb1PB66pqjf3LOr75zJdLAP6XB6WZNc2vTPwDLp+mz8JPK+tNvlzmfi8nkc3CO9QPfWzDHwO2C/JvknuR3fBe8EgAplHXjbd7+ZjwDOT7Naebn0m8LG27LtJDmy/ixexNPliP+Jdkvx9HvnClN+f9jtdst/1IuaxQ/PZa+nM8H0ZWlV1UlXtXVWr6H5Xn6iqoX4yv6puAK5L8uiWdBDw5QGGNBvfAg5M8oD2PTmI7rpkVJgfjaBRzJOmM4p51XRGNA+byqjna+rG6PqVNv004GsTC9KNLfcr9OT3M9xDLZokP9Xe7wP8OfCOtmhO9wj9iKmVN1wIrKuq/+hZf4cke7TpHYHn0KfPqZWD3LdN/wzd53TtUt+fzvB3m0g7nJ7xuhb7M1rqe7b5xrVdVeVrAS/gZ4D/bK+rgT9r6Q8FLqHL1P4V2H3QsS7gHN9L12Tzx3RPyxw73fkBAf6Wrrb5KmD1oONfhHN9dzuXL9L9cPfsWf/P2rl+FThk0PH7Gs3XoPORYfqND8tvEPgluqbYXwSubK9DB/G5zBDLID6X/wF8oR3zS8Bf9HyHP0s3oO37gZ1a+v3b/Pq2/Gf68Ztaaa/2ffiv9jf/swHGMae8bKbfDV2XDevb68U96avbd+/rwNuBLDDmRcn/5hrvdMdYhNjnnC9M9/1Zyt81i5jHDuKz99Xf13Tfl0HHNYf41wAfGXQcs4z1CcDn22f9T8Bug45pFjH/JfCV9nt/90ReNWyvafJs86MRfI16njTDeY1MXjXDOYxcHjbNeYxEvuZr2rz9l4DL6e6JLgOe3LP+McC5k/Yx5T3UIsf0crrr/f8CTqbnHoo53iMsdUx0lTrf68lfrwR+Cnhg+1y/2D6nU4D79imm32zHvBK4Avi1nv0syv3pPP5ua4BLJ+1jsT+jJb9nW4rXxB9NkiRJkiRJkiRJGjl2YyhJkiRJkiRJkqSRZWWXJEmSJEmSJEmSRpaVXZIkSZIkSZIkSRpZVnZJkiRJkiRJkiRpZFnZJUmSJEmSJEmSpJFlZZckSZIkSZIkSZJGlpVdkiRJkiRJkiRJGllWdkmSJEmSJEmSJGlkWdklSZIkSZIkSZKkkWVllyRJkiRJkiRJkkaWlV2SJEmSJEmSJEkaWVZ2SZIkSZIkSZIkaWRZ2aWRkaSSPHKR9nVMkk/PsHw8yf9ajGNJkqSVK8nVSdYMOg5JK5f5kKRRl2TnJP+c5I4k7x90PJIGZzHLh7X8WNk1pJL8Y5J3TUr7lSS3JNlzCY97TJK7k2xO8t0k/5nkOUt1vIVK8tUkj+qZf3XL9A4YZFzSSpJkQ5IfJdljUvoX2u9x1SIe66NJXjNF+mFJbkiywyIe60EtL/yXxdqnpKXV8qPvt9/ubUkuTLLPEhzn1Un+cVLaeJIftGNPvH6hqh5bVePzPM5hSa5s12Q3J/lEkn17YvjxpOP96TT7OSHJ55P8MMmZ84lF0uyYD907H0qyU5LTk3wzyZ1tf4fM68Qlzdog86Mp1rlX4fRstuvxPGAMeGhVPX+K/e+a5Ix2T3hnkv9Ksm7S8b/Xk1fdPsvjSpqlSdcDP+nJfzYnOXKabdYk2biIMfReC92R5FNJ9l+s/fccZ8ZGFG2dxyb5eJJbk9ye5PIkh7Zla9pn1PuZ/fNix7kSWdk1vF4OHJLkGQBJ7g+8E1hbVdcvxgFmKBT+TFU9CNgV+Dvg3CS7LsYxF1OSnwXuW1X/1eYDvAi4tb1L6p9vAC+cmGkXEw9YguOcBfx2+733Ogo4p6q2zGVnM+SDAL8J/BB4RpKfnuc+JPXfr7XrmD2BG4G/6eOxT6iqB/W8PjPfHbUCobOBtcAuwL7A3wJ396z2vknH++tpdvdt4HXAGfONR9KcmA9tawfgOuBX2n7+HDgvi/hAlKRpDTI/WkyPAP5rhvu9twAPAv47XT7z68D6Ses8viev2nXJIpVWqN7rAeBbtPynvc7pYygntBh2B8aBd/fx2L3+GbgY+Gngp4CXAd/tWf7tSddQvzaIIJcbK7uGVFXdArwUOC3JA4FXAV+vqjOTHJjk/7Va4f9MT5cUSV6c5Jr2JMu1SX63Z9maJBuTnJjkBuBdzKCqfkKXITwQ2K/tY6ckb0zyrSQ3JnlHkp0n7f9Pk9yU5Pokz01yaHuq5tYkr+yJZ6ckb03y7fZ6a5Kdepb/SdvHt5O8ZIoQnw1c1DP/P+ku4F4GHJHkfj37emiSC9I9kfhZ4Gd7d5TkGUm+0mr93w5MLkiXNLN3s20l89F0hSP3SPLsdK29vpvkuiSv7ll2/3QtWm9pedvnkoxNcZx/Ah5K93uf2HY34DkTx0tyZpK/Tffk4p1JLmuV4xPrV5Ljk3wN+NoM53Q08A7gi8BvTzqXDS0v/SLwvSQ7zDdvlrQ0quoHwPnAYybS2jXJl9tvcVOSP27ps76GSXIw8ErgBe0JvP+cKY6WXzy9Tb86yXlJzm4xXJ1k9TSbPgH4RlVdUp07q+oDVfWteXwWH6yqfwJumeu2kubPfOiez+F7VfXqqtpQVT+pqo/QPSj15LnsR9L8DUt+NJ2eY67tOeaL27K/BP6i5xjHTrGLnwfeU1W3tXzmK1V1/nxikbS4Mk35b7ry7n8BHp6trZsenuQpST7TylauT/L29JTxzlZV3Q2cy7b53lPS9Xjx3XTl2m9u6ataWdGL05VX3Zbk95L8fJIvtlje3tb973RlRb+QaVqKpuv5aF/gnVX1o/b6j6qasTWYFs7KriFWVe8HrgDeCxwHHJdkL+BCuqdzdwf+GPhAkoe1zW6iK/R9CPBi4C1JntSz259u2z2i7XNaSe7b9vFj4Jst+WTgUXQ3Po8E9qK76Ojd//170t9JV0j8ZLrC6f+d1u0F8GfAgW1fjweeQveU38QF0x8Dz6CraHv6FCEe2j6LCUfT1Zqf1+Z7a8T/FvgBXWXYS9pr4jz3AD7Yjr0H8HXgqdN9LpKmdCnwkCT/veUdRwCTu6T4Hl2F2K50ldW/n+S5bdnRdE/g7UNXmfV7wPcnH6Sqvk/3G++tWDsc+EpV9d5YHQH8JbAb3RN9r5+0q+cCB9Bz0dMrySOANcA57TVVa9EXtvPYla5LjYXkzZIWWZIHAC+gy58mnA78blU9GHgc8ImeZbO6hqmqjwJ/xdbWDI+fY2i/TnfTtStwAfD2ada7Avi5JG9J8qtJHjTH40gaMPOhqaV7oOlRwNWLsT9J2zfE+VGvn6a7J9wLOBb42yS7VdWrJh3j9Cm2vRR4fSuo3m8BMUhafFOW/1bV94BD2LaF07fpWpD/IV0Z7S8ABwF/MNeDtgqyI9k23zsFOKWqHkLXEOK8SZsdQFcO/QLgrS32pwOPBQ5P8itVdQ1dmdVnZmgpegtdWdQ/tocFpnqYW0vAyq7h9wfA04DXVNV1dBcXF1XVRe1plYuBz9NV/FBVF1bV19uTd/8GfJyeFhDAT4BXVdUPW6HxVA5stdI/AN4I/HZV3ZQkdBVkf1hVt1bVnXQXHEf0bPtj4PVV9WO6G6g96DKRO6vqauDLdBkbdBnOa6rqpqr6Dl3B9FFt2eHAu6rqSy3ze3VvgO1C7efpmqNOzD+f7kmeH9M9sfSituy+dN2R/UV7qvBLdF2hTTgUuLqqzm/bvhW4YZrPRtL0Jlp3PQO4BtjUu7CqxqvqqpZ3fZGuIv9X2uIf01VyPbKq7q6qy6uqt3l3r7OA56Xr3pV2zLMmrfOhqvps6+biHLqLql7/p+Vj0+WDRwFfrKov0+Vlj03yxEnrvK2qrmv7WGjeLGnx/FO7jrmDLj/6vz3Lfgw8JslD2pO/V0xaNttrmOm8rT31d3uSK6ZZ59Mtr7ibLt+ccp9VdS1dpftedDdhN6drudpb2Hx4z/FuT/Lw7cQnqT/Mh6aRZEe6a7Ozquor2zkXSQs3yPxorn5MV0b046q6CNgMPHqW276ULm85AfhykvW599iAV/TkVW9bvLAlbcdM5b/30sqDLq2qLVW1Afh7tpYdzcbbWr53J12e8Jc9y34MPDLJHlW1uaounbTta6vqB1X1cboHtt/b4t4E/DswuVxounMo4FeBDcCbgOvTjR/WWxn/8EnXUIfP4Rw1DSu7hlxV3QjczNan3h4BPL/3xwD8El2LJZIckuTStMHv6Apa9+jZ5Xeqa74+k0tbrfRudE/6TRTIPoxuDJ7Le4790ZY+4ZZ20wRbW2Xc2LP8+3T9KAM8nK0txmjTD+9Zdt2kZb0OAv5fVf2wzf8GsIWt3RqeQzfm2cNafBP9xE+1v22O1TKk3nUlzc67gd8CjmFSF4YASQ5I8skk30lyB92TMHv0bPsxujECv53kr1thyL1U1+z7ZuC56bonfArwnkmr9VZY38XWfGfC9n7jL6LLR2gXNf9G1/psun0sNG+WtHie265j7k93c/Nv2Tru3m/S/f6+meTfkvxCz3ZzuYaZzsuqatf2mq715uT86f6ZZuy/dpN3eFU9jO567Jfpni6ccF7P8XZtT0JKGjzzoSkkuQ/dNd+P6D4XSUtvkPlRr7uByfd3O9IVPPces3dMrqnu46ZUVd+vqr+qqifTPUR5HvD+JLv3rPaknrzqZXOIXdLCzFT+ey9JHpXkI0luSPJduoYWcyk/eVnL93am62Hn/CT/oy07lq51+VfSDZ/xnEnbTs7n5p3vVdXGqjqhqn6Wrszoe2xbVvbtSddQk1uZaR6s7Bo91wHvnvRjeGBVnZxuvKsP0LXGGms/7IvYdvypmu2Bqmoz8PvAUa1Fw810P+zH9hx7l+oG/ZuPb9P92Cf8t5YGcD1dd2a9y3odyrbjdR1Nl+F8K914ZO+nu3D6LeA7dBVh0+1vm2O1Fmy960qahar6Jt34C4fSdQ062XvoKtD3qapd6Po4Ttv2x1X1l1X1GOAX6S5Ipuo6cMLZbflvAx9rDwbMKdzpFiT5Rbpm6ye1i6sb6Jqy/9akgqDefSw0b5a0yKprJfpBusKVX2ppn6uqw+gGCP4n7t1txax3vyhBzuWAVZ+jy1sf1+9jS5of86Gt2j3W6XRdP/9may0iqU+GID/6FrBqUtq+3PvB5gWrroeQv6Ibf37f7awuaenNVP47Vf5xKvAVYL/quht8JfMoP6mu151/p+tO8Jkt7WtV9UK6fO8NdBVhD5zrvqeJe6ZYrqMbYsd7uSVmZdfo+Ufg15I8K8l9k9w/3UCeewP3A3aiVe60JtvPXMjBqupW4B/ougD8CV0/zW9J8lMASfZK8qx57v69wJ8neVi6cbP+gq1j/JwHHJPkMa2LwldN2vYQ2nhd6cYxO4iucPwJbO0D9g3Ai9rTSB8EXp3kAUkew7YtNC6k66Ls/2sF2S+j6yta0twdCzytuu5HJ3swcGtV/SDJU+gqowFINw7E/um6Hf0u3RN+P5nhOGfT9Zv8O9y7C8OFOhq4mG48rye01+Pongqa3BXGhL7mzZK2L53D6FqqX5PkfkmOTLJLK2T9LjPnMzO5EVjVWiksiSS/lOR3eq65fo5unJ3JXW3MZl87pOv69b7ARB41ZSsOSYvHfGgbpwL/Hfi1mr4baUlLZAjyo/fRlf/sneQ+SZ5ON876+fM85jaS/O8kP9/O6/7Ay4Hbga8uxv4lLchM5b83Ag9NskvP+g+my5M2t2uP35/vgVuL1cfQekxL8ttJHtbKuG9vq80n77sR2DvduGBTHXe3JH+Z5JEtz9sDeAnzu4bSHFjZNWJaTfBhdLXa36FrTfAnwH2qG0PrZXQVRbfRFSRfsAiHfStwaGvyeSJdjfilrSnpvzL7PpQnex3dmDZfBK6iGwD5dQBV9S/tuJ9ox7tnoNQkjwM2V9W3WtJRwJVV9fGqumHiBbwN+B9t/RPoWn7dAJwJvGtif1V1M914XyfTDSC4H/Af8zwnaUWrblyqz0+z+A+A1yS5k+7ipvfJwZ+mu9H5Lt14X/9G183NdMfZAPw/uqf1FiOfA6DdGB0O/E1vflJV32jxTO7KcCKeQeTNkqb2z0k20+UnrweOrm5sCeiuGTa0a5jfo+s/fj7e395vyfRj4izU7XSFyle18/ko8CHgr+exrz+na52/jq5F7PdbmqSlYT7UI8kjgN+le4DohiSb22u+5y5p9oYlP3oN3f3bp+nuif4aOLK6MdUXQ9GV89xM12LkGcCzW49FkgZrpvLfr9BVhl2brWN//jFducmddI0u3jfH47194lqDrhznz1s5M8DBwNVt2SnAEfN8COcTdBVoNyS5eYrlP6JrzfqvdPnvl4Af0g37oSWUqr73fiAtSJI/Bfaoqj8ddCySJEmSJEmSJGmw7L5Eo2gD8M+DDkKSJEmSJEmSJA2eLbskSZIkSZIkSZI0shyzS5IkSZIkSZIkSSPLyi5JkiRJGgFJ9knyySRfTnJ1kpe39N2TXJzka+19t5aeJG9Lsj7JF5M8qWdfR7f1v5bk6EGdkyRJkiQthqHuxnCPPfaoVatWzWrd733vezzwgQ9c2oBGIAbjMI7FiuPyyy+/uaoe1oeQht5s86Jh+RtPxdjmb5jjW+6xmQ9tNar5kPHMzHhmNgzxDFs+lGRPYM+quiLJg4HLgecCxwC3VtXJSdYBu1XViUkOBV4KHAocAJxSVQck2R34PLAaqLafJ1fVbdMde5TyoWGIYVjiMIbhiWG+cQxbPjRIo5QPzcUoxTtKscJoxTvMsZoPbTVq+dAwxGEMxrAYccw6H6qqoX09+clPrtn65Cc/Oet1l8owxFBlHJMZx7ZmGwfw+RqCfGAYXrPNi4blbzwVY5u/YY5vucc2SvkQ8IfA1cCXgPcC9wf2BS4D1gPvA+7X1t2pza9vy1dtb/+jmg8Zz8yMZ2bDEM+w50PAh4FnAF+lqwQD2BP4apv+e+CFPet/tS1/IfD3PenbrDfVa5TyoWGIoWo44jCG4Ymhan5xDHs+1M/XKOVDczFK8Y5SrFWjFe8wx2o+NLr50DDEYQzGMNlSXg/tMKcqNEmSJG0jyV7Ay4DHVNX3k5wHHEHXkuItVXVukncAxwKntvfbquqRSY4A3gC8YEDhSxpRSVYBT6SrNB+rquvbohuAsTa9F3Bdz2YbW9p06ZOPcRxwHMDY2Bjj4+PbjWvz5s2zWm8pDUMMwxKHMQxPDMMUhyRJ0nJkZZckSdLC7QDsnOTHwAOA64GnAb/Vlp8FvJqusuuwNg1wPvD2JGlPK0nSdiV5EPAB4BVV9d0k9yyrqkqyKPlJVZ0GnAawevXqWrNmzXa3GR8fZzbrLaVhiGFY4jCG4YlhmOKQJElajqzskiRJWoCq2pTkjcC3gO8DH6cb/+b2qtrSVuttNXFPi4qq2pLkDuChwM29+x3VFhW9jGdmxjOzYYtnWCTZka6i65yq+mBLvjHJnlV1fRvX66aWvgnYp2fzvVvaJmDNpPTxpYxbkiRJkpaSlV2SJEkLkGQ3utZa+wK3A+8HDl7ofke1RUUv45mZ8cxs2OIZBumacJ0OXFNVb+5ZdAFwNHBye/9wT/oJSc4FDgDuaBViHwP+quVfAM8ETurHOUiSJEnSUrCyS5IkaWGeDnyjqr4DkOSDwFOBXZPs0Fp3TbSmgK0tLTYm2QHYBbil/2FLGkFPBY4CrkpyZUt7JV0l13lJjgW+CRzell1EN37geuAu4MUAVXVrktcCn2vrvaaqbu3LGUiSJEnSElg2lV1XbbqDY9ZdeM/8hpOfPcBoJK1E5kPSivUt4MAkD6DrxvAg4PPAJ4HnAedy75YWRwOfacs/sVjjdZkPSctbVX0ayDSLD5pi/QKOn2ZfZwBnLF50HfMhSYNmPiRpJVrVk++BeZ9WpvsMOgBJkqRRVlWXAecDVwBX0V1fnQacCPxRkvV0Y3Kd3jY5HXhoS/8jYF3fg5YkSVpESfZJ8skkX05ydZKXt/Tdk1yc5GvtfbeWniRvS7I+yReTPGmwZyBJkkbdsmnZJUmSNChV9SrgVZOSrwWeMsW6PwCe34+4JEmS+mQLsLaqrkjyYODyJBcDxwCXVNXJSdbRPeRzInAIsF97HQCc2t4lSZLmxZZdkiRJkiRJmrequr6qrmjTdwLXAHsBhwFntdXOAp7bpg8Dzq7OpXRjne7Z36glSdJyYmWXJEmSJEmSFkWSVcATgcuAsaq6vi26ARhr03sB1/VstrGlSZIkzYvdGEqSJEmSJGnBkjwI+ADwiqr6bpJ7llVVJak57u844DiAsbExxsfHt7vN2M6wdv8t98zPZptB2rx589DHOGGUYoXRineUYpWkYWVll6Shl+QM4DnATVX1uJb2f4FfA34EfB14cVXd3p4ivAb4atv80qr6vbbNk4EzgZ2Bi4CXV9WcbrYkSZIkSfeWZEe6iq5zquqDLfnGJHtW1fWtm8KbWvomYJ+ezfduaduoqtOA0wBWr15da9as2W4cf3POh3nTVVuLuzYcuf1tBml8fJzZnNcwGKVYYbTiHaVYJWlY2Y2hpFFwJnDwpLSLgcdV1f8A/gs4qWfZ16vqCe31ez3ppwK/w9aBkCfvU5IkSZI0R+macJ0OXFNVb+5ZdAFwdJs+GvhwT/qL0jkQuKOnu0NJkqQ5s7JL0tCrqk8Bt05K+3hVTfRNcSndk4DTak8RPqSqLm2tuc5m6+DIkiRJkqT5eypwFPC0JFe216HAycAzknwNeHqbh66njWuB9cA7gT8YQMySJGkZmXc3hkn2oSssHgMKOK2qTknyarqWE99pq76yqi5q25wEHAvcDbysqj62gNglacJLgPf1zO+b5AvAd4E/r6p/pxvseGPPOjMOgLzc+oYf5v6/hzk2GO74jE2SJEnDoKo+DWSaxQdNsX4Bxy9pUJIkaUVZyJhdW4C1VXVFkgcDlye5uC17S1W9sXflJI8BjgAeCzwc+Nckj6qquxcQg6QVLsmf0eVH57Sk64H/VlW3tDG6/inJY+e63+XWN/ww9/89zLHBcMdnbJIkSZIkSdICKrtaX8rXt+k7k1zDDK0kgMOAc6vqh8A3kqwHngJ8Zr4xSFrZkhwDPAc4qD0ZSMtjftimL0/ydeBRdIMd93Z1OOUAyJIkSZIkSZKk0bIoY3YlWQU8EbisJZ2Q5ItJzkiyW0vbC7iuZ7MZuxCTpJkkORj4U+DXq+qunvSHJblvm/4ZYD/g2lZB/90kB7bBk1/E1sGRJUmSJEmSJEkjaiHdGAKQ5EHAB4BXVNV3k5wKvJZuHK/XAm+iG09ntvub8zg5MBxj5QzL+CTGYRyjEMdcJHkvsAbYI8lG4FXAScBOwMVd3RWXVtXvAb8MvCbJj4GfAL9XVbe2Xf0BcCawM/Av7SVJkiRJkiRJGmELquxKsiNdRdc5VfVBgKq6sWf5O4GPtNlNwD49m0/Zhdh8xsmB4RgrZ1jGJzEO4xiFOOaiql44RfLp06z7Abp8aaplnwcet4ihSZIkSZIkSZIGbN7dGLZuwE4HrqmqN/ek79mz2m8AX2rTFwBHJNkpyb50XYt9dr7HlyRJkiRJkiRJkhbSsuupwFHAVUmubGmvBF6Y5Al03RhuAH4XoKquTnIe8GVgC3B8Vd29gONLkiRJkiRJkiRphZt3ZVdVfRrIFIsummGb1wOvn+8xJUmSJEmSJEmSpF7z7sZQkiRJkiRJkqRBS3L/JJ9N8p9Jrk7yly193ySXJVmf5H1J7tfSd2rz69vyVQM9AUkLZmWXJEmSJEmSJGmU/RB4WlU9HngCcHCSA4E3AG+pqkcCtwHHtvWPBW5r6W9p60kaYVZ2SZIkSZIkSZJGVnU2t9kd26uApwHnt/SzgOe26cPaPG35QUmmGrJH0oiwskuSJEmSJEmSNNKS3DfJlcBNwMXA14Hbq2pLW2UjsFeb3gu4DqAtvwN4aF8DlrSodhh0AJIkSZIkSZIkLURV3Q08IcmuwIeAn1voPpMcBxwHMDY2xvj4+Ha32bx586zWW0xr99+yzfz4+PhA4pjMGIyhn3FY2SVJkiRJkiRJWhaq6vYknwR+Adg1yQ6t9dbewKa22iZgH2Bjkh2AXYBbptjXacBpAKtXr641a9Zs9/jj4+PMZr3FdMy6C7eZ33DkmoHEMZkxGEM/47AbQ0mSJEmSJEnSyErysNaiiyQ7A88ArgE+CTyvrXY08OE2fUGbpy3/RFVV3wKWtOhs2SVJkiRJkiRJGmV7AmcluS9dA4/zquojSb4MnJvkdcAXgNPb+qcD706yHrgVOGIQQUtaPFZ2SZIkSZIkSZJGVlV9EXjiFOnXAk+ZIv0HwPP7EJqkPrGyS5IkSZJGQJIzgOcAN1XV41raq4HfAb7TVntlVV3Ulp0EHAvcDbysqj7W0g8GTgHuC/xDVZ3cz/OQJEnSwqyaNEaXJMfskiRJkqRRcSZw8BTpb6mqJ7TXREXXY+i643ls2+bvkty3de3zt8AhwGOAF7Z1JUmSJGlkWdklSZK0QEl2TXJ+kq8kuSbJLyTZPcnFSb7W3ndr6ybJ25KsT/LFJE8adPySRkNVfYpuTInZOAw4t6p+WFXfANbTdeHzFGB9VV1bVT8Czm3rSpIkSdLIsrJLkiRp4U4BPlpVPwc8HrgGWAdcUlX7AZe0eehaU+zXXscBp/Y/XEnLzAmt8vyMiYp1YC/gup51Nra06dIlSZIkaWQ5ZpckSdICJNkF+GXgGIDWUuJHSQ4D1rTVzgLGgRPpWlCcXVUFXNpahe1ZVdf3OXRJy8OpwGuBau9vAl6yGDtOchxdpTxjY2OMj49vd5uxnWHt/lvumZ/NNott8+bNAznuMMZhDMMTwzDFIUmStBxZ2SVpJEwzIPvuwPuAVcAG4PCqui1J6FpZHArcBRxTVVe0bY4G/rzt9nVVdVY/z0PSsrQv8B3gXUkeD1wOvBwY66nAugEYa9PTtaqwskvSnFXVjRPTSd4JfKTNbgL26Vl175bGDOmT930acBrA6tWra82aNduN52/O+TBvumrrbeaGI7e/zWIbHx9nNrGuhDiMYXhiGKY4JEmSliMruySNijOBtwNn96RNdBF2cpJ1bf5Etu0i7AC6J54PaJVjrwJW0z39fHmSC6rqtr6dhaTlaAfgScBLq+qyJKewtctCAKqqktRcdjqqLSp6DdsT7MYzM+MZTZNahv4G8KU2fQHwniRvBh5Od130WSDAfkn2pavkOgL4rf5GLUmSJEmLa96VXUn2oSt0HqMrND6tqk6ZT0sLSdqeqvpUklWTkufURVhb9+KquhUgycXAwcB7lzp+ScvaRmBjVV3W5s+nq+y6caIQuuVBN7XlM7W2uMeotqjoNWxPsBvPzIxn+CV5L931zB5JNtI9xLMmyRPo7sk2AL8LUFVXJzkP+DKwBTi+qu5u+zkB+BhwX+CMqrq6v2ciSZIkSYtrIS27tgBrq+qKJA+mayFxMd14FbNuabGQ4CWteHPtImzWA7IvhxYVvYb56fhhjg2GOz5jGw5VdUOS65I8uqq+ChxEV7j8ZeBo4OT2/uG2yQXACUnOpbsWusPxuiTNRlW9cIrk02dY//XA66dIvwi4aBFDk7TCTdPt/KuB36Hr7hnglS3/IclJwLHA3cDLqupjfQ9akiQtK/Ou7GqFMte36TuTXENXaOxg7JL6bj5dhG1nfyPfoqLXMD8dP8yxwXDHZ2xD5aXAOUnuB1wLvBi4D3BekmOBbwKHt3Uvomvpvp6utfuL+x+uJEnSojqTe3c7D/CWqnpjb0KSx9B1ofpYum5W/zXJoyZan0qSJM3HoozZ1boWeyJwGQ7GLql/5tpF2Ca2VsZPpI/3IU5Jy1xVXUk3HuBkB02xbgHHL3VMkiRJ/TJNt/PTOQw4t6p+CHwjyXrgKcBnlio+SVppVq27kLX7b+GYdRcCsOHkZw84ImnpLbiyK8mDgA8Ar6iq73ZDc3X6NRg7DEf3YcPSZZNxGMcoxLFILmAOXYQl+RjwV0l2a+s9EzipzzFLkiRJ0kpxQpIXAZ+nGwrjNroHny/tWWfFdC8/lVG6Rx+lWGG04h2lWCVpWC2osivJjnQVXedU1Qdbct8HY4fh6D5sWLpsMg7jGIU45mqaAdlPZg5dhFXVrUleC3yurfeaqrq1bychSZIkSSvHqcBrgWrvbwJeMpcdLLfu5acySvfooxQrjFa8oxSrJA2reVd2pWvCdTpwTVW9uWfRnFpazPf4klaWaQZkhzl2EVZVZwBnLGJokiRJkqRJqurGiekk7wQ+0mZn9TC0JEnSXNxnAds+FTgKeFqSK9vrULpKrmck+Rrw9DYPXUuLa+laWrwT+IMFHFuSJEmSJElDqvX2M+E3gC+16QuAI5LslGRfYD/gs/2OT5IkLS/zbtlVVZ8GMs1iB2OXJEmSJElaAabpdn5NkifQdWO4AfhdgKq6Osl5wJeBLcDxVXX3AMKWJEnLyILG7JIkSZIkSdLKNk2386fPsP7rgdcvXUSSJGmlWUg3hpIkSZIkSZIkSdJAWdklSZIkSZIkSZKkkWU3htIQW7Xuwm3mN5z87AFFIkmSJEmSJEnScLJllyRJkiRJkiRJkkaWlV2SJEmSJEmSJEkaWVZ2SZIkSZIkSZIkaWRZ2SVJkiRJkiRJkqSRZWWXJEmSJEmSJEmSRpaVXZIkSZIkSZIkSRpZOww6AEmSJEmSJEmStDRWrbtwm/kNJz97QJFIS8eWXZIkSZIkSZIkSRpZVnZJkiRJkiRJkiRpZFnZJUmSJEmSJEmSpJFlZZekkZXk0Umu7Hl9N8krkrw6yaae9EN7tjkpyfokX03yrEHGL0mSJEmSpIVLsk+STyb5cpKrk7y8pe+e5OIkX2vvu7X0JHlbKyP6YpInDfYMJC2UlV2SRlZVfbWqnlBVTwCeDNwFfKgtfsvEsqq6CCDJY4AjgMcCBwN/l+S+AwhdkiRJkiRJi2cLsLaqHgMcCBzfyoHWAZdU1X7AJW0e4BBgv/Y6Dji1/yFLWkw7LGTjJGcAzwFuqqrHtbRXA78DfKet9sqeguaTgGOBu4GXVdXHFnJ8SepxEPD1qvpmkunWOQw4t6p+CHwjyXrgKcBn+hSjJEmSJEmSFllVXQ9c36bvTHINsBddWdCattpZwDhwYks/u6oKuDTJrkn2bPsZOqvWXTjoEKSht6DKLuBM4O3A2ZPS31JVb+xNmNSi4uHAvyZ5VFXdvcAYJAm6/OW9PfMnJHkR8Hm6J3tuo7vIubRnnY0tTZIkSZIkSctAklXAE4HLgLGeCqwbgLE2vRdwXc9mE2VE21R2JTmOruUXY2NjjI+Pb/f4mzdvntV6c7F2/y1z3mZs5+m3W+z4prMUn4UxjG4MSx3Hgiq7qupTLfOYDVtUSFoSSe4H/DpwUks6FXgtUO39TcBL5rjPOV/MTL6IGIZ/IBOG5R/aVIY5Nhju+IxNkiRJGj6TW2BsOPnZA4pEWnmSPAj4APCKqvpub+8/VVVJai77q6rTgNMAVq9eXWvWrNnuNuPj48xmvbk4Zh4tu9buv4U3XTV18f+GI9csMKLZWYrPwhhGN4aljmOhLbumY4sKSf10CHBFVd0IMPEOkOSdwEfa7CZgn57t9m5p9zKfi5m/OefD21xE9OvCYTaG5R/aVIY5Nhju+IxNkiRJ6j8rs6ThlGRHuoquc6rqgy35xonuCZPsCdzU0mddRiRpNCxFZdeCWlTMpzUFDEeLimF5it04lk8ck5saL8Z5DMvnscheSE8XhpP6WP4N4Ett+gLgPUneTNed6n7AZ/sZqCRJ0nxNM2by7sD7gFXABuDwqrot3WPMpwCHAncBx1TVFW2bo4E/b7t9XVWd1c/zkCRJWmzt2ud04JqqenPPoguAo4GT2/uHe9JPSHIucABwx7CO1yVpdha9smuhLSrm05oChqNFxbA8xW4cyyeOezVRvup728zO5+mxYfk8FkuSBwLPAH63J/mvkzyBrtJ9w8Syqro6yXnAl4EtwPGOGyhpMSS5L12L9k1V9Zwk+wLnAg8FLgeOqqofJdmJbqzTJwO3AC+oqg0DClvS6DmTe4+ZvA64pKpOTrKuzZ9I1/J9v/Y6gO6hxANa5dirgNV010qXJ7mg9cYhSZI0qp4KHAVcleTKlvZKukqu85IcC3wTOLwtu4juoaD1dA8Gvbiv0UpadIte2WWLCkn9VFXfoytM7k07aob1Xw+8fqnjkrTivBy4BnhIm38D8JaqOjfJO4Bj6QqajwVuq6pHJjmirfeCQQQsafRMM2byYcCaNn0WME5X2XUYcHZVFXBpkl1b1z1rgIur6laAJBcDB9PTSl6SJGnUVNWngUyz+KAp1i/g+CUNSlJf3WchGyd5L/AZ4NFJNrYa8r9OclWSLwK/CvwhdC0qgIkWFR/FFhWSJGkZSLI38GzgH9p8gKcB57dVzgKe26YPa/O05Qeld8RkSZq7sZ6HDW8Axtr0XsB1PetNjJk8XbokSZIkjawFteyqqhdOkXz6DOvbokKSJC03bwX+FHhwm38ocHtVTQy82FuQfE8hc1VtSXJHW//mvkUradmqqkpSi7W/+Yyn7FjKwxWHMQxPDMMUh2a2avJwApIkaSQsejeGkiRJK0WS5wA3VdXlSdYs8r5HspC517AV6hnPzIxnZN040ZV866bwppY+3ZjJm9ja7eFE+vhUO57PeMqOpTxccRjD8MQwTHEshSRnABPXRY9rabsD7wNW0Y2lfHhV3dZatZ9CN1bOXcAxVXXFIOKWJEnLh5VdkiRJ8/dU4NeTHArcn27MrlOAXZPs0Fp3TRQww9bC541JdgB2AW6ZasejWsjca9gK9YxnZsYzsi4AjqYbfP1o4MM96SckORc4ALijVYh9DPirJLu19Z4JnNTnmCUtP2cCbwfO7klbB1xSVScnWdfmTwQOoRvHfT+6/OnU9i5JkjRvCxqzS5IkaSWrqpOqau+qWgUcAXyiqo4EPgk8r602ufD56Db9vLb+onU5Jml5m2bM5JOBZyT5GvD0Ng9wEXAtsB54J/AHAFV1K/Ba4HPt9ZqWJknzVlWfAibnJb1jlU4ew/Ts6lxK95DQnn0JVJIkLVu27JIkSVp8JwLnJnkd8AW2jml6OvDuJOvpCoSOGFB8kkbQNGMmAxw0xboFHD/Nfs4AzljE0CRpKmNVdX2bvgEYa9P3jGHaTIxvej2TLEW3zldtumPG7dfuv91D3MvkY/Qef6rlvUap295RihVGK95RilWShpWVXZIkSYugqsZp495U1bXAU6ZY5wfA8/samCRJ0oBVVSWZc2v2pejW+Zh1F841jO3a3jFm6lp6lLrtHaVYYbTiHaVYJWlY2Y2hJEmSJEmSFtuNE90TtvebWvrEGKYTesc3lSRJmhcruyRJkiRJkrTYescqnTyG6YvSORC4o6e7Q0mSpHmxG0NJkiRJkiTNW5L3AmuAPZJsBF4FnAycl+RY4JvA4W31i4BDgfXAXcCL+x7wIlu1na4RJy/fcPKzlzIcSZJWJCu7JEmSJEmSNG9V9cJpFh00xboFHL+0EUmSpJXGyi5JkiRJkiRJklYIW5xqOXLMLkmSJEmSJEmSJI0sW3ZJI8ynMCRJkiRJWtksG5AkyZZdkiRJkiRJkiRJGmG27JIkSZIkSZKGhC21JEmaO1t2SZIkSZIkSZIkaWRZ2SVp5CXZkOSqJFcm+XxL2z3JxUm+1t53a+lJ8rYk65N8McmTBhu9JEmSJEmSJGkhFtSNYZIzgOcAN1XV41ra7sD7gFXABuDwqrotSYBTgEOBu4BjquqKhRxfGjZ2NTBQv1pVN/fMrwMuqaqTk6xr8ycChwD7tdcBwKntXZIkSZIkSZI0ghbasutM4OBJaRMFzPsBl7R52LaA+Ti6AmZJWiqHAWe16bOA5/akn12dS4Fdk+w5gPgkSZIkSSvQqnUX3vO6atMdgw5HkqRlYUEtu6rqU0lWTUo+DFjTps8CxulaU9xTwAxcmmTXJHtW1fULiUGSgAI+nqSAv6+q04CxnvzlBmCsTe8FXNez7caWtk1elOQ4uop5xsbGGB8f324QYzvD2v233DM/m236ZfPmzUMVT69hjg2GOz5jkyRJkiRJC2VvVVoOFlTZNY0FFTBL0jz8UlVtSvJTwMVJvtK7sKqqVYTNWqswOw1g9erVtWbNmu1u8zfnfJg3XbU1W91w5Pa36Zfx8XFmcw6DMMyxwXDHZ2ySJEn6/9m793C5yvLg/99bQEREDmJ3EahBRf2hqVRT0FdfjUURwTbYWgSpJEpLrVBrm74a1LdSPDS2ouKhWBQKtBzFA1RQTJFda1+DHETCQSVilMRAlHPEA8H798d6NlkZ9mn2nsOa2d/Pdc21Z55Za829Zs8886znqMHXWsnc6e0lSZoLutHY9bCZVDDPZDQFNGNERVN6sRtH/+KofwZhy8/hTOJoPd5UpnP8pvxfOikz15W/GyLi88B+wB1jo0fLNIUbyubrgD1ru+9R0iRJkiRJkiRJA6gbjV2zqmCeyWgKaMaIiqb0YjeO/sWxpHXIb+1zOJM4Wo83lel87pvyf+mUiNgeeFRm3l/uHwicCFwMLAaWl78XlV0uBo6LiPOA/YF7nU5VkiRJkiRJkgZXNxq7rGCW1EsjwOcjAqo87ZzM/HJEXAVcEBFHAz8EDivbXwocDKwGHgDe0PuQJUmSJEmSpGZyDS8Nolk1dkXEucBCYNeIWAu8m6qRywpmST2RmbcCzxkn/U7ggHHSEzi2B6FJkiRJkiRJknpgVo1dmXnEBE9ZwSxJkiRJkiRJkqSue1S/A5AkSZIkSZIkSZJmqhtrdkmSJEmSJEnqgNa1c9rd3rV2JElzgY1dkiRJkiRJ0pCy8UuSNBfY2CVJkiRJkqSh1O6oKEmDKyJOB14FbMjMZ5e0XYDzgXnAGuCwzLw7IgI4GTgYeABYkpnX9iNuSZ3hml1SF81bdsnDt1Xr7u13OJIkSZIkSdKwOgM4qCVtGXB5Zu4NXF4eA7wS2LvcjgFO6VGMkrrExi5JkiRJkiRJ0kDLzK8Bd7UkLwLOLPfPBA6tpZ+VlZXAThGxW08CldQVTmMoSZI0CxGxJ3AWMAIkcGpmnux0GZJ6KSLWAPcDDwGbMnOB+ZAkSRIjmbm+3L+d6roNYHfgttp2a0va+loaEXEM1cgvRkZGGB0dnfIFN27cOK3t2rF0/qa29xnZbmb7jWem59ON98IYBjeGbsdhY5ckSdLsbAKWZua1EbEDcE1ErACWUE2XsTwillFNl/F2tpwuY3+q6TL270vkkobNSzPzp7XHY9P2mA9JkqQ5LzMzIrLNfU4FTgVYsGBBLly4cMp9RkdHmc527Vgyg/UHl87fxEmrOlP9v+bIhTParxvvhTEMbgzdjsPGLqlBXDhXkgZP6SW4vty/PyJupuoRuAhYWDY7ExilqmR+eLoMYGVE7BQRu9V6G0pSp5gPSeq7dkae9itGSUPtjrFyTpmmcENJXwfsWdtuj5LWCE2rI2yNZ83yQ/oUiTQxG7skSZI6JCLmAb8DXMksp8uQpDYl8JXSW/lfSi/knk/b0zpdTj+mSpkLU7QYw+DF0KQ4+mS6I08lqdMuBhYDy8vfi2rpx0XEeVQj3O+144802GzskiRJ6oCIeBzwWeCtmXlftSROZSbTZQxqJXNd0yr1jGdyxjPwXpSZ6yLiN4AVEfGd+pO9mrbnY2dftMV0OTOd8mY25sIULcYweDE0KY6GmGjkqSTNWEScS5W37BoRa4F3UzVyXRARRwM/BA4rm19KtX7paqo1TN/Q84AldZSNXZIkSbMUEdtQNXSdnZmfK8mzmi5jUCuZ65pWqWc8kzOewZaZ68rfDRHxeWA/BnTaHklDp52Rp5I0Y5l5xARPHTDOtgkc292IJPWSjV2SJEmzENUQrtOAmzPzQ7WnBm66DOdhlwZTRGwPPKqsG7g9cCBwIgOYD0kaSjMeedqJke5N1494W9/HVevu3eLx/N13HHe/QRt1PUjxDlKsktRUNnZJfdS0xSYlSTPyQuD1wKqIuK6kvYMhmC7Dxi9pYIwAny/Tp24NnJOZX46IqxjwfEjS4Gtz5GnrvrMe6d50S+dv6nm8raP/l7TWTaz62ZbblzLgoI26HqR4BylWSWqqwfn1lzQlKyUlqfcy8+tATPC002VI6rrMvBV4zjjpd2I+JKmPZjDyVD1gx1tJ0jCysUtzmo1DkiRNn7+bkiSpTe2OPJUkSZoRG7skDayI2BM4i+oCKoFTM/PkiDgB+DPgJ2XTd2TmpWWf44GjgYeAt2TmZT0PXJIkSZLmgHZHnkqSJM1U1xq7ImINcD9VhfKmzFwQEbsA5wPzgDXAYZl5d7dikDT0NgFLM/PaiNgBuCYiVpTnPpyZH6xvHBH7AIcDzwKeBPxnRDw9Mx/qadSS1BBOYSNJkiRJkoZBt0d2vTQzf1p7vAy4PDOXR8Sy8vjtXY5hKI1XOeVUQpprMnM9sL7cvz8ibgZ2n2SXRcB5mflL4AcRsZpqceRvdD1YSZIkSZIkSVJX9Hoaw0XAwnL/TGAUG7skdUBEzAN+B7gSeCFwXEQcBVxNNfrrbqqGsJW13dYyQeNYRBwDHAMwMjLC6OjolDGMbAdL5296+PF09umVjRs3NiqeuibHBs2Oz9jULkdySZIkSZKkYdTNxq4EvhIRCfxLZp4KjJSRGAC3U62zs4WZVDBDMyqZe1mxVz/XMWOv3ZQKxkGIo/V9nG284/1fxoxs98jjT7Z9J4x3Pk35v3RSRDwO+Czw1sy8LyJOAd5DlQ+9BzgJeGM7xyx51qkACxYsyIULF065z8fOvoiTVm3OVtccOfU+vTI6Osp0zqEfmhwbNDs+Y5MkSZLUBK2dqpx9SJLUa91s7HpRZq6LiN8AVkTEd+pPZmaWhjBa0tuuYIZmVDL3smJvyXjTGJZzbkoF4yDE0fo+zvZzM97/ZczS+Zs4rCWOybbvhPHOpyn/l06JiG2oGrrOzszPAWTmHbXnPwV8sTxcB+xZ232PkiZJkiRJkiRJGlBda+zKzHXl74aI+DzVujh3RMRumbk+InYDNnTr9SUNv4gI4DTg5sz8UC19t9oo0lcDN5T7FwPnRMSHgCcBewPf7GHIkiRJkiQNPKfHliQ1TVcauyJie+BRmXl/uX8gcCJVRfNiYHn5e1E3Xr+JHM49GPw/DZwXAq8HVkXEdSXtHcAREbEv1TSGa4A/B8jMGyPiAuAmYBNwbGY+1OOYJUmSJEmSNKRWrbt3i9mcrF+UeqNbI7tGgM9Xgy7YGjgnM78cEVcBF0TE0cAPgcO69PpSR0zVU8kfq/7KzK8DMc5Tl06yz/uA93UtKEmSJEmSJKkNjpaUZq8rjV2ZeSvwnHHS7wQO6MZravYc1SRJkiRJkiRJkgZN19bsGnQ2/EiSpEHX7d6BUx3/jIO27+rrS5IkSZIkgY1d6qK5MD9tu5WIDkmWJEmSJEmSNMgcKKImsrFriIxlMkvnb2LJsktmncmYaUmSJEmSJM1trfVNkiQ1kY1dmjYbvyRJkiRJkiRJUtPY2CVJkiRJkiSpZ6bqUG2Ha2mw+J1VE9jYNUN+gSVJkiRJkqRHst5MktRrNnZNU+uP9CDqdEGj1wUXC0qSJEmSJEmaLeuYJGn42NhVzLYxa96yS7ZYqLPTP5LD0NjWD63/l7lmvM/NGQdt34dIJElz0ap1927xG2wlgiRJkjphOtMgdrOeTpLUPDZ2NUQ3GrNsIJMkSZIkSVK/TVVH1YlO6N08viSp+eZsY1e3f+QG4Ud0EGKUJEmSJEmSJEmazJxp7Gpaw07T4umE1nNaOr9PgUiSpEYar/zjlDKSJEmSJGm25kxjl5rPxUGlyfkdkTSMzNskSZI0lWHsNC5J6iwbuzQ0LPho0LX7GbaCWJIkSZKk2Zvqetzrbak9Y9+ppfM3sWTZJX6H1BND29hlw8fg83+oYednXJIeyYZ8SZIkSZLUrqFt7FLzWdGvuabbn/nJjr90/iYWTrG9FcqSJEmSJEmSBpGNXRpYNpap6fyMSpIkSZI0+KZzfW8HUrXDOiOp83re2BURBwEnA1sBn87M5b2OQf1hJq6mmKv50Ey+g47+krpjruZDkprDfEhSv5kPadh4/TyYzIt6YybfD79TaldPG7siYivgE8DLgbXAVRFxcWbe1Ms4JM1d5kMTm05j2FQFjXYX9Z237JKHFysd73lpGJkPtccLHKnzBikfMg+QhtMg5UPSTPkb1ny9yoscAPBI470nfkc0W70e2bUfsDozbwWIiPOARYCFGUm9Yj7UQe0W2KbavtsFwKkKTl6MqEfMh2ah3XzC77E0rp7lQ53+bZ/Ob/Wqdfc+3JFmPJ3orDMdYx16LH9I47I8pDlnqnW2J/vtGk+7vxf+3ozLvKhB2q0zmu1n2O/E8InM7N2LRbwGOCgz/7Q8fj2wf2YeV9vmGOCY8vAZwHenefhdgZ92MNyZaEIMYBytjGNL043jyZn5xG4H02vTyYdK+kzyoqb8j8djbDPX5PiGPTbzocHPh4xncsYzuSbEYz40mPlQE2KAZsRhDM2JAWYWh/nQYOZD7RikeAcpVhiseJsc61DmQ9DVuuqm/D+bEIcxGEOrrpWHer5m11Qy81Tg1Hb3i4irM3NBF0IaqBiMwzgGJY6mm0le1OT31thmrsnxGdtwG4Z8yHgmZzyTa1o8c9Gg5kNNiKEpcRhDc2JoUhyDZFDzoXYMUryDFCsMVryDFOtcM8j5UBPiMAZj6GUcj+rGQSexDtiz9niPkiZJvWI+JKnfzIck9Zv5kKR+Mx+S1ATmRdIQ6XVj11XA3hGxV0Q8GjgcuLjHMUia28yHJPWb+ZCkfjMfktRv5kOSmsC8SBoiPZ3GMDM3RcRxwGXAVsDpmXljhw7f9tSHXdCEGMA4WhnHlpoSR1/MgXxoIsY2c02Oz9gG0BzLh4xncsYzuabFMzTmQD7UhBigGXEYQ6UJMUBz4ui7OZAPtWOQ4h2kWGGw4h2kWIdGF/Oipvw/mxCHMVSMYbOuxRGZ2a1jS5IkSZIkSZIkSV3V62kMJUmSJEmSJEmSpI6xsUuSJEmSJEmSJEkDq7GNXRFxekRsiIgbamnPiYhvRMSqiPiPiHh8SZ8XET+PiOvK7ZO1fZ5Xtl8dER+NiOhWHOW53y7P3Vief0yv44iII2vvxXUR8euI2LcPcWwTEWeW9Jsj4vjaPgdFxHdLHMu6GMOjI+JfS/q3I2JhbZ/Zvhd7RsQVEXFT+X//VUnfJSJWRMQt5e/OJT3K66yOiOsj4rm1Yy0u298SEYu7HMczy3v1y4j425Zjzfj/Mpf1+32b5DNwQkSsq+UFB9f2Ob7E+92IeEUPYlxTvm/XRcTVJa3t70oX4npGS355X0S8tZ/v3QR5XE/zlTZj+6eI+E55/c9HxE4lvWu/zXqkXuVDTft8TpL/9SWmiHhMRHwzqjLHjRHx9yV9r4i4srzu+VEtfk1EbFsery7Pz6sdq2N5TURsFRHfiogv9jue6NDvQTfyOM1eD/OiRpR9OvV5nsXr960cEw34PZgghp6WSyaIoe33v1ffnbmgie9lv/OKacTX9+/zLGNt5HcuGlZOVe908/PVhO9rEz7b0aDrrmjAtVY04BorInaKiAujKofdHBEv6Et+l5mNvAEvBp4L3FBLuwp4Sbn/RuA95f68+nYtx/km8HwggC8Br+xiHFsD1wPPKY+fAGzV6zha9psPfL9P78frgPPK/ccCa8r/aivg+8BTgEcD3wb26VIMxwL/Wu7/BnAN8KgOvRe7Ac8t93cAvgfsA/wjsKykLwM+UO4fXF4nyuteWdJ3AW4tf3cu93fuYhy/Afwu8D7gb2vHmdX/Za7emvC+TfIZOKH+P65tv0+Jc1tgrxL/Vl2OcQ2wa0taW9+VHv0vbwee3M/3boI8rqf5SpuxHQhsXe5/oBbbPLr02+xt3M9uT/Khpn0+J8n/+hJTOe7jyv1tgCvL61wAHF7SPwn8Rbn/ZuCT5f7hwPnlfkfzGuBvgHOAL5bHfYuHDvwedPIz5K1ztx7nRY0o+3Ti89zh979n5Rga8HswQQw9LZdMEENb738vvzvDfmvqe9mkvGKC+Pr+fZ5lrI38ztGwcqq33ty6/flqwve1CZ9tGnTdRQOutWjANRZwJvCn5f6jgZ16HUNmNndkV2Z+DbirJfnpwNfK/RXAH012jIjYDXh8Zq7M6h07Czi0i3EcCFyfmd8u+96ZmQ/1IY66I4DzoC/vRwLbR8TWwHbAr4D7gP2A1Zl5a2b+qsS3qEsx7AN8tey3AbgHWNCh92J9Zl5b7t8P3AzsXs7lzLLZmbXjLgLOyspKYKcSxyuAFZl5V2beXeI/qFtxZOaGzLwKeLDlULP6v8xhfX/fJvkMTGQRVUP0LzPzB8BqqvPotXa/K912AFXngB9Osk3X37sJ8rie5ivtxJaZX8nMTeXhSmCPyY7RifxXj9CzfKhpn8+m/BbX4snM3FgeblNuCfwecOEE8YzFeSFwQEQEHcxrImIP4BDg0+Vx9DOeCTQij9Os9TIvanLZp1/lm56WY5rwe9CEcskE78NEJnr/+349MUQG6b1szLVQE77Ps4x1In39zjWtnKqe6ernqwnf1yZ8tpty3dXwa62e/T8iYkeqhtjTADLzV5l5Ty9jGNPYxq4J3MjmDOKPgT1rz+1Vhgz+V0T875K2O7C2ts1aJr8Imm0cTwcyIi6LiGsj4m19iqPutcC5fYrjQuBnwHrgR8AHM/Ou8pq3dTiOiWL4NvAHEbF1ROwFPK8819H3ogw9/R2qngQjmbm+PHU7MFLuT3TeHXs/phnHRLrxf5kLGvW+tXwGAI4rQ4JPHxsuTH9iTuArEXFNRBxT0tr9rnTb4WzOL6E57x30MV9p0xupeueM6eVv81zW73yoEZ/PBv0WbxUR1wEbqArn3wfuqVW+1o/98OuW5++lmhmgk+/RR4C3Ab8uj5/Q53g68XvQ78+8xteX/0ufyz5NKt80oRzTtO9yP8sl7bz/5mmd09T3skl5xXQ17fs8lUZ/55pSTlVP9OP/1fR6yK7E0ZDrro/QjGutfl9j7QX8BPjXUtb6dERs3+MYgMFr7Hoj8OaIuIZqmOSvSvp64Lcy83coQwejto5WD+PYGngRcGT5++qIOKAPcQAQEfsDD2TmDePt3IM49gMeAp5E9aFfGhFP6XEMp1N9Ma6myoD+X4mpYyLiccBngbdm5n3150rvwOzk6zU9DvXPOJ+BU4CnAvtS5ZMn9S86XpSZzwVeCRwbES+uP9nvz2hUcyj/AfCZktSk924L/X6vJhIR7wQ2AWeXpF7/NqsB+vX5bNJvYGY+lJn7Uo0m2A94Zq9eu1VEvArYkJnX9CuGcTT690CDpQFln0Z8nptYjun3d7nP5ZK+v/9qnEbkFTPV9Pho+HeuSeVUDb+5VA/Z7+uuhl1r9ft3Zmuq6TVPKWWtn1FNW9jLGIABa+zKzO9k5oGZ+TyqXmvfL+m/zMw7y/1rSvrTgXVsOW3BHiWtK3FQNap8LTN/mpkPAJdS/aN7HceY1t59vY7jdcCXM/PBrKYQ/B9gQXnN+ii0WccxyWdjU2b+dWbum5mLqOYL/R4dei8iYhuqjP3szPxcSb5jbJqB8ndDSZ/ovGf9frQZx0Q6/n+ZIxrxvo33GcjMO8qP/6+BT7F5GHTPY87MdeXvBuDzJZZ2vyvd9Erg2sy8o8TZmPeu6Hm+0o6IWAK8CjiyFGB6/ts8x/U7H+rr57Mpv8Wtspq24QrgBVTTMmw9zrEfft3y/I7AnR2M54VUI9zXUE2h8nvAyX2Mp1O/B/3+zGt8vf7t6XvZp0Hlm6aUYxrxXe53uWQG7795Wuc08r1sUF7RjkZ8n6ejyd+5ppZT1VX9+H81vR6yq5/tPl53NeZaqwHXWGuBtZk5NtPChVRtIj3/TAxUY1dE/Eb5+yjgXVSLvBERT4yIrcr9pwB7A7dmNUzuvoh4fkQEcBRwUbfiAC4D5kfEY8uH9iXATX2IYyztMMp6XVDNqdrjOH5E9UWnDF18PvAd4Cpg74jYq/RCPBy4uBsxlP/F9uX+y4FNmdmR/0nZ7zTg5sz8UO2pi4HF5f7i2nEvBo6KyvOBe0sclwEHRsTOUQ23P7CkdSuOiXT8/zJH9P19m+gzMPaDUrwaGBvleTFweERsG9X0nntTLczdrfi2j4gdxu5TfcZvoP3vSjcdQa1zQFPeu5qe5ivtiIiDqIbt/0Hp6DGW3tPf5jmu3/lQ3z6fTfktrsXzxIjYqdzfDng51Rz2VwCvmSCesThfA3y1VMx2JK/JzOMzc4/MnEf1ufhqZh7Zr3g6+HvQszxObelZXtSEsk/DyjdNKcf0/bvchHLJDN7/fv+OD5PGvZcNyyva0ffv83Q19TvXtHKqeqYf+VDT6yE7HkcTrruacq3VhGuszLwduC0inlGSDgBu6mUM9WAaeaMqrK8HHqRqHTwa+CuqUTnfA5YDUbb9I6o1m64DrgV+v3acBVT/4O8DHx/bpxtxlO3/pMRyA/CPfYxjIbBynOP0LA7gcVRTadxI9QH/P7XjHFy2/z7wzi7GMA/4LlWG95/Akzv4XryIavjl9eWzd105rycAlwO3lNfcpWwfwCfK660CFtSO9UaqBQhXA2/ochy/Wd63+4B7yv3Hz/b/Mpdv/X7fJvkM/Fv5rF1P9UOyW22fd5Z4vwu8ssvxPYVq/bxvl/zgnSW97e9Kl+Lbnqo3zY61tL69d4yfx/U0X2kzttVUcyqPffY+Wbbt2m+zt3H/Nz3Jh5r2+Zwk/+tLTMBvA98q8dwA/F1JfwrVBctqqrLRtiX9MeXx6vL8U2rH6mheQ1U2/GI/46GDvwed+gx56+yth3lR38s+nfw8zzKOvpRjaMDvwQQx9LRcMkEMbb//vfruzIVb097LpuQVU8TY9+/zLGNt5HeOhpVTvfXu1s3PVxO+r034bNOw6y76eK1FQ66xqKaSvbr8T74A7NzrGDLz4QYBSZIkSZIkSZIkaeAM1DSGkiRJkiRJkiRJUp2NXZIkSZIkSZIkSRpYNnZJkiRJkiRJkiRpYNnYJUmSJEmSJEmSpIFlY5ckSZIkSZIkSZIGlo1dkiRJkiRJkiRJGlg2dkmSJEmSJEmSJGlg2dglSZIkSZIkSZKkgWVjlyRJkiRJkiRJkgaWjV2SJEmSJEmSJEkaWDZ2SZIkSZIkSZIkaWDZ2KWui4gTIuLf+x2HpOEREUsi4uu92k+SJKmpIuK3ImJjRGzV71gkqR0RMS8iMiK2Lo9HI+JPe/j6GRFP69XrSWqm1rqiiHhhRNxSyleH9vr1NXM2ds0xEXFcRFwdEb+MiDPa2G9NRLxskucXRsSvSyYwdvuPWcT5joj4QTnO2og4v/bcaET8ouW1XjDT15LUfRGxbUScFhE/jIj7I+K6iHhll15r7IKpnkd8exbHOzoivlPiviMiLo2IHcpzZ0TEr1pe67WdOxtJw2omlSsRcWNELOxORJK6KSIOj4grI+JnEbGh3H9zREQbxxi3Ejgzf5SZj8vMh2YR3xkRsSkidpvpMST1Xqmr+Xm5Drk7Ii6JiD278DpTdmJuiWXs9qQOx/Bg7dg3R8QftbF/TxvSpGHXwPznZS1ps2lAOhH4eClffWGC15vRubc28quzbOyae34MvBc4vRvHLpnA2O33p9phvC92RCwGXg+8LDMfBywALm/Z7LiW1/pGR85AUrdsDdwGvATYEXgXcEFEzOvia+5UyyOeM9XGE+RHLwHeDxyRmTsA/x9wfstm/9iSH7U+L6kDpup404XX2yciLo6Ie0tj91cj4vk9eu1xO/Zk5rMyc3SGx1xUOhrcFxE/LeezV3mutfJoY0S8raMnJc1hEbEUOBn4J+A3gRHgTcALgUdPsE/PRmlFxPbAHwH3An8yxbZWzEjN8/ul7mQ34A7gY/2OpXb7cYePf/7YsYG3Av8eESMdfg1J09ek/KeTngzcOMU2w3ruA83GrjkmMz9XWqTvbH0uInaNiC9GxD0RcVdE/HdEPCoi/g34LeA/Zlv5UWu9PjoifgR8dZzNfhe4LDO/X2K+PTNPnelrSuq/zPxZZp6QmWsy89eZ+UXgB8Dz4OHRoWsjYmnp7bw+It4wtn9EPKFUOt8XEd8EntqJuEp+dGxE3ALcMs4mvwt8IzO/Vc7jrsw8MzPv78TrS2qmiHgq8D/AKmAv4EnAF4AVEbFfj8LoWMeeMoLsLGApVYeDvYBPAPVRIOe3vN4/zip6SQBExI5UvYPfnJkXZub9WflWZh6Zmb8s250REadENYL8Z8BL23iNh3sIR8RrI+Lqluf/OiIunuQQfwTcU+Jc3LLvCRFxYUT8e0TcByyJiB2jGrG/PiLWRcR7xxrnIuKppTH9ztKwfnZE7DTdc5E0c5n5C+BCYJ+xtIg4OCJuKh131kXE35b0seuvt9Wuvw4t23+v1Am9o2x7EPAO4LUxg1kzWjssRYeWusjMy4D7KdeGEbFzqdP6SRlp8cWI2KM89z7gfwMfL+fw8dqhXhbVdGX3RMQnIqY/4lZSpan5T11ELIuI75d4boqIV0+w3feBp7C5HnzbGZz7IRHxrVKHdVtEnFDb5Wvl7z3RMltZRHyw5F8/iC7NhjTsbOxS3VJgLfBEqt6G7wAyM18P/IjNPXQ6UfnxEqoREq8Y57mVwFER8X8iYkE497w0dKLqffd0tuwp85tUlbC7A0cDn4iInctznwB+QdVj5o3l1imHAvtTK5jUXAm8IiL+Pqo5myct5EjqvaimSf1IRPy43D4y9l2NiP+KMr1N+Q5nRBxSHh8QEddNcNgTqBq631kaue/PzI8C/w58oOy/MCLWtsTycGVOROwXEd8oFSfrI+LjETHuCI42zrV+/BMi4oKIOKtcsN0YEQsm2HVf4AeZeXmpZL8/Mz+bmT+aTTySpuUFwLbARdPY9nXA+4AdgJlOu/MfwDMiYu+W454zyT6LgXOB84BnRsTzWp5fRFWJsxNwNnAGsAl4GvA7wIHA2NRgAfwDVSeB/w/YkypPldRlEfFY4LVUdSpjTgP+vMxS8Wy27HD8m8BjqK6//g74FNXozudRNQz934jYKzO/TDXbxVjHmClnzei2qBxCNTr2ppL8KOBfqUZk/Bbwc+DjAJn5TuC/2dyZ6Lja4V5F1cnxt4HDGL+eStIkBiT/+X459o7A31ONDH3E9M2Z+VS2rAf/5WQHneDcfwYcRVV2OgT4i9i89teLy9+x2YjGOjXuD3wX2BX4R+A0G9/bZ2OX6h6kqkh+cmY+mJn/nZnZxv5PKhU6Y7fDJtn2hDLS4+etT2TmvwN/SVXA+C9gQ0S8vWWzj9Ze59o2YpTUZxGxDVVFyZmZ+Z3aUw8CJ5b851JgI1VlzVZUPY7/ruQbNwBnTuOlflrLJ/52ku3+oVRmj5cf/Tfwh8BzgUuAOyPiQy2N8H9be52fTiMuSZ31TuD5VA06zwH2o5oqFapyxMJy/yXArWy+uHhJeX48Lwc+M076BcD/jojHTCOuh4C/prpYeQFwAPDmaezXjj+gqpzeCbiYUqEzjmupKrA/HBEvjYjHdTgOSRPbFfhpZm4aS4iI/1fKDT+PiBfXtr0oM/+njIL/xUxeLDMfoGpYO6K81t7AM6nyiEeIiN+iGkV2TmbeQTV9/FEtm30jM7+Qmb8GHg8cDLy1lMs2AB8GDi+vvzozV2TmLzPzJ8CHqPJbSd3zhYi4h2oq0pdTTZk65kFgn4h4fGbenZnXtjz3vsx8kKo8sStwcukUcyNVI1K7FctfqF0bfWGG5zOZw8q5bqTK196fmfcAZOadpTPPA2UmjvcxvfxneWbeUzoBXUFVppQ0PU3Nf+4B/rn+ZGZ+JjN/XMpZ51PN7jObWTsmPPfMHM3MVeW1rqfqVDRVfvTDzPxUVmuwnklVR+80rW2ysUt1/wSsBr4SEbdGxLI29/9xZu5Uu10wyba3TXagzDw7M19GVXnzJuA9EVHvXfOW2us8t804JfVJRDwK+DfgV8BxLU/fWa8IAh4AHkc12nRsza8xP5zGy+1ayyc+OMl2U+VHX8pqDcJdqHo2L2Fz72WAD9ZeZ9dpxCWps46kaijfUCpW/55q7U+oGrPGLipeTDXaYOzxZI1duwLrx0lfD2xFlR9MKjOvycyVmbkpM9cA/0J7Fb7T6djz9cy8tFwQ/RsTXBBm5q1UjX67UzXY/TSqKdPqjV6HtXRa6tiC8tIcdyewa9TWusrM/5WZO5Xn6tfkk5ZJ2nAOpbGLalTXF0oj2HheD9ycmdeVx2cDryudk8aL68nANsD6WmXSvwC/AdXo/Yg4L6rpiu6jGhFr+UjqrkNLnvIYqmus/4qI3yzP/RFVA/UPy4j3F9T2u7OUIaAaBQXVujPU0trtIHNo7dro0Db3nY4LyrG3p5q+8KiI+HOoRldExL9ExA9L/vM1YKeYerag22v3x65BJU1PU/OfnWjpaBgRR0W1hvFY+eXZzK6MMuG5R8T+EXFFVNOq3ktVtz3Vaz2cF9XKbeZHbbKxSw8rredLM/MpVD2F/yYiDhh7utMvN82YHszMzwDXU2VCkgZUGX59GlXPlD8qPXim4ydUU+XsWUv7rQ6GNt386NeZeTnV0HvzI6k5nsSWDeA/LGkA3wCeHtXUqftSrVu1Z0TsStWL72uM76dUPela7UaVZzxi7dNWEfH0qNaKuL1UuLyf9i6mptOxp7Vy5jH1CvW60vB2WGY+kWr6jhdTjYobc0Fu2Wmp0wvKS3PVN4BfUnWYmUqnrrlWAE+MiH2pGr0mm8LwKOApJa+6nWok1q5UlVPjxXUb1fnUOxU9PjOfVZ5/f9l+fmY+nmpKIqfgkXogMx/KzM9RjS5/UUm7KjMXUTVIf4Gq08uMDj+L0H4GPLb2+Dcn2rAdpTPRl4DfL0lLgWcA+5f8Z2zk7Fge1Ol6LUlFg/MfACLiyVRTJR4HPKE0Ut1AB8oo4507VdnrYmDPzNwR+CTmRT1hY9ccE9WixY+h6pW8VUQ8XCkSEa+KiKeVCul7qb6kvy673kG1OF8vYlwS1UJ+O0TEo6JakO9ZVGvnSBpcp1Ct3fD7400ZOJHS2+dzwAmlt94+tCye3i0RsSgiDo9qseOIiP2oRmasnGpfST3zY6qRBmN+q6SN9Yi7Bvgr4IbM/BXw/4C/Ab6fmRNNPfqfwB+Pk34YsDKredu3qLgpvYafWNv2FOA7wN6lwuUdNKTCNzOvospXbbiXuqxMr/X3wD9HxGtq1zj7AtvP4JBbl2u4sds2rRuUDkWfoZq5Yxeqxq9HKD2sn0rV+L9vuT2bqoKmdSrDsWOvB74CnBQRjy/n8tSIGBu5ugPV9GL3RsTuwP+ZwTlKmoFyvbII2Bm4OSIeHRFHRsSOJV+4j811PO26A5hXZupo13XA4RGxTVTri75mhjFsISL2AA5i8zrQO1CNBrknInYB3t2yS8/qtaS5psH5z5jtqRqZflLifQMduhZqPfeSvANwV2b+otQjva62y0+o3gvzoy6wsWvueRfVj/8yql52P2fzuhZ7U1XubKTqgfjPmXlFee4fgHfF1GvfdMJ9VBVCPwLuoVqU7y8yc6aLNEvqs9KL5s+pKlFuj4iN5XbkNA9xHNXw7dupFkX/127EOY67gT+jmst5bCqef8rMs3v0+pK2tE1LJe/WVPOfvysinlhGbP0d1Xd1zH9RppUoj0dbHo/n74H/FRHvi4hdSuX0XwJvKMcH+B7VSKpDSmXzu4Bta8fYgSrf2BgRzwT+YhbnPSsR8aKI+LOIGJtm7JlUo/htuJd6IDP/kaqR/W1UFTZ3UE3993aqBvh2nEJ1DTd2m6hMdA7wMuAzLdNE1y2mWidsVWbePnYDTgZeVSqLx3MU8Giq9TTuBi5k82jYv6da6/ReqvVOP9fOyUmakf+IiI1U5Y73AYvLmjdQTVW6powyfxPV9M8zMbaW6Z3R/rrp/5eqYf1uqjxistGmU3nt2LUkcBXwP+WYAB8BtqMaob8S+HLLvicDr4mIuyPio7OIQdJmTc9/AMjMm4CTqOq77wDmU+UfszHZub8ZODEi7qe6fnx4VFvpkPk+4H9KPfvzZxmHaiLTkXOSJElqtohYw5YjuKC6SHgvVceYsZFYnwHelpm/KPu9gqqyY2Fm/ldEPBtYBRxeFiae6PWeDSynmgJne+B+4IjM/FJtmyVUHYK2KjEcB/xpZv5nRLwYOBXYA/gW1YLnv5eZLyr7JtWor9XjvPYo8O+Z+elx3oOx458APC0z/6Q8Nw/4AbBNa8V2OZd/oBq9sT1VJdD5wLsy88HWY0mSJEmSNGhs7JIkSZImUabJWQm8OzNP63c8kiRJkiRpS05jKEmSJE0iM9cCrwR2i4jH9TseSZIkSZK0JUd2SZIkSZIkSZIkaWA5skuSJEmSJEmSJEkDa+t+BzCZXXfdNefNm9fvMMb1s5/9jO23377fYUzLoMQ6KHHC4MQ6mzivueaan2bmEzsc0kCabl40KJ+LyXgOzeA5VMyHNhv0fMi42mNc7etWbOZDmzXt2qypn0fjao9xTc18aLNBKw8Zh3E0OYZ24jAf2mzQ8qFO8FyaaVjOpeP5UGY29va85z0vm+qKK67odwjTNiixDkqcmYMT62ziBK7OBuQDTbhNNy8alM/FZDyHZvAcKuZDw5MPGVd7jKt93YrNfKj9fKhXmvp5NK72GNfUzIfaz4ea8v8zji0ZR7NiyJx+HOZDg5sPdYLn0kzDci6dzoecxlCSJEmSJEmSJEkDy8YuSZIkSZIkSZIkDSwbuyRJkiRJkiRJkjSwbOySJEmSJEmSJEnSwLKxS5IkSZIkSZIkSQNr634H0FTzll2yxeM1yw/pUySSBsWqdfeypJZ3mG9I6jXzIUl6JK/tpLnF8pCkfjMfkvrDxq5par1AOuOg7fsUiSRJkiRJkiTNPRGxJ3AWMAIkcGpmnhwRuwDnA/OANcBhmXl3RARwMnAw8ACwJDOvLcdaDLyrHPq9mXlmL89FUmc5jaEkSZIkSZIkaRBsApZm5j7A84FjI2IfYBlweWbuDVxeHgO8Eti73I4BTgEojWPvBvYH9gPeHRE79/JEJHWWjV2SGi8iTo+IDRFxQy3tnyLiOxFxfUR8PiJ2qj13fESsjojvRsQraukHlbTVEbEMSZIkSZIkDYzMXD82Misz7wduBnYHFgFjI7POBA4t9xcBZ2VlJbBTROwGvAJYkZl3ZebdwArgoN6diaROs7FL0iA4g0cWOFYAz87M3wa+BxwPUHrzHA48q+zzzxGxVURsBXyCqkfPPsARZVtJkqSBFhF7RsQVEXFTRNwYEX9V0neJiBURcUv5u3NJj4j4aOkAdH1EPLe/ZyBJktS+iJgH/A5wJTCSmevLU7dTTXMIVUPYbbXd1pa0idIlDSjX7JLUeJn5tVKAqad9pfZwJfCacn8RcF5m/hL4QUSsphqODrA6M28FiIjzyrY3dTN2SZKkHhibzufaiNgBuCYiVgBLqKbzWV5GtS8D3s6W0/nsTzWdz/59iVySJGkGIuJxwGeBt2bmfdXSXJXMzIjIDr3OMVTTHzIyMsLo6OiU+4xsB0vnb3r48XT2aaqNGzcOdPx1nkvzdPo8ZtzYNcligCcAfwb8pGz6jsy8tOxzPHA08BDwlsy8bBaxS9KYN1ItQgpVL5yVtefqPXNae+xYqSNJkgZe6cW8vty/PyLq0/ksLJudCYxSNXY9PJ0PsDIidoqI3Wq9oSVpXBFxOvAqYENmPruk/RPw+8CvgO8Db8jMe8pz49YDRcRBwMnAVsCnM3N5j09F0gCLiG2oGrrOzszPleQ7xsozZZrCDSV9HbBnbfc9Sto6NpeTxtJHW18rM08FTgVYsGBBLly4sHWTR/jY2Rdx0qrN1e5rjpx6n6YaHR1lOuc8CDyX5un0ecxmZNdEvQcBPpyZH6xv3DK12JOA/4yIp2fmQ7OIQdIcFxHvpMqPzu7wcedkz51h6BniOTTDMJyDJA2iWU7ns0Vj10zKQ73Szu9MvXwG3S2jNfX3z7ja09S4GuIM4ONUnZ/HrACOz8xNEfEBqinm3z5RPVDZ5xPAy6nyn6si4uLMdNYNSVOKagjXacDNmfmh2lMXA4uB5eXvRbX048oMP/sD95YGscuA949N8wwcSFkiQ9JgmnFj1yS9Bycy0dRi35hpDJLmtohYQtWr8IDSMxkm7rHDJOmPMFd77gxDzxDPoRmG4RzqJhnRvgvVyNJ5wBrgsMy8u1yAnQwcDDwALBlbRDkiFgPvKod+b2aeiSR1QKen85lJeahX2vmdWbLski0ed7OM1tTfP+NqT1PjagKnmJfUAC8EXg+siojrSto7qBq5LoiIo4EfAoeV5y6lui5bTXVt9gaAzLwrIt4DXFW2OzEz7+rJGUjqio6s2dXSe/CFVK3lRwFXU43+upvJpxaTpLaUaS/eBrwkMx+oPXUxcE5EfIiq9+DewDeBAPaOiL2oGrkOB17X26glDbCOrIdTGsfeDSygajS7pvRkvrvnZyRpqHRoOh9Jmq2OTjE/yDNuNGWEoHE0L44mxNCkONqVmV+nquMZzwHjbJ/AsRMc63Tg9M5FJ6mfZt3YNU7vwVOA91BV4LwHOImqsDPd4zViqozWqS5aDdIPwqDEOihxwuDEOihxTiUizqWaR3nXiFhLVVF8PLAtsKL0Wl6ZmW/KzBsj4gKqXoGbgGPHpkuNiOOAy6jmhT89M2/s+clIGkidWg+nbLtirMdgaTA7CDi3Zycjaeh0ajqfHobcV/NaR3otP6RPkUjDpRtTzA/yjBtNGSFoHM2LowkxNCkOSeqUWTV2jdd7MDPvqD3/KeCL5eG0eg82ZaqM1qkuWp1x0PYD84MwKD9egxInDE6sgxLnVDLziHGST5tk+/cB7xsn/VKq4euSNGOzXA9novTxXmdgezK3amrnC+NqT1PjgmbH1iMdmc5Hkmaqm1PMS5IkTceMG7sm6j04Nk1Gefhq4IZyf6KpxSRJkgZCp9fDmcwg92Ru1dTOF8bVnqbGBc2OrRc6OZ2PJLXLKeYlSVITzGZk10S9B4+IiH2ppjFcA/w5wGRTi0mSJDVdh9bDWcfmaQ/H0ke7GbckqT1OcyhNzCnmJUlSU824sWuS3oMTThE20dRikiRJTdap9XAi4jLg/RGxc9nuQKoKIkmSpMZzinlJktRUs1qzS5IkaY7oyHo4mXlXRLwHuKpsd2Jm3tWTM5AkSZIkSRpSNnbN0Kp197KkNr2FU1tIkjS8OrkeTmaeDpzeuegkSZIkSZLmtkf1OwBJkiRJkiRJkiRppmzskiRJkiRJkiRJ0sCysUuSJEmSJEmSJEkDyzW7JEmSJElz1rzaWsySJEmSBpONXZIkSZKkgWRDlSRJkiRwGkNJkiRJkiRJkiQNMBu7JEmSJEmSJEmSNLBs7JIkSZIkSZIkSdLAsrFL0kCIiNMjYkNE3FBL2yUiVkTELeXvziU9IuKjEbE6Iq6PiOfW9llctr8lIhb341wkSZIkSZIkSZ1jY5ekQXEGcFBL2jLg8szcG7i8PAZ4JbB3uR0DnAJV4xjwbmB/YD/g3WMNZJIkSZIkSZKkwWRjl6SBkJlfA+5qSV4EnFnunwkcWks/KysrgZ0iYjfgFcCKzLwrM+8GVvDIBjRJkiRJ0jiccUOSJDWVjV2SBtlIZq4v928HRsr93YHbatutLWkTpUuSJEmSpnYGzrghSZIaaOt+ByBJnZCZGRHZqeNFxDFUF2SMjIwwOjo65T4j28HS+ZsefjydfZpm48aNAxl3nefQDMNwDpIkSdpSZn4tIua1JC8CFpb7ZwKjwNupzbgBrIyIsRk3FlJm3ACIiLEZN87tdvySJGl42dglaZDdERG7Zeb6ctG0oaSvA/asbbdHSVvH5ouwsfTR8Q6cmacCpwIsWLAgFy5cON5mW/jY2Rdx0qrN2eqaI6fep2lGR0eZzrk2mefQDMNwDpIkSZoWZ9yQJEl9Z2OXpEF2MbAYWF7+XlRLPy4izqOaGuPe0iB2GfD+2hQZBwLH9zhmSZIkSRpKzrixWVNmOjCO5sXRhBiaFIckdcqMG7siYk/gLKoeOwmcmpknl7mXzwfmAWuAwzLz7ogI4GTgYOABYElmXju78Jtj3rJLtni8ZvkhfYpEGk4RcS7VqKxdI2It1Rzvy4ELIuJo4IfAYWXzS6nymtVU+c0bADLzroh4D3BV2e7EsakzJEmSJEkz4owb42jKTAfG0bw4mhBDk+KQpE6ZzciuTcDSzLw2InYArinzLC+hWph0eUQso1qY9O1suTDp/lQLk+4/m+AlzR2ZecQETx0wzrYJHDvBcU4HTu9gaJIkSeqRsU6GS+dvYklLh0NJfeOMG5Ikqe9m3NhV5mNeX+7fHxE3U82x3NbCpLV5nSVJkiRJktRQzrghSZKaqiNrdkXEPOB3gCtpf2HSLRq7ZjIfczfU53ceT+sc0K2aNOftoMzBOyhxwuDEOihxSpIkSZKazxk3JPVbRJwOvArYkJnPLmknAH8G/KRs9o7MvLQ8dzxwNPAQ8JbMvKykH0S15M5WwKczc3kvz0NS5826sSsiHgd8FnhrZt5XLc1VmcnCpDOZj7kbppoSY+n8TVvMAd2qX3NCj2dQ5uAdlDhhcGIdlDglSZI0c52q9JEkSRoAZwAfB85qSf9wZn6wnhAR+wCHA88CngT8Z0Q8vTz9CeDlVAMyroqIizPzpm4GLqm7HjWbnSNiG6qGrrMz83Ml+Y6yICnTXJhUkiRJkjRzZwAHjZP+4czct9zGGrrqlT4HAf8cEVv1LFJJkqRZyMyvAdOd+nQRcF5m/jIzf0A1rep+5bY6M2/NzF8B55VtJQ2wGY/simoI12nAzZn5odpTbS1MOtPXlyRJkiRVlT5lavnpeLjSB/hBRIxV+nyjW/FJkiT1wHERcRRwNbA0M++mWkJnZW2bsWV14JHL7ew/3kFnsuRO6/I3g7zEyDAtkeK5NE+nz2M20xi+EHg9sCoiritp76DNhUklSZIkSV3RbqWPJEnSIDoFeA+Q5e9JwBs7ceCZLLnzsbMv2mL5myYtd9OuYVoixXNpnk6fx4wbuzLz60BM8HRbC5NKkiQ1nQshSxows670mUlP5m4b6yXd2mO6m9o576b2sjWu9jQ1LknS+DLzjrH7EfEp4Ivl4WTL6rjcjjRkZjOyS5IkaS45AxdCljQgZljp03qMtnsyd9q8ZZe0pFSXsEvnb9qix3Q3tdMbu6m9bI2rPU2NS5I0vojYrbZczquBG8r9i4FzIuJDVNdlewPfpBrAsXdE7EVVDjoceF1vo5bUaTZ2SZIkTUOH1sSBshAyQFnLdBFgY5ekjppBpY8kSVLjRcS5wEJg14hYC7wbWBgR+1KNaF8D/DlAZt4YERdQXW9tAo7NzIfKcY4DLqOaceP0zLyxt2ciqdNs7JIkSZodF0KeQlOngzKu9jQ1Lmh2bL3QqUofSdJwqI+KXTp/Ewv7F4rUcZl5xDjJp02y/fuA942TfilwaQdDk9RnNnYVj5weQ5IkaUouhDwNTZ0Oyrja09S4oNmx9UKnKn0kSZIkaVDZ2CVJkjRDLoQsSZIkSZLUfzZ2SZIkzZALIUvS8GudBWTN8kP6FIkkSZKkidjYJWmgRcRfA39KNYXYKuANwG7AecATgGuA12fmryJiW+As4HnAncBrM3NNP+KWNHhcCFmSJEmSJKmZbOySNLAiYnfgLcA+mfnzUrF8OHAw8OHMPC8iPgkcTbWuztHA3Zn5tIg4HPgA8No+hS9pwLgQsiRJkiRJUjM9qt8BSNIsbQ1sFxFbA48F1gO/B1xYnj8TOLTcX1QeU54/ICKid6FKkiRJ0nCKiL+OiBsj4oaIODciHhMRe0XElRGxOiLOj4hHl223LY9Xl+fn9Tl8SZI04GzskjSwMnMd8EHgR1SNXPdSTVt4T2ZuKputBXYv93cHbiv7birbP6GXMUuSJEnSsKnNurEgM59NNV3z2GwaH87MpwF3U822AbVZN4APl+0kSZJmzGkMJQ2siNiZarTWXsA9wGeAgzp07GOAYwBGRkYYHR2dcp+R7WDp/E0PP57OPk2zcePGgYy7znNohmE4B0mSJLVlbNaNB9ly1o3XlefPBE6gmmJ+UbkP1awbH4+IyMzsZcCSJGl42NglaZC9DPhBZv4EICI+B7wQ2Ckiti6jt/YA1pXt1wF7AmvLtIc7AneOd+DMPBU4FWDBggW5cOHCKYP52NkXcdKqzdnqmiOn3qdpRkdHmc65Npnn0AzDcA6SJEmansxcFxFjs278HPgKbcy6ERFjs278tH7cQe6E2M/OX/XzH9muGR0xm9IZrglxNCGGJsUhSZ1iY5ekQfYj4PkR8ViqC6oDgKuBK4DXAOcBi4GLyvYXl8ffKM9/1Z6DkiRJkjQ73Zp1Y5A7Ifaz89eSZZc8fH/p/E0c1oBOaE3pDNeEOJoQQ5PikKROcc0uSQMrM6+kmvLiWmAVVZ52KvB24G8iYjVV78DTyi6nAU8o6X8DLOt50JIkSZI0fB6edSMzHwS2mHWjbDPerBtMNeuGJEnSdDiyS9JAy8x3A+9uSb4V2G+cbX8B/HEv4pIkSZKkOcRZNyRJUl/Z2NUl82pDxgHWLD+kT5FIkiRJkiR1T2ZeGRFjs25sAr5FNevGJcB5EfHeklafdePfyqwbdwGH9z5qSZI0TGzskiRJkiRJ0qw464YkSeqnWa3ZFRGnR8SGiLihlnZCRKyLiOvK7eDac8dHxOqI+G5EvGI2ry1JkiRJkiRJkiTNqrELOAM4aJz0D2fmvuV2KUBE7EM1LP1ZZZ9/joitZvn6kiRJkiRJkiRJmsNmNY1hZn4tIuZNc/NFwHmZ+UvgB2Ve5v2oFiMdeq7hJUmSJEmSJEmS1HndWrPruIg4CrgaWJqZdwO7Aytr26wtaVuIiGOAYwBGRkYYHR3tUohbWjp/U1vbj2zX/j51vTovgI0bN/b09WZqUOKEwYl1UOKUJEmSJEmSJGmmutHYdQrwHiDL35OAN05358w8FTgVYMGCBblw4cIuhPhIS1pGXk1l6fxNnLRq5m/fmiMXznjfdo2OjtKr93E2BiVOGJxYByVOSZIkSZIkSZJmarZrdj1CZt6RmQ9l5q+BT1FNVQiwDtiztukeJU2SJEmSJEmSJEmakY6P7IqI3TJzfXn4auCGcv9i4JyI+BDwJGBv4Judfn1JkiRJ0mBqXetYkiRJkqZjVo1dEXEusBDYNSLWAu8GFkbEvlTTGK4B/hwgM2+MiAuAm4BNwLGZ+dBsXl+SJEmSJEmSJElz26wauzLziHGST5tk+/cB75vNa0qSJEmSJEmSJEljOr5mlyRJkiRJkiRJktQrNnZJkiRJkiRJkhovIk6PiA0RcUMtbZeIWBERt5S/O5f0iIiPRsTqiLg+Ip5b22dx2f6WiFjcj3OR1Fk2dkkaaBGxU0RcGBHfiYibI+IFMynkSJIkDapOVfpIkiQNgDOAg1rSlgGXZ+bewOXlMcArgb3L7RjgFKjKScC7gf2B/YB3j5WVJA0uG7skDbqTgS9n5jOB5wA302YhR5IkacCdwSwrfSRptuyIKKkXMvNrwF0tyYuAM8v9M4FDa+lnZWUlsFNE7Aa8AliRmXdl5t3ACh5ZlpI0YGzskjSwImJH4MXAaQCZ+avMvIf2CzmSNCWny5DUVB2q9JGk2bIjoqR+GcnM9eX+7cBIub87cFttu7UlbaJ0SQNs634HIEmzsBfwE+BfI+I5wDXAX9F+IWc9kjS1M4CPA2fV0sYqcJZHxLLy+O1sWYGzP1UFzv616TIWAAlcExEXl96EktRJlock9UytI+ISqDoiAr+KiEXAwrLZmcAoVVnp4YZ3YGUZFbZbLd+SpBnJzIyI7NTxIuIYqkZ5RkZGGB0dnXKfke1g6fxNDz+ezj5NtXHjxoGOv85zaZ5On4eNXZIG2dbAc4G/zMwrI+JkNvcUBGZeyJmrhZlh+LH0HJphGM6hVWZ+LSLmtSS3VYFTtl2RmXcBRMTYdBnndjt+SXNXL8tDs1UvS02mtdzVSx87+6ItHs/ffceH7zf198+42tPUuBrOjoiS+umOsQbzct21oaSvA/asbbdHSVvH5uu4sfTR8Q6cmacCpwIsWLAgFy5cON5mW/jY2Rdx0qrN1e5rjpx6n6YaHR1lOuc8CDyX5un0edjY1RDzll2yxeM1yw/pUyTSQFkLrM3MK8vjC6kau9ot5DzCXC3MDMOPpefQDMNwDtPkdBmSmqov5aHZWtJyXTSRpfM3bVHu6qd6ma+pv3/G1Z6mxtVwXemIOMidEPvZaFo//5HtmtERsymNyE2IowkxNCmODrkYWAwsL38vqqUfFxHnUc24cW8pG10GvH9sGnrgQOD4HscsqcOacXUgSTOQmbdHxG0R8YzM/C5wAHBTuU27kNOH0CUNIafLmFhTL6SNqz1NjQuaHVsftVXp058QJQ2RrnREHOROiP1sNK13HFg6fxOHNaDxtimNyE2IowkxNCmOdkXEuVSjsnaNiLVU08QvBy6IiKOBHwKHlc0vBQ4GVgMPAG8AyMy7IuI9wFVluxPHZt+QNLhs7JI06P4SODsiHg3cSlVweRRtFHIkaRacLmMamnohbVztaWpc0OzYeqETlT6SNBt2RJTUK5l5xARPHTDOtgkcO8FxTgdO72BokvrMxi5JAy0zrwMWjPNUW4UcSZohp8uQ1HedqvSRpFmyI6IkSeobG7skSZKmwekyJEmSJmZHREmS1E82dkmSJE2D02VIkiRJkiQ106P6HYAkSZIkSZIkSZI0UzZ2SZIkSZIkSZIkaWA5jWGfzFt2Sb9DkCRJkiRJkiRJGniO7JIkSZIkSZIkSdLAmlVjV0ScHhEbIuKGWtouEbEiIm4pf3cu6RERH42I1RFxfUQ8d7bBS5IkSZIkSZIkaW6b7ciuM4CDWtKWAZdn5t7A5eUxwCuBvcvtGOCUWb62JEmSJEmSJEmS5rhZrdmVmV+LiHktyYuAheX+mcAo8PaSflZmJrAyInaKiN0yc/1sYhhWrWt6rVl+SJ8ikSRJkiRJkiRJaq5ZNXZNYKTWgHU7MFLu7w7cVttubUnborErIo6hGvnFyMgIo6OjXQjxkZbO39TW9iPbtb/PbMzmfdi4cWPP3sfZGJQ4YXBiHZQ4JUmSJEmSJEmaqW40dj0sMzMiss19TgVOBViwYEEuXLiwG6E9wpKWkVRTWTp/Eyet6urbt4U1Ry6c8b6jo6P06n2cjUGJEwYn1kGJU5IkSRpU9Vk5ls7f9PA0J5IkSZJ6pxutNXeMTU8YEbsBG0r6OmDP2nZ7lLS+aJ0mUJIkSZIkSZIkSYPnUV045sXA4nJ/MXBRLf2oqDwfuNf1uiRJkiRJkiRJkjQbs2rsiohzgW8Az4iItRFxNLAceHlE3AK8rDwGuBS4FVgNfAp482xeW5LGRMRWEfGtiPhiebxXRFwZEasj4vyIeHRJ37Y8Xl2en9fXwCVJkiRJkiRJszarxq7MPCIzd8vMbTJzj8w8LTPvzMwDMnPvzHxZZt5Vts3MPDYzn5qZ8zPz6s6cgiTxV8DNtccfAD6cmU8D7gaOLulHA3eX9A+X7SRJkiRJHWBHREmS1C/dmMZQknomIvYADgE+XR4H8HvAhWWTM4FDy/1F5THl+QPK9pIkSZKk2bMjoiRJ6gsbuyQNuo8AbwN+XR4/AbgnMzeVx2uB3cv93YHbAMrz95btJUmSJEmzYEdESZLUT1v3OwBJmqmIeBWwITOviYiFHT72McAxACMjI4yOjk65z8h2sHT+pocfT2efptm4ceNAxl3nOTTDMJyDJEmS2vIRqo6IO5TH0+6IGBFjHRF/Wj/gIF+X9bM8XD//ke2acW3alOuDJsTRhBiaFIckdYqNXZIG2QuBP4iIg4HHAI8HTgZ2ioity0XVHsC6sv06YE9gbURsDewI3DnegTPzVOBUgAULFuTChQunDOZjZ1/ESas2Z6trjpx6n6YZHR1lOufaZJ5DMwzDOUiSJGl6utURcZCvy/pZHl6y7JKH7y+dv4nDGlAub8r1QRPiaEIMTYpDkjrFaQwlDazMPD4z98jMecDhwFcz80jgCuA1ZbPFwEXl/sXlMeX5r2Zm9jBkSZIkSRpGYx0R1wDnUU1f+HBHxLLNeB0RmaojoiRJ0nQ4smtAzKv1ygFYs/yQPkUiDYS3A+dFxHuBbwGnlfTTgH+LiNXAXVQNZJIkSVLHeO2muSgzjweOBygju/42M4+MiM9QdTQ8j/E7In4DOyJKkqQOsLFL0lDIzFFgtNy/FdhvnG1+AfxxTwOTJEmSpLnLjoiSJKknbOySJEmSJElSR9gRUZIk9YNrdkmSJEmSJEmSJGlg2dglSZIkSUMqItZExKqIuC4iri5pu0TEioi4pfzdud9xSpIkzVY75Z6ofDQiVkfE9RHx3P5GL2m2bOySJEmaJS+qJDXcSzNz38xcUB4vAy7PzL2By8tjSZKkYTDdcs8rgb3L7RjglJ5HKqmjbOySJEnqDC+qJA2KRcCZ5f6ZwKH9C0WSJKmrJir3LALOyspKYKeI2K0P8UnqkK37HYAkSdKQWgQsLPfPpFqo/e3ULqqAlRGxU0Tslpnr+xKlpGGXwFciIoF/ycxTgZFannM7MNK36CRJkjqnnXLP7sBttX3XlrQtrssi4hiqToqMjIwwOjo6ZRAj28HS+ZsefjydfZpq48aNAx1/nefSPJ0+Dxu7JEmSZq/jF1WS1CEvysx1EfEbwIqI+E79yczMknc9wkwqd2arXjE0mdZKpKYYL64mVEQ0tULEuCRJHTbjcs9EyrXdqQALFizIhQsXTrnPx86+iJNWba52X3Pk1Ps01ejoKNM550HguTRPp8/Dxi5JkqTZ6/hF1TD1IGxqpaFxtaepcUGzY+u3zFxX/m6IiM8D+wF3jI0oLdP1bJhg37Yrd2ZrybJLprXd0vmbtqhEaorx4mpCBVdTK0SMS5LUSW2We9YBe9Z236OkSRpQzbs6kCRJGjDduKgaph6ETa00NK72NDUuaHZs/RQR2wOPysz7y/0DgROBi4HFwPLy96L+RSlJkjR7Myj3XAwcFxHnAfsD9zq1vDTYutbYFRFrgPuBh4BNmbkgInYBzgfmAWuAwzLz7m7FIEmS1G1eVElqsBHg8xEB1bXfOZn55Yi4CrggIo4Gfggc1scYJUmSOqHdcs+lwMHAauAB4A29D1lSJ3V7ZNdLM/OntcfLgMszc3lELCuP397lGCRJkrrJiypJjZSZtwLPGSf9TuCA3kckSZLUHe2WezIzgWN7EJqkHun1NIaLgIXl/pnAKDZ2SZKkAeZFlSRpMvOmWIdszfJDehSJJEmSNLwe1cVjJ/CViLimLLAOMFKbpud2qp7QkiRJkiRJkiRJ0ox0c2TXizJzXUT8BrAiIr5TfzIzMyKydafSMHYMwMjICKOjox0JZtW6e7d4vHT+7I43sh0snb9pdgeZhY+d/cg1pOfvvuO4227cuLFj72M3DUqcMDixDkqcMxURewJnUTWcJ3BqZp480fqAUc0xdjLV9GEPAEsy89p+xC5JkiSNp3UkmCO/NAi8NpMkSf3WtcauzFxX/m6IiM8D+wF3RMRumbk+InYDNoyz36nAqQALFizIhQsXdiSeJVNMHdGupfM3cdKqXs8CObk1Ry4cN310dJROvY/dNChxwuDEOihxzsImYGlmXhsROwDXRMQKYAnjrw/4SmDvctsfOKX8lSRJkiTNnNdmkiSpr7oyjWFEbF8KN0TE9sCBwA3AxcDistli4JHDkyRpmjJz/Vjvv8y8H7gZ2J1qfcAzy2ZnAoeW+4uAs7KyEtipNLxLkiRJkmbIazNJktRv3RqaNAJ8vhqVztbAOZn55Yi4CrggIo4Gfggc1qXXlzTHRMQ84HeAK5l4fcDdgdtqu60taeuRJEmSJM2a12aSJKkfutLYlZm3As8ZJ/1O4IBuvKakuSsiHgd8FnhrZt5XGtqBidcHnMYx214/sHUtv0FcL20Y1nnzHJphGM5BkiRJ7en0tdkgX5f1szxcP/+R7ZpxbdqU64MmxNGEGJoUhyR1SrMWnZKkNkXENlQXU2dn5udK8kTrA64D9qztvkdJe4SZrB/4sbMv2mItv4nW0WuyYVjnzXNohmE4B0mSJE1fN67NBvm6rJ/l4fq69Uvnb+KwBpTLm3J90IQ4mhBDk+KQpE7pyppdktQLUXUTPA24OTM/VHtqovUBLwaOisrzgXtrU2pIkiRJkmbAazNJktRvjuySNMheCLweWBUR15W0dwDLGX99wEuBg4HVwAPAG3oarSRJkiQNJ6/NJElSX9nYJWlgZebXgZjg6UesD5iZCRzb1aAkSZKkNsyrTTcmDSqvzSRJUr85jaEkSZIkSZIkSZIGliO7JEmSJEl94agmSZIkSZ1gY5ckSZIkSQ3V2iC4ZvkhfYpEkiRJai6nMZQkSZIkSZIkSdLAsrFLkiRJkiRJkiRJA8tpDIfIRPPdL52/iSXLLnG6C0mSJEmSJEmSNHSGtrHLhY4lSZIkScPGNbwkSZKkRxraxi5JUu9Z+SJJkiRJkiSp12zskiRJkiRpQNnZSJIkaWqr1t3Lklq5yTLT8LGxaw7xIkhSr8023zHfkiRJkiRJkjQVG7skSRPqdGPTVMdzvUVJkoabv/WSJEmSusHGLknStHW6gsoKL0mSJEmSJEmzZWOXps3pxKThNm/ZJSydv2mL+YslSZIkSZIkqel63tgVEQcBJwNbAZ/OzOW9jkHS3GY+NLimGglmI7wGhfmQpH4zHxpe45WXzjho+z5EIk3OfEi9NJY3jnXw9NpRY8yLpOHR08auiNgK+ATwcmAtcFVEXJyZN/UyDlVcO0dz0VzOh+bCd3q2o9O84FEvzOV8SFIz9DIfmgvlj0Gwat29W5SPprr2a/d5qV2WhyQ1gXmRNFx6PbJrP2B1Zt4KEBHnAYuAWWcgXkTN3mzfQy+ANCC6lg/1mvle53XjPTUv1DiGJh+SNLC8Lpvjpvo/+X9UD1gektQE5kXSEOl1Y9fuwG21x2uB/esbRMQxwDHl4caI+G6PYmvLW2BX4Kf9jmM6uhVrfGB2z49jYN5TBifW2cT55E4G0iBT5kMw47xoi/d7Bt+BvhukvG0iTTuHGX4OGnUOM9SJczAfGp58qKmfaeNqT1Pjgu7FZj7U0Guzpv3ej5krcXXw96WR7xfNist8aHDLQ434HL0Fdn3Ln/Q/Dhr0fgA/7XM5uRHvBdOPY1jzIeheXXVT8qFOaMrntRP8vzRPR/Ohnq/ZNZXMPBU4td9xTCUirs7MBf2OYzoGJdZBiRMGJ9ZBibOJZpIXDcP77Tk0g+cgGK58yLjaY1zta3Jsg6zJ12ZN/Z8bV3uMS1MZ5PKQcRhHk2NoUhxNN8j5UCd4Ls00LOfS6fN4VKcONE3rgD1rj/coaZLUK+ZDkvrNfEhSv5kPSeo38yFJTWBeJA2RXjd2XQXsHRF7RcSjgcOBi3scg6S5zXxIUr+ZD0nqN/MhSf1mPiSpCcyLpCHS02kMM3NTRBwHXAZsBZyemTf2MoYOauR0HhMYlFgHJU4YnFgHJc6e6XI+NAzvt+fQDJ7DEJuj+ZBxtce42tfk2BpnSK7Lmvo/N672GNccNUfKQ8axJePYrAkxQHPi6Jsu5kXD9N56Ls00LOfS0fOIzOzk8SRJkiRJkiRJkqSe6fU0hpIkSZIkSZIkSVLH2NglSZIkSZIkSZKkgWVjV01EnB4RGyLihlraLhGxIiJuKX93LukRER+NiNURcX1EPLe2z+Ky/S0RsbgLce4ZEVdExE0RcWNE/FUTY42Ix0TENyPi2yXOvy/pe0XElSWe88sCkETEtuXx6vL8vNqxji/p342IV3QyzpaYt4qIb0XEF5sca0SsiYhVEXFdRFxd0hr1/59LIuKg8v9eHRHL+h3PZDr12elD3AORP8/gHE6IiHXl/3FdRBxce27cvKRfn7cYkN+euaqf+VAnPxtdim/Wv+1dimuniLgwIr4TETdHxAua8J5FxF+X/+MNEXFuVOW5nr9nE+SZ5jdDrKn/807mcZ2MLRp+rRUNva4Kr6OGSkxR/pns89XjOJZExE9ic5n/T7sQwyPy0JbnJ/w89ziOhRFxb+29+LsuxDBuvt2yTdffj2nG0Yv3Y9zfi5ZteloOHiZNyYc6oQl5WSc0JT/shCbkqZ3Q03w5M72VG/Bi4LnADbW0fwSWlfvLgA+U+wcDXwICeD5wZUnfBbi1/N253N+5w3HuBjy33N8B+B6wT9NiLa/3uHJ/G+DK8voXAIeX9E8Cf1Huvxn4ZLl/OHB+ub8P8G1gW2Av4PvAVl36DPwNcA7wxfK4kbECa4BdW9Ia9f+fKzeqBUy/DzwFeHT5/+/T77i6+dnpU9wDkT/P4BxOAP52nG3HzUv6+XljQH575uKt3/lQpz4bXYxvVr/tXYzrTOBPy/1HAzv1+z0Ddgd+AGxXe6+W9OM9myDPNL8Z4ltT/+edyuM6HRsNv9aioddVeB01NDemUf6Z6PPVhziWAB/v8vvxiDy05flelSWmimPhWL7Qxfdi3Hy71+/HNOPoxfsx7u9FyzY9LQcPy60p+VAPz6XreVmHzqUR+WGPzqXreUiHzqNn+bIju2oy82vAXS3Ji6gqIyh/D62ln5WVlcBOEbEb8ApgRWbelZl3AyuAgzoc5/rMvLbcvx+4mapyolGxltfbWB5uU24J/B5w4QRxjsV/IXBARERJPy8zf5mZPwBWA/t1Ks4xEbEHcAjw6fI4mhrrBBr1/59D9gNWZ+atmfkr4Dyq93yQtPvZ6blByZ8nM8E5TGSivKRvn7dB+e2Zo/qaD3Xws9FxHfpt70ZcO1JduJwGkJm/ysx7aMB7BmwNbBcRWwOPBdbTh/dsGPJ9taep//Om/v41+VprAK+r+v4504xMp/zTi9/2RlwPTuNaoydliTavebpikny7ruvvxzTj6LpJfi/qelYOHjJNyYc6oRF5WSc0JT/shCbkqZ3Qy3zZxq6pjWTm+nL/dmCk3N8duK223dqSNlF6V5Thr79D1TOjcbFGNX3FdcAGqouA7wP3ZOamcV7z4XjK8/cCT+hFnMVHgLcBvy6Pn9DgWBP4SkRcExHHlLTG/f/niEF7Hzvx2WmKYfnMH1eGaJ8eZdocGn4OTf/tmYMa857O8rPRDR9h9r/t3bAX8BPgX6Oa5uvTEbE9fX7PMnMd8EHgR1SNXPcC19CM9wzMb+aiRv3Pm/b71+BrrY/Q3Osqr6OGx3T+D734nZru5+GPSpn/wojYs8MxTEeTPrcvKFPqfSkintXNF2rJt+v6WXfXquvvR+vvRWZO+H70qEw3LJqSD3XCoORlndCk/LATepandkK382Ubu9qQmckjez/0TUQ8Dvgs8NbMvK/+XFNizcyHMnNfYA+qXgLP7G9E44uIVwEbMvOafscyTS/KzOcCrwSOjYgX159syv9fjTSUn51BjRs4BXgqsC9VxfJJfY1mGgbht0f90bTPRsN/27emmo7ilMz8HeBnVFNnPaxP79nOVD3q9gKeBGxPQ0crmN/MPf3+nzctjyuv27hrrYbnvTCkZWE13n8A8zLzt6kaps+cYvthdi3w5Mx8DvAx4AvdeqHJ8u1emiKOnrwfrb8XEfHsbryOhp55WfP0LE/thF7kyzZ2Te2OsSFz5e+Gkr4OqLdg71HSJkrvqIjYhurDcXZmfq7JsQJkNTXPFcALqIYhbj3Oaz4cT3l+R+DOHsX5QuAPImIN1VDd3wNObmisYz2vycwNwOepLm4b+/8fcgP1Pnbos9MUA/+Zz8w7yoXHr4FPsXl6nkaew6D99swhfX9PO/TZ6LRO/bZ3w1pgba1X7YVUjV/9fs9eBvwgM3+SmQ8Cn6N6H5vwnoH5zVzUiP9503//Gnat1ejrKq+jhsp0/g+9+J2aMo7MvDMzf1kefhp4XodjmI5GfG4z876xKfUy81Jgm4jYtdOvM0G+XdfPuruH9er9qL3ePVS/F62dmXpdphsWTcmHOmFQ8rJOaER+2Am9zkNmo1f5so1dU7sYWFzuLwYuqqUfFZXnA/eWqQ8uAw6MiJ1L79gDS1rHlLldTwNuzswPNTXWiHhiROxU7m8HvJxqTs4rgNdMEOdY/K8Bvlp61l0MHB4R20bEXsDewDc7FSdAZh6fmXtk5jyqBSO/mplHNjHWiNg+InYYu0/1f7uBhv3/55CrgL0jYq+IeDTV5+fiPsc0rg5+dppi4D/zseX8w6+m+n/AxHlJ3z5vg/LbM0f1NR/q4Gejozr4295xmXk7cFtEPKMkHQDcRP/z4x8Bz4+Ix5b/61hcfX/Pxnk985u5oe//86b+/jX1WqvJ11VeRw2d6ZR/evE7NWUcLWX+P6D6rvZaI67tIuI3S75KROxHVS/Z0Yr/SfLtuq6/H9OJo0fvx3i/F99p2azXZbph0ZR8qBMGJS/rhEbkh53QizykE3qaL2emt3IDzqWaRupBqh63R1PNo3o5cAvwn8AuZdsAPkE1L/oqYEHtOG+kWkB3NfCGLsT5IqqpFa4Hriu3g5sWK/DbwLdKnDcAf1fSn0J1obIa+AywbUl/THm8ujz/lNqx3lni/y7wyi5/DhYCX2xqrCWmb5fbjcA7S3qj/v9z6Va+f98r7/E7+x1PLz47fYh9IPLnGZzDv5UYr6f6Yd+ttv24eUm/Pm8MyG/PXL31Mx/q5GejizEuZBa/7V2KaV/g6vK+fQHYuQnvGfD3VBUgN5Q8att+vGcT5JnmN0N8a+r/vJN5XCdjYwCutWjYdRVeRw3djXHKP8CJwB9M9fnqcRz/UD5z36Zq+H1mF2IYLw99E/Cm8nxPyhLTiOO42nuxEvhfXYhhony7p+/HNOPoxfsx0e9Fz78rw3hrSj7Uo3Ppel7WofNoRH7Yo3Ppeh7SofPoWb4c5WCSJEmSJEmSJEnSwHEaQ0mSJEmSJEmSJA0sG7skSZIkSZIkSZI0sGzskiRJkiRJkiRJ0sCysUuSJEmSJEmSJEkDy8YuSZIkSZIkSZIkDSwbuyRJkiRJkiRJkjSwbOySJEmSJEmSJEnSwLKxS5IkSZIkSZIkSQPLxi5JkiRJkiRJkiQNLBu7JEmSJEmSJEmSNLBs7JIkSZIkSZIkSdLAsrFLkiRJkiRJkiRJA8vGLk1bRMyLiIyIrcvj0Yj40x6+fkbE03r1epKaKSKWRMTXa49fGBG3RMTGiDi0168vaTANarkiIk6IiH/vdxySJhcRv1XKJlvNYN/GfM97fc0nSdCMcloTYpDmmlJ2ekqXjr0mIl7WjWOrOWzsmqPKF/znJRMZuz2pg8c/ISIerB375oj4ozb296JKGlLjFTBm2YB0IvDxzHxcZn5hgtcby+/ujohLImLPaca6RSO/pP6ZzXd5EEXEGRGxKSJ26/BxXx4RV0TE/RFxZ0RcFxFvj4jHdPJ1pLmgtUwTEYeX/OklmfmjUjZ5qDzX2OubqNwaETd14bjHRcT1EfFARNxe3ofDO/k60lzTUo/z65a6nSMn2GdhRKxtSavX29wTEf8vIl7Qm7OAiNirxH9Kh4+7Q0R8qOTRP4uIH0XEhRGxfydfR9LsjFc3DTw9M2/td2waXDZ2zW2/Xy7Axm4/7vDxzx87NvBW4N8jYqTDryFJTwZunGKb3y950W7AHcDHuh6VpG7oyXd5JiMxOvz62wN/BNwL/EkHj/vHwIXAOcCTM/MJwGuBPYBxGw5t7JemJyIWA58ADsnM/+p3PG16MfAbwFMi4nc7eNyPUl0HLgWeAOwOvAs4aLyNS+OYdRTSFOr1OMCP2LJu5+w2D3d+Oc6uwBXAZzod7ySOAu4GXhsR23bigOU4XwXmA68CHg/8f8B5wCsn2MeyjtQ/066b7vc1mgaDBUltYZzeiR2ZQiMzLwPuB55ajrtzRHwxIn5Sej9+MSL2KM+9D/jfwMdLy/7Ha4d6WVTTld0TEZ+IiJhtbJKaJyKWRcT3y8iDmyLi1RNs933gKcB/lPxi0oukzPwFVUXvPrVjHBIR34qI+yLitog4obbL18rfe8rxX1Db74Ml//pBRIx74SSpOyb4Lm9bvpc/iog7IuKTEbFd7fn/ExHrI+LHEfHG+vGiGkV1SkRcGhE/A14aEf9fGYFwT0TcGBF/UNt+x4g4q5RjfhgR7xqroI1qpOr/RMSHy763RsT/Kum3RcSGUik+mT8C7qEauTreto+JiPNLHnltRDynvPbbI+LClnM7OSI+WspMHwJOzMxPZeZd5b38bmb+ZWbeUrY/ofR+/veIuA9YMkWs0pwXEX8OnAS8IjP/X0l7eHT4RNc3EfGsiFgREXeVfOsdtcM+uuQz95c8aEHt9Z4UEZ8tedAPIuIttedOiIgLJtp3AouBi4BLGT/PeWpEfLOUlS6KiF3Ka30pIo5reS++HRF/GBFPB94MHJ6ZKzLz55n5UGZ+PTOX1LYfjYj3RcT/AA9QleskzUApC32klHV+XO5vG1Unmi8BT4oJZvbJzE3A2cDuEfHEcryFEbE2It5Wyi/rI+LQiDg4Ir5X8q531F5/v4i4uuQVd0TEhyaJNagau94FPAj8/jibHVzKUT+NiH+KiEeV87knIp5dO9YToxod8hvA66k68RyamTeUfOdnmXlhZp5Q2ycj4tiIuAUYKwNNWFaU1BtRmz40xr9Gm6oMdOF410njvM5+EfGNkp+sj4iPR8Sja8+PW0Yr+dBYfdWdpcw1Vi56TLmGurMc96pw0EfP2dilrovKIcCjgbGpMR4F/CvViIzfAn4OfBwgM98J/DdwXGnVr19AvQr4XeC3gcOAV/TkJCT12vepKoV2BP6eamToI6byysynsmVvxl9OdtCIeCzVKIaVteSfUV1o7QQcAvxFbF7768Xl707l+N8oj/cHvkvVA/IfgdPKBZukHpjgu7wceDqwL/A0qhEEf1e2Pwj4W+DlwN7AeHO1vw54H7ADcCXwH8BXqEY7/CVwdkQ8o2z7Mar86SnAS6jykDfUjrU/cD3VSIZzqHoT/26J60+oKrwfN8kpLgbOLfs9MyKe1/L8Iqqe17uU438hIrYp2x8cETuU896Kqrx0DvAMqsqfz07yuvXjX0iVL7bbQ1yaa/6CqmH6gMy8erwNxru+Kd/T/wS+DDyJKn+4vLbbH1B9p3cCLqZcK0XVsP4fwLep8rkDgLdGxCum2nc8JT99DdV3/Wzg8HplT3EU8EaqUbWbqEZsQZVPHVE71j5U13eXAL8H3DbRe9Li9cAxVPnvD6exvaTxvRN4PlVZ6DnAfsC7MvNnVKOafjzR6InyvT8KuJNqtNWY3wQew+Zy1aeoyjLPo7pe+78RsVfZ9mTg5Mx8PFVH5wsmifVFVOWS88p24zW0vxpYADyXqmzyxnK99zlqeQ9VWee/MnMDVRnvsnLOUzmUqsy2zzTLipJ6r36N9v+Yugw00XVSq4eAv6aq03lBOdaboZoKlYnLaH9JlXe8pDx3N9XIfqjysR2pZsx4AvAmqvpu9ZCNXXPbF0pL8z0R8YUuHP+wiLgH2Eh1kfX+zLwHIDPvzMzPZuYDmXk/Vcb1kmkcc3lm3pOZP6IaYr9vF+KW1H31/Oce4J/rT2bmZzLzx5n568w8n6q33X6zfT2qKcFeDvxT7bVGM3NVea3rqSpupsqPflhGRjwEnElV+WOPHan7xv0ul8bmY4C/zsy7Stni/cDYujCHAf9aevj+DDhhnGNflJn/k5m/pipfPI6q3PGrzPwq8EXgiNKAdDhwfGben5lrqEZ0vL52rB9k5r+WPOJ8qgueEzPzl5n5FeBXVBdNjxARvwW8FDgnM++gurA6qmWza0oP5QepRms9Bnh+Zv4QuJaqcgiqyuYHMnMl1YUcwO211zqv5MMPREQ9/m9k5hdKvugFmjS5l1M1vK9qc79XAbdn5kmZ+YuSn1xZe/7rmXlpyUf+jariGqqG8ydm5oklf7qVqvL58GnsO54/BH5J1bh/CbANVeefun+r5Z//l+o6byvg88C+EfHkst2RwOdKZfSu1PIbgDJC5J6I+EVtH4AzMvPGzNxU8jVJM3MkVXljQ2b+hKrT4Oun2Ges3ubnwJ8BrymjvMY8CLyvfDfPo/pun1zyrBupOjQ/p7bt0yJi18zcWMofE1kMfCkz76aqkD6ojMyq+0Ap1/0I+AibG7jOYcs873UlDVrynojYt+Q790XEd1uO/w/l+D9nemVFSZ03Vd10/RptPlOXgca9Tmo9aGZek5krS9ljDfAvbK4HmqyM9ibgnZm5tpR3TgBeE9V0qA9SNXI9rYwqvSYz75vVu6O22dg1tx2amTuV26FdOP4F5djbU/XqOSqqKT6IiMdGxL9ENfXPfVRThe0UU8+/Wr9geoCqIkrS4KnnPztRetCMiYijIuK6WmPYs9lcUTvj16Mq6BwH/FdE/GZ5rf0j4ooyDP5eqsLLVK/1cF6UmQ+Uu+ZHUvdN9F1+IvBY4JpavvHlkg5Vr7vbascZb+RA/fknUY1I+HXLPrtT5Q/btBxj7Lkxd9Tu/xygNFzV0ybKM14P3JyZ15XHZwOva+mR+HCsJca1JWaoKnvGKoPqlT93lr+71fY9vLyf1wL1Mlj9vZA0ub+gGlX66TZHee9JNZJ9Iq3XPY8pFSlPppqKrN5p6B1s2elmon3Hs5jqum1TVlPEfpZHjrBozT+3AXYtHQsuYXMl0xFsHg16J7X8BiAz96DKQ7cF6u+VeY7UGU/ikeWTJ02w7ZgLSllgBLiBasRW3Z2l4Rw2j1CYqExzNFV++J0yfderxnvBqKaZ/mNKfpHV7Bk/oiq31LXmPWPncgXw2HIdN4+qk9Lnx+Jly7LOdeX8/pAq75no+NMpK0rqvKnqpuvfy+mUgSa7TnpYRDw9qiV1bi/10u9ncz3QZGW0JwOfr73+zVSjxEaoOhhdBpwX1XSo/zjBqDJ1kY1davUzqsqiMb/ZiYOWVvIvsXke5qVU0+nsn9UQ97GpwsYuerITrytp8JSevp+iqsh+Qrk4uYEtK0VmpPSu+RxVYeRFJfkcqtGne2bmjsAnMS+SGm2c7/JPqSpbnlW7WNoxqwXXAdZTXbSM+a3xDlu7/2NgzzJdWH2fdeW1HqS60Gl9rhOOAp5SLrxup+qRuCtwcG2bh8+lxLhHiRmqaTsWRrUW6qvZ3Nj13RLjH04jBvM+afruoJr65n/TMlK9Rev36jZmtj7VbVSjR3eq3XbIzIOn3LNFySd+D/iTWp7zGqrpUOsdf1rzzwep8kIoUxlGta7pY6gqoQG+CuwRU68XBuY5Uqf8mEeWT8bKB5N+zzLzp1Sj5E8Yb/r46cjMWzLzCKopoD8AXBjVemGtXg08HvjnWt6zO49saG/Ne35cXuchqqkPjyi3L5bGd6hGxB84wes+IuTa/emUFSX1Xv17Op0y0GTXSXWnAN8B9i710u9gcz3QZGW024BXtsTwmMxcl5kPZubfZ+Y+wP+iGiHWOkOHuszGLrW6jmqe9m3KhclrOnHQciF1EHBjSdqBqlLqnqgW8nt3yy534OLE0ly1PVWB5icAEfEGqpFdsxaVRcDOVD1woMqP7srMX0TEfmzZo/AnwK8xP5IapfW7XHrtfQr48NgUOBGxe23+9guAJRGxT1mfprXc0epKqtEQbytlooVUHXbOq1WwvC8idigN9H8D/HsHzusFVKPh96PqpbwvVf53DlteKD0vIv6wjNR4K9UUZCsByrRFo1Rro/4gM28u6b+m6mz07oj4s4jYubyPe+M0rNKsZLX2zQFU03B9eILNWq9vvgjsFhFvjYhtS36y/zRe7pvA/RHx9ojYLiK2iohnR8TvziD01wPfo+qEuG+5PZ2qF3R9PZw/qeWfJwIX1kZ6XEpVuX4icP7YiNjM/C7VlEDnRcTLx2KlqvyR1B3nAu+KiCeWBuu/Y3P55A7gCRGx40Q7l+/tZcDbZvLiEfEnEfHEkg/cU5J/Pc6mi4HTqaYk27fcXgg8JyLm17b7P6W8sifwV1RTQ485h2r91iPZ3LEH4CyqhqvPl7xxq4h4DNXaX5Npt6woqfemUwaa8DqpxQ7AfcDGiHgm1Uj9MZOV0T5JdR34ZICS3y4q918aEfNLeec+qs5B4+WB6iIbu9Tq/1JVstxNNb/zOZNvPqnXRsTGiNgIXAX8TzkmVPMtb0fVI3Al1VRDdSdTzXl6d0R8FElzRmbeRLX+zTeoLsrmU+Ufs/EfJS+6j2qNwMVljnmoplA8MSLup7ogfHgh5TJF4fuA/ynD1B8x17Oknprsu/x2YDWwskxF8Z9UFbhk5peoyh5fLdt8dbIXycxfUTVuvZKqrPLPwFGZ+Z2yyV9SjYa/Ffg6VXnp9A6c32KqeelXZebtYzeqctGrSgchgIuoKnjupqqs/sPccp2bc6gWVt+iHJfVGoiHUS0sf1s5twuAU6lGhEmaobKmzO9RXcP8wzibbHF9U0YhvJwqr7mdan3Sl07jdR6i6im8L/ADqu/xp6kWRG/XYuCf6/lNyXM+yZYjLP4NOKPE+RjgLbV4fgl8jnHyHOBY4KNUI1TvompEew9V/vWjGcQraXLvBa4GrqdaR/DakkYpw5wL3Fquayaa3vCfgGPiketnTcdBwI2lrHYycHi2rP0ZEbtTdQ74SEvecw1VvVA977kIuIaqU/YlwGljT5T1c35GNT3Zl2rpv6DKS28q+9xHNbr9d6nKQONqt6woqfemWQaa6jppzN9SdXS+n6rT5MON6VOU0U6mmhnoK6UOaSUw1hD2m8CFVPnOzcB/UZWh1EOR6YwBkiRJkiRJkiRp8ETECcDTMvNP+h2L+seRXZIkSZIkSZIkSRpYNnZJkiRJkiRJkiRpYDmNoSRJkiRJkiRJkgaWI7skSZIkSZIkSZI0sLbudwCT2XXXXXPevHnT2vZnP/sZ22+/fXcD6oFhOQ/wXJpquudyzTXX/DQzn9iDkBpvunnRsHxOhuU8wHNpKvOh9s21fAiG51yG5Txgbp6L+dBmg5YPGUfz4mhCDIMYh/nQZu3UEU2mKZ+B8RjbzBjbzJgPtW/QykOd4Lk007CcS8fzocxs7O15z3teTtcVV1wx7W2bbFjOI9NzaarpngtwdTYgH2jCbbp50bB8ToblPDI9l6YyHzIfmo5hOZdhOY/MuXku5kODmw8Zx5aaEEcTYsgcvDjMh9rPh6bSlM/AeIxtZoxtZsyHupcPNfn/3i7PpZmG5Vw6nQ85jaEkSdI0RMTpEbEhIm6opf1TRHwnIq6PiM9HxE61546PiNUR8d2IeEUt/aCStjoilvX4NCRJkiRJkoaOjV2SJEnTcwZwUEvaCuDZmfnbwPeA4wEiYh/gcOBZZZ9/joitImIr4BPAK4F9gCPKtpIkSZIkSZohG7skSZKmITO/BtzVkvaVzNxUHq4E9ij3FwHnZeYvM/MHwGpgv3JbnZm3ZuavgPPKtpIkSZIkSZohG7skSZI6443Al8r93YHbas+tLWkTpUuSJEmSJGmGtu53AJIkSYMuIt4JbALO7uAxjwGOARgZGWF0dHTKfTZu3Dit7QbBsJzLsJwHeC6SJEmSpOaysUtds2rdvSxZdsnDj9csP6SP0Ujd52dempsiYgnwKuCAzMySvA7Ys7bZHiWNSdK3kJmnAqcCLFiwIBcuXDhlLKOjo0xnu0HQrXOZV8unoft5tf+TZhqmc1Hz1POZpfM3sbB/oUiaI3pdvpE0OeuHpP5wGkNJkqQZioiDgLcBf5CZD9Seuhg4PCK2jYi9gL2BbwJXAXtHxF4R8Wjg8LKtJEmSJEmSZsjGLkmSpGmIiHOBbwDPiIi1EXE08HFgB2BFRFwXEZ8EyMwbgQuAm4AvA8dm5kOZuQk4DrgMuBm4oGwrSZI00CJip4i4MCK+ExE3R8QLImKXiFgREbeUvzuXbSMiPhoRqyPi+oh4br/jlyRJg83GLkmSpGnIzCMyc7fM3CYz98jM0zLzaZm5Z2buW25vqm3/vsx8amY+IzO/VEu/NDOfXp57X3/ORtIgiog9I+KKiLgpIm6MiL8q6W1XJkfE4rL9LRGxuF/nJGmonAx8OTOfCTyHqmPPMuDyzNwbuLw8Bngl1cj3vanWKD2l9+FKkqRhYmOXJEmSJA2GTcDSzNwHeD5wbETsQ5uVyRGxC/BuYH9gP+DdYw1kkjQTEbEj8GLgNIDM/FVm3gMsAs4sm50JHFruLwLOyspKYKeI2K2nQUuSpKGydb8DkCRJkiRNLTPXA+vL/fsj4mZgd6pK44VlszOBUeDt1CqTgZVlirHdyrYrMvMugIhYARwEnNuzk5E0bPYCfgL8a0Q8B7gG+CtgpORdALcDI+X+7sBttf3XlrT1tTQi4hiqxnpGRkYYHR2ddaAbN27syHG6YaaxLZ2/aYvH3Ti/YXzfesHYJKl3bOySJEmSpAETEfOA3wGupP3K5InSW1+j7UrmplSc9TOOeqXzyHbdqXRuVxP+L02IwTi6amvgucBfZuaVEXEym0eZApCZGRHZzkEz81TgVIAFCxbkwoULZx3o6OgonThON8w0tiXLLtni8Zoj2z/GVIbxfesFY5Ok3rGxS5IkSZIGSEQ8Dvgs8NbMvC8iHn5uJpXJE5lJJXNTKs76GUe90nnp/E0cNsffjybFYBxdtRZYm5lXlscXUjV23RERu2Xm+jKydEN5fh2wZ23/PUqaJE0qIk4HXgVsyMxnl7RdgPOBecAa4LDMvDuqQtLJwMHAA8CSzLy27LMYeFc57Hsz80wkDTTX7JIkSZKkARER21A1dJ2dmZ8ryXeMrXUzzcpkK5kldVRm3g7cFhHPKEkHADcBFwOLS9pi4KJy/2LgqKg8H7i3NkJVkiZzBtX0y3WuXyrJxi5JkiRJGgSld/JpwM2Z+aHaU+1WJl8GHBgRO5eKnQNLmiTNxl8CZ0fE9cC+wPuB5cDLI+IW4GXlMcClwK3AauBTwJt7Hq2kgZSZXwPuakleRLVuKeXvobX0s7KyEhhbv/QVlPVLM/NuYGz9UkkDzGkMJUmSJGkwvBB4PbAqIq4rae+gqjy+ICKOBn4IHFaeu5Rq2p7VVFP3vAEgM++KiPcAV5XtTszM1kojSWpLZl4HLBjnqQPG2TaBY7sdk6Q5oyvrl8LM1jAd2W7LNTwHeY3GYVpj0nNpnk6fh41dkhpvgvmY/wn4feBXwPeBN2TmPWWx9puB75bdV2bmm8o+z6Ma7r4dVeXPX5WLLEmSpMbLzK8DMcHTbVUmZ+bpwOmdi06SJKn/Orl+aTle22uYfuzsizhp1eZq9zVHTr1PUw3TGpOeS/N0+jycxlDSIDiDRw4nXwE8OzN/G/gecHztue9n5r7l9qZa+inAn7F5vmaHqEuSJEmSJA021y+VNHVjV0ScHhEbIuKGWtouEbEiIm4pf3cu6RERH42I1RFxfUQ8t7bP4rL9LRGxeLzXkqTxjDcfc2Z+JTPHxoSvpCqYTKgUdh6fmStLL+ez2DyHsyRJkiRJkgaT65dKmtY0hmcAH6eqGB6zDLg8M5dHxLLy+O3AK9k8YmJ/qlEU+0fELsC7qeZuTuCaiLi4LAAoSbP1RuD82uO9IuJbwH3AuzLzv6nmXl5b22bC+Zhhbs/JPCzz/oLn0lTDdC6SJEmSpN6JiHOBhcCuEbGWqs7Z9UslTd3YlZlfK2vg1C2iylQAzgRGqRq7FgFnlVETKyNipzKaYiGwYizTiIgVVNOHnTv7U5A0l0XEO4FNwNklaT3wW5l5Z1mj6wsR8ax2jzuX52Qelnl/wXNpqmE6F0mSJElS72TmERM85fql0hw3nZFd4xkpQz4BbgdGyv3dgdtq242NnJgoXZJmLCKWAK8CDigFGDLzl8Avy/1rIuL7wNOp5l6uT3XofMySJEmSJEmSNARm2tj1sMzMiMhOBAMzmzoMBn9KpFXr7gWqadA+dvZFzN99xz5HNHvDMqUbDP7nq25YziUiDgLeBrwkMx+opT8RuCszH4qIp1BNq3prGaJ+X5mj+UrgKOBj/YhdkiRJkiRJktQ5M23suiMidsvM9WWawg0lfR2wZ227sZET69g87eFY+uh4B57J1GEw+FMiLVl2CVA1Dp20auuBnf6sblimdIPB/3zVDeK5TDAf8/HAtsCKiABYmZlvAl4MnBgRDwK/Bt5Um3f5zVTrEG4HfKncJGlaIuJ0qtGkGzLz2SVtF6o1A+cBa4DDMvPuqDKmk6nmh38AWJKZ15Z9FgPvKod9b2ae2cvzkCRJkiRpMvNqddVLll3CmuWH9DkiaWozbey6GFhMtfjfYuCiWvpxEXEesD9wb2kQuwx4f0TsXLY7kKqiWpKmNMF8zKdNsO1ngc9O8NzVwLM7GJqkueUM4OPAWbW0ZcDlmbk8IpaVx28HXkk1snRvqjLRKcD+pXHs3cACIIFrIuLizLy7Z2chSZIkSZI0ZB411QZlRMU3gGdExNqIOJqqkevlEXEL8LLyGOBS4FZgNfApqlEUlFEV7wGuKrcTayMtJEmSGi8zvwa0ll8WAWMjs84EDq2ln5WVlcBOZTT8K4AVmXlXaeBaARzU9eAlSZIkSZKG2JQjuyYYUQFwwDjbJnDsBMc5HTi9regkSZKabSQz15f7twMj5f7uwG217daWtInSJUmSJEmSNEMzncZQkiRJNZmZEZGdOl5EHAMcAzAyMsLo6OiU+2zcuHFa2w2Cbp3L0vmbtnjc7ffL/0kzDdO5SJIkSZJs7JIkSZqNOyJit7JG6W7AhpK+Dtiztt0eJW0dsLAlfXS8A2fmqcCpAAsWLMiFCxeOt9kWRkdHmc52g6Bb57KkLLQ8Zs2RnX+NOv8nzTRM5yJJkiRJmsaaXZIkSZrQxcDicn8xcFEt/aioPB+4t0x3eBlwYETsHBE7AweWNEmSpIEWEWsiYlVEXBcRV5e0XSJiRUTcUv7uXNIjIj4aEasj4vqIeG5/o5ckSYPOxi5JkqRpiIhzgW8Az4iItRFxNLAceHlE3AK8rDwGuBS4FVgNfAp4M0Bm3gW8B7iq3E4saZIkScPgpZm5b2YuKI+XAZdn5t7A5eUxwCuBvcvtGOCUnkcqSZKGitMYSpIkTUNmHjHBUweMs20Cx05wnNOB0zsYmiRJUlMtYvMUzmdSTd/89pJ+VikzrYyIncamhu5LlJIkaeDZ2CVJkiRJkqTZSuArEZHAv5T1R0dqDVi3AyPl/u7AbbV915a0LRq7IuIYqpFfjIyMMDo6OusgN27c2JHjdMNMY1s6f9MWj7txfsP4vvWCsUlS79jYJUmSJEmSpNl6UWaui4jfAFZExHfqT2ZmloawaSsNZqcCLFiwIBcuXDjrIEdHR+nEcbphprEtWXbJFo/XHNn+MaYyjO9bLxibJPWOa3ZJkiRJkiRpVjJzXfm7Afg8sB9wR0TsBlD+biibrwP2rO2+R0mTJEmaERu7JEmSJEmSNGMRsX1E7DB2HzgQuAG4GFhcNlsMXFTuXwwcFZXnA/e6XpckSZoNpzGUJEmSJEnSbIwAn48IqOqazsnML0fEVcAFEXE08EPgsLL9pcDBwGrgAeANvQ9ZkiQNExu7JEmSJEmSNGOZeSvwnHHS7wQOGCc9gWN7EJqmYV7rml/LD+lTJNLsRMRfA38KJLCKqiF9N+A84AnANcDrM/NXEbEtcBbwPOBO4LWZuaYfcUvqDKcxlCRJkiRJkiQNrIjYHXgLsCAznw1sBRwOfAD4cGY+DbgbOLrscjRwd0n/cNlO0gCzsUuSJEmSJEmSNOi2BraLiK2BxwLrgd8DLizPnwkcWu4vKo8pzx8QZS5WSYPJxi5JkiRJkiRJ0sDKzHXAB4EfUTVy3Us1beE9mbmpbLYW2L3c3x24rey7qWz/hF7GLKmzXLNL0kCIiNOBVwEbynB0ImIX4HxgHrAGOCwz7y49cU6mWvD4AWBJZl5b9lkMvKsc9r2ZeSaSJEkDYILy0AnAnwE/KZu9IzMvLc8dTzVFz0PAWzLzspJ+EFVZaSvg05m5vJfnIUmS1GkRsTPVaK29gHuAzwAHdeC4xwDHAIyMjDA6OjrlPiPbwdL5mx5+PJ19mmYs/rFzGcRzaLVx48ahOA8YnnPp9HnMqrHLRf8k9dAZwMep8pExy4DLM3N5RCwrj98OvBLYu9z2B04B9i+NY+8GFlDlW9dExMWZeXfPzkKSJGnmzuCR5SGo1qH4YD0hIvahWqfiWcCTgP+MiKeXpz8BvJyqd/NVpTx0UzcDlyRJ6rKXAT/IzJ8ARMTngBcCO0XE1mX01h7AurL9OmBPYG2Z9nBHqjrrLWTmqcCpAAsWLMiFCxdOGcjHzr6Ik1ZtrnZfc+TU+zTNkmWXAFVD10mrth7Ic2g1OjrKdP5/g2BYzqXT5zHjaQxd9E9SL2Xm14C7WpLr8yu3zrt8VlZWUhVsdgNeAazIzLtKA9cKOtDLR5IkqRcmKA9NZBFwXmb+MjN/AKwG9iu31Zl5a2b+iqqj4qKuBCxJktQ7PwKeHxGPLTP+HADcBFwBvKZssxi4qNy/uDymPP/VzMwexiupw2Y7jeHYon8PsuWif68rz58JnEA1qmJRuQ/Von8fj4gwE5E0CyOZub7cvx0YKfcfnne5GJuTeaL0R5irw9RheIZCg+fSVMN0LpLUEMdFxFHA1cDS0qlnd2BlbZt6uae1PLT/eAedSXmoKXl8P+OolwdHtmtGmbAJ/5cmxGAcaqp5tREUS5Zdwprlh/Q5ImnwZOaVEXEhcC2wCfgW1YisS4DzIuK9Je20sstpwL9FxGqqzkSH9z5qSZ0048auzFwXEWOL/v0c+AptLPoXEWOL/v10pjFI0pjMzIjoWOP5XB2mDsMzFBo8l6YapnORpAY4BXgP1RTN7wFOAt7YiQPPpDzUlDy+n3GMTfsDVcX1YXP8/WhSDMYhScMtM99NtXxF3a1UI9tbt/0F8Me9iEtSb8y4satJi/7B4PeKGsZF/4ZllAsM/uerbpjOBbgjInbLzPVlmsINJX1s3uUxY3MyrwMWtqSP9iBOSZKkrsjMO8buR8SngC+WhxOVh5gkXZIkSZIG0mymMWzMon8w+L2ihnHRv2EZ5QKD//mqG6ZzYfP8yst55LzLx0XEeVTT8txbGsQuA95fGusBDgSO73HMkoZQRPw18KdUIytWAW8AdqNaC+cJVKPfX5+Zv4qIbYGzgOdRlYVem5lr+hG3pME31vGnPHw1cEO5fzFwTkR8CHgSsDfwTSCAvSNiL6prtMPZPA29JEmSJA2kR81iXxf9k9QzEXEu8A3gGRGxNiKOpmrkenlE3ELVAL+8bH4p1TD11cCngDcDZOZdVNP7XFVuJ5Y0SZqxiNgdeAuwIDOfDWxFVXn8AeDDmfk04G7g6LLL0cDdJf3DZTtJmtIE5aF/jIhVEXE98FLgrwEy80bgAqprtC8Dx2bmQ6VT4nHAZcDNwAVlW0nS/8/evcd7Wtb1/n+9ZTwgooDYxCmHlGyrbE+TWLprEk+AObYzQt3KKEUHMU1KRne/LaUWuiOPZaGQYCgiaZCQSujKbAsqSIKgMeIoM3JQTjpq6uDn98d9LfjOYq1Z5+9pvZ6Px/ex7vu6D9/PdX/X9/re933d13VJkqSRtZgxuxz0T1LfVNVzZ1h06DTrFvCSGfZzGnDaEoYmSdCdU+2a5EfAfYHrgSdzV2uJ04ET6cbWWd+mAc4B3p4kPgQkaTYznA+dOk3a5PqvB14/TfoFdA8HSZIkSdJYWEw3hg76J0mSVryq2prkL+havX8f+Bhdt4W3tRYUAFuA/dr0fsB1bdvtSW6n6+rwW737Xcg4puM0LuNy5aV3PFFY/jFF/UyG0zjlRZIkSZK0yMouSZKkla6NA7geOBC4DfgA8IzF7nch45iO07iMy5WXyXFSJy33mKJ+JsNpnPIiScMkyS7A54CtVfXMNj6gY5hKkqRlt5gxuyRJktSNGfjVqvpmVf0I+CDwRGCPJJMPFu0PbG3TW4EDANryB9Dd5JEkSRp1L6MbD3CSY5hKkqS+sLJLkiRpcb4OPCHJfZOEbizBq4BPAM9p6xwNnNumz2vztOUfd7wuSZI06pLsDxwBvKvNh24M03PaKqcDz27T69s8bfmhbX1JkqQFsbJLkiRpEarqErqbNJcBV9CdX50CnAC8Iskmuq57Tm2bnAo8sKW/AtjY96AlSZKW3puBVwI/bvMPZI5jmAKTY5hKkiQtiGN2SZIkLVJVvQZ4zZTka4HHT7PufwG/3o+4JEmS+iHJM4GbqurSJOuWcL/HAscCrF69momJiUXvc9u2bUuyn6V0/MFdfeDqXbvp+cY3uf2k5dh+GI/bJGNbmGGOTZIWwsouSZIkSZIkLcYTgWclORy4D3B/4C20MUxb663pxjDdsrMxTKvqFLoW86xdu7bWrVu36EAnJiZYiv0spQ0bzwe6SqeTr1jF5uevW9D2k5Zj+2E8bpOMbWGGOTZJWgi7MZQkSZIkSdKCVdWrqmr/qloDHEU3JunzcQxTSZLUJ1Z2SZIkSZIkaTk4hqkkSeoLuzGUJEmSJEnSkqiqCWCiTTuGqSRJ6gtbdkmSJEmSJEmSJGlkWdklSZIkSZIkSZKkkWVllyRJkiRJkiRJkkaWlV2SJEmSJEmSpJGWZI8k5yT5UpKrk/x8kr2SXJjkmvZ3z7Zukrw1yaYkX0jy2EHHL2lxrOySJEmSJEmSJI26twAfqaqfBR4FXA1sBC6qqoOAi9o8wGHAQe11LPCO/ocraSlZ2SVpZCV5WJLLe17fTvLyJCcm2dqTfnjPNq9qT+18OcnTBxm/JEmSJEmSFi/JA4BfBE4FqKofVtVtwHrg9Lba6cCz2/R64IzqXAzskWSfvgYtaUmtGnQAkrRQVfVl4NEASXYBtgIfAl4EvKmq/qJ3/SQPB44CHgHsC/xLkp+pqjv6Gbf654qtt7Nh4/l3zm8+6YgBRiNJkiRJkpbJgcA3gb9L8ijgUuBlwOqqur6tcwOwuk3vB1zXs/2WlnZ9TxpJjqVr+cXq1auZmJiYNZDVu8LxB2+/c34u2wybyfgn8zKKeZhq27ZtY5EPGJ+8LHU+FlXZlWQP4F3AI4ECXgx8GXg/sAbYDBxZVbcmCV1T0sOB7wEbquqyxby/JPU4FPhKVX2tK26mtR44q6p+AHw1ySbg8cCn+xSjJEmSJEmSlt4q4LHAS6vqkiRv4a4uCwGoqkpS89lpVZ0CnAKwdu3aWrdu3azbvO3Mczn5irtuu29+/uzbDJvJB4ePP3g7J1+xaiTzMNXExARz+fxGwbjkZanzsdhuDO0HVdKwOAp4X8/8cW2A0dMmBx9l5qd2JEmSJEmSNLq2AFuq6pI2fw5d5deNk90Ttr83teVbgQN6tt+/pUkaUQtu2dXTD+oG6PpBBX6YZD2wrq12OjABnEBPP6jAxUn2SLJPTzNSSVqQJPcCngW8qiW9A3gtXYvT1wIn07U8nc8+V2QzdRifptAwPp8JjNfnMk55kSRJkiQNXlXdkOS6JA9rw14cClzVXkcDJ7W/57ZNzqN7UPos4BDgdu9TS6NtMd0YDk0/qDD6N87GsR9UbzIPp3HKS4/DgMuq6kaAyb8ASd4JfLjNzvmpnZXaTB3Gpyk0jM9nAuP1uYxTXibZtbMkSZIkDdxLgTPbQ9HX0o3pfg/g7CTHAF8DjmzrXkB3TbaJ7rrsRf0PV9JSWkxl19D0gwqjf+NsHPtB9SbzcBqnvPR4Lj1dGE5pNfqrwJVt+jzgvUn+EtiXrlvVz/QzUElja7Jr5+e0C6v7Aq+m69r5pCQb6c6TTmDHrp0PoWuNeshgwpYkSZKk8VBVlwNrp1l06DTrFvCS5Y5JUv8sZswu+0GVNHBJdgOeCnywJ/mNSa5I8gXgl4E/AKiqLwJn0zVh/wjwkqq6o88hSxozPV07nwpd185VdRtdF86nt9VOB57dpu/s2rmqLgb2mDx3kiRJkiRJ0vwtuGWX/aBKGgZV9V3ggVPSXrCT9V8PvH6545K0ogxN187j1FXtcuWlt4tlWP5ulv1MhtM45UWShkGS+wCfBO5Nd6/pnKp6TZIDgbPortkuBV5QVT9Mcm/gDOBxwM3Ab1TV5oEEL0mSxsJiujEE+0GVJEkamq6dx6mr2uXKy2TX0ZOWu5tlP5PhNKp5SXIa8Ezgpqp6ZEvbi3mOD5jkaOCP225fV1WnI0mL8wPgyVW1Lck9gU8l+WfgFcCbquqsJH8DHEPXhfMxwK1V9dAkRwFvAH5jUMFLkqTRt5huDKmqy6tqbVX996p6dlXdWlU3V9WhVXVQVT2lqm5p61ZVvaSqHlJVB1fV55YmC5IkSQNl186S+uXdwDOmpG2kGx/wIOAi7qps7x0f8Fi6m8uTlWOvoett4/HAa5LsueyRSxpr7Z7PtjZ7z/Yq4Ml050Zw926dJyvazwEObZX0kiRJC7Koyi5JkqSVrqpuAK5L8rCWNNm183l0XTrD3bt2fmE6T8CunSXNUVV9ErhlSvJ8xwd8OnBhVd1SVbcCF3L3CjRJmrckuyS5nO4BnwuBrwC3VdVkH8KTXTdDT7fObfntTOmeXpIkaT4W242hJEmS7Np5yaxp3Qwef/B2Nmw8n80nHTHgiKShN9/xAWdKv5tRHjtwkHH0jg24etflHxtwLobhcxmGGIxjeVXVHcCjk+wBfAj42cXucyHl0GyG8dhPlhurd+2m5xvfYsckncv2w3jcJhnbwgxzbJK0EFZ2SZIkLVJVXQ6snWbRodOsW8BLljsmSSvPQsYHnGV/Izt24CDj6B0b8PiDt3PkCj8ewxSDcfRHVd2W5BPAz9O1Kl3VWm/1dt082a3zliSrgAcAN0+zr3mXQ7MZxmO/3P+F5wAAn/xJREFUoedhn5OvWDXvMUUXOybpXLYfxuM2ydgWZphjk6SFsBtDSZIkSRpd8x0f0HEDJS25JA9qLbpIsivwVOBq4BPAc9pqU7t1nuzu+TnAx9sDQZIkSQtiZZckSZIkja75jg/4UeBpSfZMsifwtJYmSYuxD/CJJF8APks3NuCHgROAVyTZRDcm16lt/VOBB7b0VwAbBxCzJEkaI3ZjKEmSJEkjIMn7gHXA3km2AK8BTmIe4wNW1S1JXkt3MxrgT6vqlr5lQtJYqqovAI+ZJv1a4PHTpP8X8Ot9CE2SJK0QVnZJkiRJ0gioqufOsGhe4wNW1WnAaUsYmiRJkiQNlN0YSpIkSZIkSZIkaWTZskuSJEmSJEnSgq3ZeP4O85tPOmJAkUiSVipbdkmSJEmSJEmSJGlkWdklSZIkSZIkSZKkkWVllyRJkiRJkiRJkkaWlV2SJEmSJEmSpJGXZJckn0/y4TZ/YJJLkmxK8v4k92rp927zm9ryNQMNXNKiWdklSZIkSZIkSRoHLwOu7pl/A/CmqnoocCtwTEs/Bri1pb+prSdphFnZJWnkJdmc5Ioklyf5XEvbK8mFSa5pf/ds6Uny1vbkzheSPHaw0UuSJEmSJGmxkuwPHAG8q80HeDJwTlvldODZbXp9m6ctP7StL2lELbqyy6ahkobEL1fVo6tqbZvfCFxUVQcBF7V5gMOAg9rrWOAdfY9UkiRJkiRJS+3NwCuBH7f5BwK3VdX2Nr8F2K9N7wdcB9CW397WlzSiVi3BPiabht6/zU82DT0ryd/QNQl9Bz1NQ5Mc1db7jSV4f0maznpgXZs+HZgATmjpZ1RVARcn2SPJPlV1/UCilCRJkiRJ0qIkeSZwU1VdmmTdEu73WLqHpVm9ejUTExOzbrN6Vzj+4O13zs9lm2EzGf9kXkYxD1Nt27ZtLPIB45OXpc7Hoiq7epqGvh54RU/T0Oe1VU4HTqSr7FrfpqFrGvr2JGk3nCVpMQr4WJIC/raqTgFW91Rg3QCsbtN3PrnTTD7VY2WXpAVLsgvwOWBrVT0zyYHAWXRPBl4KvKCqfpjk3sAZwOOAm4HfqKrNAwpbkiRJksbFE4FnJTkcuA9dw4y3AHskWdVab+0PbG3rbwUOALYkWQU8gO4abQftHtMpAGvXrq1169bNGsjbzjyXk6+467b75ufPvs2w2bDxfKCr6Dr5ilUjmYepJiYmmMvnNwrGJS9LnY/Ftux6M13T0N3b/JybhiaZbBr6rd4dLqS2HEa/NnMca8vH4SmGSaP+/9VrnPLS40lVtTXJTwAXJvlS78KqqlYRNmcr9ckdGK//kXH5TGC8PpdxyksPW7pLkiRJ0oBU1auAVwG0ll1/WFXPT/IB4Dl0DyMeDZzbNjmvzX+6Lf+4jTKk0bbgyq7lahq6kNpyGP3azHGsLR+Hpxgmjfr/V69xysukqtra/t6U5EPA44EbJ7snTLIPcFNbffLJnUm9T/X07nNFPrkD4/U/Mi6fCYzX5zJOeQFbukuSJCU5gK71+mq6njdOqaq3JNkLeD+wBtgMHFlVt7bzpbcAhwPfAzZU1WWDiF3S2DsBOCvJ64DPA6e29FOB9yTZBNwCHDWg+CQtkcW07FqWpqGSNB9JdgPuUVXfadNPA/6Uu57QOYm7P7lzXJKzgEOA2x2vS9IivZklbukOC2thOg6t5pa7tXtva09Y/haf4/CZTDIvkqSd2A4cX1WXJdkduDTJhcAG4KKqOinJRmAj3Y3nw4CD2usQuoeCDhlI5JLGTlVN0I3dTlVdS/dQ9NR1/gv49b4GJmlZLbiyy6ahkobEauBD3YOBrALeW1UfSfJZ4OwkxwBfA45s619A9/TgJronCF/U/5AljYvlaukOC2thOg6t5pa7tfvk/ictd4vPcfhMJpkXSdJM2gOE17fp7yS5mu4hn/XAurba6XQ3n09o6We0+0IXJ9ljsmeOfscuSZLGw2LH7JqOTUMl9U17QudR06TfDBw6TXoBL+lDaJJWBlu6S5Ik9UiyBngMcAmwuqcC6wa6hxWhp7V7M9kS3souSZK0IEtS2WXTUEmStBLZ0l2SJOkuSe4H/APw8qr6duuBA+gePEwyr/OehXTrPJth7Mp2sd04L7ab5rlsP9tx63dX0b2G8TOdZGyS1D/L0bJLkiRppbOluyRJWlGS3JOuouvMqvpgS75xsnvCJPsAN7X0ydbuk3pbwt9pId06z2YYu7JdbDfOi+2meS7bz3bc+t1VdK9h/EwnGZsk9Y+VXZIkSUvAlu6SJGmlSteE61Tg6qr6y55Fk63aT+Lurd2PS3IWcAhwu+N1SZKkxbCyS5IkSZIkSYvxROAFwBVJLm9pr6ar5Do7yTHA14Aj27ILgMOBTcD3gBf1NVpJkjR2rOySJEmSJEnSglXVp4DMsPjQadYv4CXLGpQkSVpR7jHoACRJkiRJkiRJkqSFsrJLkiRJkiRJkiRJI8vKLkmSJEmSJEmSJI0sK7skSZIkacQl2ZzkiiSXJ/lcS9sryYVJrml/92zpSfLWJJuSfCHJYwcbvSRJkiQtjpVdkiRJ0jK5YuvtrNl4/p0vaZn9clU9uqrWtvmNwEVVdRBwUZsHOAw4qL2OBd7R90glSZIkaQmtGnQAkiRJkqRlsR5Y16ZPByaAE1r6GVVVwMVJ9kiyT1VdP5AoJWnETX2gZfNJRwwoEkmSVi4ruyRJkiRp9BXwsSQF/G1VnQKs7qnAugFY3ab3A67r2XZLS9uhsivJsXQtv1i9ejUTExOzBrFt27Y5rbfcBhnH8Qdvv3N69a6s+OMxTDEYhyRJ0viyskuSJEmSRt+Tqmprkp8ALkzypd6FVVWtImzOWoXZKQBr166tdevWzbrNxMQEc1lvuQ0yjg09LTyOP3g7R67w4zFMMRiHJEnS+HLMLkmSJEkacVW1tf29CfgQ8HjgxiT7ALS/N7XVtwIH9Gy+f0uTJEmSpJFkZZckSZIkjbAkuyXZfXIaeBpwJXAecHRb7Wjg3DZ9HvDCdJ4A3O54XZIkSZJGmZVdkiRJkjTaVgOfSvIfwGeA86vqI8BJwFOTXAM8pc0DXABcC2wC3gn8Xv9DliRJWjpJDkjyiSRXJflikpe19L2SXJjkmvZ3z5aeJG9NsinJF5I8drA5kLRYC67ssgCRNGg7KYdOTLI1yeXtdXjPNq9q5dCXkzx9cNFLkiQtjaq6tqoe1V6PqKrXt/Sbq+rQqjqoqp5SVbe09Kqql1TVQ6rq4Kr63GBzIEmStGjbgeOr6uHAE4CXJHk4sBG4qKoOAi5q8wCHAQe117HAO/ofsqSltJiWXRYgkgZtpnII4E1V9ej2ugCgLTsKeATwDOCvk+wyiMAljQ8fAJIkSZKkwaqq66vqsjb9HeBqYD9gPXB6W+104Nltej1wRnsI6GJgj8mxTiWNplUL3bD16X59m/5Okt4CZF1b7XRgAjiBngIEuDjJHkn2sW94SQu1k3JoJuuBs6rqB8BXk2yiG7z908serKRxNlnxflkbM+fSJBcCG+geADopyUa6B4BOYMcHgA6hewDokIFELkmStASSnAY8E7ipqh7Z0vYC3g+sATYDR1bVrUkCvAU4HPgesGHyBrUkLYUka4DHAJcAq3vuP99A1/0zdPePruvZbEtL2+FedZJj6RpusHr1aiYmJmZ9/9W7wvEHb79zfi7bDJvJ+CfzMop5mGrbtm1jkQ8Yn7wsdT4WXNnVaykLEElaiCnl0BOB45K8EPgc3U3oW+nKnIt7Npssh6bb34o8mYHx+cGE8flMYLw+l3HKC/gAkCRJEvBu4O3AGT1pkz3/+OCPpL5Jcj/gH4CXV9W3u/r1TlVVkprP/qrqFOAUgLVr19a6detm3eZtZ57LyVfcddt98/Nn32bYbNh4PtDdUzn5ilUjmYepJiYmmMvnNwrGJS9LnY9FV3YtdQGykBvMMPo3zsaxttybzMNpnPIyaZpy6B3Aa4Fqf08GXjyffa7UkxkYnx9MGJ/PBMbrcxmnvEzlA0CSJGklqqpPtvOgXj74oxmtaTfSJ20+6YgBRaJxkuSedPeHzqyqD7bkGyfLmNZN4U0tfStwQM/m+7c0SSNqUZVdy1GALOQGM4z+jbNxrC33JvNwGqe8wPTlUFXd2LP8ncCH26wnMpKWzTA8ADQODzQs9wNAvQ/iwPI/jOPDP8NpnPIiSUPMB38k9U3rIvVU4Oqq+sueRecBRwMntb/n9qQfl+Qsutalt1vpLo22BVd2WYBIGrSZyqEpTwX+KnBlmz4PeG+SvwT2pes24zN9DFnSmBqWB4DG4YGG5X4AaMPUp4iX+WEcH/4ZTuOUF0kaBQt58AcW3vvPzizHAw+LfZhmsQ/7LNX772z72Y7bfGNYygeQhvkhFmPrqycCLwCuSHJ5S3s13T3qs5McA3wNOLItu4Bu7MBNdOMHvqiv0arvrth6+w7Xg7YoHT+LadllASJp0GYqh56b5NF03RhuBn4boKq+mORs4CpgO/CSqrqjzzFLGjM+ACRJkjStRXcdttDef3ZmOR54WOzDNIt92Gep3n9n28923OYbw1I+gDTMD7EYW/9U1aeAzLD40GnWL+AlyxqUpL5acGWXBYikQdtJOXTBTrZ5PfD6ZQtK0krkA0CSJEl354M/kiSpbxY1ZpckSdJK5wNAkiRppUvyPmAdsHeSLcBr8MEfSZLUR1Z2SZIkSZIkacGq6rkzLPLBH0mS1Bf3GHQAkiRJkiRJkiRJ0kJZ2SVJkiRJkiRJkqSRZWWXJEmSJEmSJEmSRpaVXZIkSZIkSZIkSRpZqwYdgCRJkiRJkiTN1ZqN5985ffzB21k3uFAkSUPCll2SJEmSJEmSJEkaWVZ2SZIkSZIkSZIkaWRZ2SVJkiRJkiRJkqSR5ZhdkiRJmpPesREANp90xIAikSRJkiRJuostuyRJkiRJkiRJkjSyrOySJEmSJEmSJEnSyLKyS9qJNRvPZ83G87li6+1367pJkiRJkjS73msqr6skSZK0HByzS5IkSRphjqUmSdLC+Tu6Mvm5S9L4sWWXJEmSJEmSJEmSRlbfK7uSPCPJl5NsSrKx3+8vSZZDkgbNckjSoFkOSRo0yyGNssluWXtfGk2WRdL46Gs3hkl2Af4KeCqwBfhskvOq6qp+xiFp5bIckvpv6oXfu5+x24AiGQ6WQxo1k9/h4w/ezoaN59vNzxiwHJI0aJZDkoaBZZE0XvrdsuvxwKaquraqfgicBaxfih33Dnbr0xSSdmLZyiFJmiPPhyQNmudDkgbNckjSMLAs0kiZvNafvPbXjlJV/Xuz5DnAM6rqN9v8C4BDquq4nnWOBY5tsw8DvjzH3e8NfGsJwx2UcckHmJdhNde8PLiqHrTcwfTbXMqhlr6Qsmhc/k/GJR9gXoaV5ZDl0FyMS17GJR+wMvNiOTS65ZBx7GgY4hiGGGD04rAcWtg9op0Zlv+B6RjbwhjbwqzocgiW9V71MH/u82VehtO45GVJy6G+dmM4F1V1CnDKfLdL8rmqWrsMIfXVuOQDzMuwGqe8LKeFlEXjcmzHJR9gXobVOOVlOa3kcgjGJy/jkg8wLyvRKJdDxjF8cQxDDMYxehZ6j2hnhvnYG9vCGNvCDHNsw2SUz4eWgnkZTuOSl6XOR7+7MdwKHNAzv39Lk6R+sRySNGiWQ5IGzXJI0qBZDkkaBpZF0hjpd2XXZ4GDkhyY5F7AUcB5fY5B0spmOSRp0CyHJA2a5ZCkQbMckjQMLIukMdLXbgyranuS44CPArsAp1XVF5do90varH2AxiUfYF6G1TjlZd4sh+ZkXPIB5mVYjVNe5s1yaM7GJS/jkg8wL2NjhZRDxrGjYYhjGGIA4xgKy1wOzWaYj72xLYyxLcwwx9YXy1gWjdOxNS/DaVzysrRdFVfVUu5PkiRJkiRJkiRJ6pt+d2MoSZIkSZIkSZIkLRkruyRJkiRJkiRJkjSyRr6yK8kzknw5yaYkGwcdz0IlOS3JTUmuHHQsi5XkgCSfSHJVki8medmgY1qIJPdJ8pkk/9Hy8SeDjmmxkuyS5PNJPjzoWEbZbOVOknsneX9bfkmSNQMIc1ZzyMeGJN9Mcnl7/eYg4pzNbOVnOm9t+fxCksf2O8a5mkNe1iW5vecz+T/9jnEu5vI7MEqfyygYo/OhsTiH6DUuv71J9khyTpIvJbk6yc8POqaFSPIH7X/ryiTvS3KfQcc0qoblfGgYzmeG5VxkGM4jhuUcYI5x9ON4zHpN2a/vykozLP8DO4lvc5Ir2vt+bprlAzlXTvKwnuNxeZJvJ3n5lHX6dtymK9eS7JXkwiTXtL97zrDt0W2da5Ic3afY/m+6c6UvJPlQkj1m2Hann/8yxXZikq09n9vhM2w7FtcVgzQux3C284pRMZffg1Exl/OKUZOlvl6uqpF90Q0c+BXgp4F7Af8BPHzQcS0wL78IPBa4ctCxLEFe9gEe26Z3B/5zFD8XIMD92vQ9gUuAJww6rkXm6RXAe4EPDzqWUX3NpdwBfg/4mzZ9FPD+Qce9wHxsAN4+6FjnkJedlp/A4cA/t+/0E4BLBh3zIvKybhS+v3P5HRilz2XYX2N2PjQW5xBT8jQWv73A6cBvtul7AXsMOqYF5GE/4KvArm3+bGDDoOMaxdewnA8Ny/nMsJyLDMN5xLCcA8wxjn4cj1mvKfvxXVmJr2H5H9hJfJuBvXeyfODnyq2MvQF48KCO23TlGvBGYGOb3gi8YZrt9gKubX/3bNN79iG2pwGr2vQbpottLp//MsV2IvCHc/jMx+K6YlCvcTqGs51XjMprLr8Ho/Kay3nFqL1Y4uvlUW/Z9XhgU1VdW1U/BM4C1g84pgWpqk8Ctww6jqVQVddX1WVt+jvA1XQ3F0ZKdba12Xu2Vw0wpEVJsj9wBPCuQccy4uZS7qynuykIcA5waJL0Mca5WEnl53rgjPadvhjYI8k+/Ylufsblt2COvwMj87mMgHH6Po/FOcSkcfntTfIAuovdUwGq6odVddtAg1q4VcCuSVYB9wW+MeB4RtWwnA8NRfk3LOciw3AeMSznAMPyezLHa8pRuHYYOcPyP7AIw3CufCjwlar6Wp/f904zlGu935nTgWdPs+nTgQur6paquhW4EHjGcsdWVR+rqu1t9mJg/6V8z7laxO/BUPyujrixOYbDcF6xFMbg9+BO3que3ahXdu0HXNczv4UR/WcdV60LhsfQ1TSPnNaU8nLgJroTpZHMR/Nm4JXAjwccx6ibS7lz5zrtRPd24IF9iW7u5lp+/lrrguGcJAf0J7QlN26/FT/fmqz/c5JHDDqY2ezkd2DcPpdBGstjOernEM2bGY/f3gOBbwJ/17qYeFeS3QYd1HxV1VbgL4CvA9cDt1fVxwYb1cgalvOhUTmfGaZyum/nEcNyDjDL78myH485XFOOwrXDSBv0/8AMCvhYkkuTHDvN8mEoN44C3jfDskFek6yuquvb9A3A6mnWGYbj92K61nnTme3zXy7Htd/D02bo/nEYjtuo8xgOsXG4xvRe9c6NemWXhliS+wH/ALy8qr496HgWoqruqKpH0z2N8/gkjxxwSAuS5JnATVV16aBj0Uj5J2BNVf13uifhTp9lfS2/y+i6EXkU8DbgHwcbzs6Nw++ABmMc/nfG7Ld3FV0XJu+oqscA36XrNmiktJs66+kq7/YFdkvyvwYblfrA85m79O08YljK8Vni6MvxGJdrylE1DP8DM3hSVT0WOAx4SZJf7ON7zyrJvYBnAR+YZvHQXJNUVTGErRqS/G9gO3DmDKsM4vN/B/AQ4NF0D/2c3If3lIbGsJybLNa4nFcs1/XyqFd2bQV6n8zbv6VpwJLck64AObOqPjjoeBarddXzCZa42XsfPRF4VpLNdE2on5zk7wcb0siaS7lz5zqtm6QHADf3Jbq5mzUfVXVzVf2gzb4LeFyfYltqY/NbUVXfnmyyXlUXAPdMsveAw5rWHH4HxuZzGQJjdSzH6BxinH57twBbep4aPIeu8mvUPAX4alV9s6p+BHwQ+IUBxzSqhuV8aFTOZ4ainO7XecSwnAPMFke/z6t2ck05CtcOI2nY/gemvPfW9vcm4EN0XZ/1GnS5cRhwWVXdOHXBEFyT3DjZpWP7e9M06wzs+CXZADwTeH6rjLubOXz+S66qbmw3yX8MvHOG9xz0/9048BgOoTG6xryT96qnN+qVXZ8FDkpyYHvq5CjgvAHHtOK1/sVPBa6uqr8cdDwLleRBSfZo07sCTwW+NNCgFqiqXlVV+1fVGrrvyceryieZF2Yu5c55wNFt+jl0x3vYnjabNR9T+oR/Fl2/xqPoPOCF6TyBrtuq62fbaBgl+cnJMRySPJ7ud3zobobM8XdgbD6XITA250Pjcg4B4/XbW1U3ANcleVhLOhS4aoAhLdTXgSckuW/7XzuU0f1tG7RhOR8alfOZofjN68d5xLCcA8wljj4dj7lcU47CtcPIGZb/gRned7cku09OA08Drpyy2qDLjecyQxeGQ3BN0vudORo4d5p1Pgo8Lcme6Vp2P62lLaskz6DrkutZVfW9GdaZy+e/HLH1/h7+6gzvOTbXFQPkMRwy43SN6b3q2a1adGQDVFXbkxxH94O1C3BaVX1xwGEtSJL3AeuAvZNsAV5TVacONqoFeyLwAuCKdH2IAry6PfEzSvYBTk+yC93J29lV9eEBx6QBm6ncSfKnwOeq6jy6H9H3JNlEN5jnUYOLeHpzzMfvJ3kWXfcLtwAbBhbwTkxXftIN0klV/Q1wAXA4sAn4HvCiwUQ6uznk5TnA7ybZDnwfOGpIb4ZM+zsA/BSM3ucy7MbpfIjxOYcYRy8FzmwX7dcygt/ZqrokyTl03S9tBz4PnDLYqEbTsJwPDcv5zLCciwzJecSwnAPMJY5+HI9prylH7dphRA3L/8B0VgMfavVFq4D3VtVHkvxOT2wDO1duFTBPBX67J603tr4dtxnKtZOAs5McA3wNOLKtuxb4nar6zaq6Jclr6SoeAP60qm7pQ2yvAu4NXNg+34ur6neS7Au8q6oOZ4bPvw+xrUvyaLpuHzfTPt/e2MbsumIgxukYjtG96nG6xvRe9SwynPfIJEmSJEmSJEmSpNmNejeGkiRJkiRJkiRJWsGs7JIkSZIkSZIkSdLIsrJLkiRJkiRJkiRJI8vKLkmSJEmSJEmSJI0sK7skSZIkSZIkSZI0sqzskiRJkiRJkiRJ0siyskuSJEmSJEmSJEkjy8ouSZIkSZIkSZIkjSwruyRJkiRJkiRJkjSyrOySJEmSJEmSJEnSyLKyS5IkSZIkSZIkSSPLyi6NtSTrkmwZdBySJEmStFSSVJKHDuB9353kdf1+X0malGQiyW8OOg5Jy2MQ93IHfX6TZE07t1s1qBjGhZVdYyDJUUkuSfLdJDe16d9LkkHHtjNJXpfkoilpP5Pk20kOnuM+TkzyoyTb2uvqJL+2k/U3J3nKYmOXNLNRLZMmJXl6kk8m+U6Sbyb51yTPGnRckuZm1MsguPNia3uSfQYdi6SZJXlVkn+eknbNDGlH9TGuiST/1c5lvp3k0iQbk9y7XzG0OB6R5GNJbklyW4vj8LZsXZIf91zHbUvyT/2MTxoXSTYkuSLJ95LckOQdSfYYUCzVzsG2Jdma5C+T7DKIWHpienWSr7aYtiR5f8+yyfKytyz6+UHGK42Sdp/1+1O+Q28fdFxLqZWxd7S8fTvJ5UmeOei4ND0ru0ZckuOBtwD/F/hJYDXwO8ATgXstYH/9rEF+LfCTSX6rvXeAdwJ/WVVXzCO291fV/arqfsDLgb9PsnqZYpa0EyNeJpHkOcAHgDOA/eni/z/AryxgXz6RI/XZqJdB7T13A34NuB34X7OsazkjDdYngV+YvJHbKqjvCTxmStpD27r9dFxV7Q7sAxwPHAVc0OeK/38CLqQrj38C+H3g2z3LvzF5Hdde8z7fkla6du7zBuCPgAcATwAeDFyYZN7nPkvkUe3+zKHA84Dfms/GS3l+k+Ro4AXAU1pMa4GLpqx23JSy6NNL9f7SCvErU75Dxw06oGXw6VaG7AGcCpydZM/57MBrt/6wsmuEJXkA8KfA71XVOVX1nep8vqqeX1U/aOsdkeTzrfb5uiQn9uxjspnkMUm+Dny8pX+gPRF0e2vh8IiebR6Y5J/a/j6broXWp3qW/2ySC9sTfF9OcuR08bf4XgyclGRf4FhgT+D1bT8bkvx7kjcluRk4cbr9TNnnR4HvAA+Z5ni9B/gp4J9abfwrZ9ufpLkb9TKp3fz5S+C1VfWuqrq9qn5cVf9aVZOV8g9J8vEkNyf5VpIze5+abE81nZDkC8B3k6xq81vTPV395SSHLt1RlzRp1MugHr8G3NbycvSUPJ6Y5Jwkf5/k28CGJA9IcmqS61tZ87qem+w7LbMkLdpn6Sq3Ht3m/wfwCeDLU9K+UlXfSLJvkvNaebAp7aE/gCT3TvLmJN9orzenpyVWkj9q3/NvJHnxXAOsqu9W1QTwLODngSPa/u6RrrXXV1oZcXaSvXre70lJ/l+6FlnXJdkwdd9Jdk/yiSRvbedRvcv2Bg4E3llVP2yvf6+qT03dj6SFSXJ/4E+Al1bVR6rqR1W1GTgSWEN7aKbn/OH97ZrksiSP6tnPvkn+IV2vFl9N8vs9y05s5cMZbdsvJlk7l/iq6kvAvwGPbPv6rVb23dLKwn173qeSvCTJNcA1LW19uhYU325l1TN6dv/gdPeLvpOuBeneM4Txc8BHq+orLaYbquqUucQvaXHS3df9VJK/SHJrK18O61m+V5K/a+c2tyb5xxn289/StcK8rZVBz+pZdniSq1pZsDXJH/Yse2YrQ25r5zT/vWfZY1pZ+J10rT3vM5c8VdWPgdOAXYGHtGuxM1r5+bUkf5zkHj353+G+dpJdk5zc1r29HZ9de97i+Um+3q7d/vecDrR2YGXXaPt54N7AubOs913ghXS1z0cAv5vk2VPW+SXgvwFPb/P/DBxE9wTeZcCZPev+VdvnT9LdhLnzRky6p5EvBN7btj0K+OskD58usKq6BHg38B66Sq4XV9WPelY5BLiW7sns1+8sk+kcQffk9lXTvNcLgK9z1xMHb9zZ/iTN26iXSQ8DDgDO2UnsAf4c2LfFdwB3r4h/bsvXHnQV78cBP9eern46sHkn+5e0cKNeBk06GngfcBbws0keN2X5erpyao8Wx7uB7XQtRx4DPA2YHMdiLmWWpAWqqh8ClwC/2JJ+ke7G7qempE226joL2EL3nXwO8GdJntyW/W+6FhmPBh4FPB74Y4B2g/cPgafSlUXz7pa9qr4OfI6u8g3gpcCz6cq7fYFb6cozkjyYrtx7G/CgFtPlvftL8kC61hH/XlW/X1U15S1vBjbR9brx7NjzhrQcfoHuBu0HexOrahtwAV2ZMWk9XQ8We9Gdl/xjknu2m7L/BPwHsB9da6yXJ3l6z7bPoiu/9gDOA+bURVk73/kfwOdbWffndBVx+wBfa/vs9Wy6e0APT/J4ut42/qi97y+y43XU84AX0Z1f3YuujJzOxcAL0z0wsDYD7lJRWoEOoXsIaG/gjcCpPQ/IvAe4L/AIuu/ym6ZunOSedGXUx9o6LwXOTPKwtsqpwG+3+y2P5K6HFR9DVyn128ADgb8Fzkv3cNG9gH9s778XXdk445A4U+JZRXettY2uYv5tdK1qf5runOqFdGVTb/5772v/BfA4uvJ7L+CVwI971n8S3b2pQ4H/k+S/zSUu9agqXyP6ontK54Ypaf+P7mng7wO/OMN2bwbe1KbXAAX89E7eZ4+2zgOAXYAfAQ/rWf464FNt+jeAf5uy/d8Cr9nJ/nelO9F505T0DcDXZzkGJwI/bHn+LnAH8Mqe5euALT3zm+marw/88/Pla9xeo14m0XVzVsB95pHnZwOf75nfTFdpPzn/UOAmuptS9xz0Z+TL1zi/Rr0Mast+iu5i59Ft/qPAW3qWnwh8smd+NfADYNeetOcCn5hh/zuUWb58+Vr8q30vP9Sm/4OuMuoZU9KOpqtsvgPYvWfbPwfe3aa/Ahzes+zpwOY2fRpwUs+yn2nl0ENniGkC+M1p0s+ia2kFcDVwaM+yfVp5tgp41WT80+zj3S2eK4E/muXY7E93U/wrrWz7JHBQW7aupd3W8zpy0J+nL1+j9Jru3Kdn2UnAhW36RODinmX3AK6nq4g6hCn3XVoZ8Hc92/5Lz7KHA9/fSUxF113pre27/7r2fqcCb+xZ736tzFnTs92Te5b/LVPuEfUsmwD+uGf+94CP7CSm5wP/QnfP6GbghCn7+l5POXTZoD9XX75G6UV3D2TblN/z32rLNgCbeta9b/uu/2Q77/gxsOc0+1xHu5fbyqkbgHv0LH8fcGKb/jpdhdb9p+zjHXS99vSmfZmuQuoXgW8A6Vn2/4DXzZDHDXQPF94GfIuuEv0pdNeCPwQe3rPubwMTPdt9vWfZPeiuSx81zXusacdm/560zwBHDfozHrWXLbtG283A3unp87OqfqGq9mjLJptNHpKue4lvJrmdbuyKqU28r5ucSLJLkpNaM/Fvc9fTM3vTPdm3qnf9KdMPBg5pTURvS3Ib3YnFT86Uiar6PvBV4IvTLL5umrSpzq6qPapqN7pWFC9M8ttz2E7S0hr1Munm9nefmTKYZHWSs1rz+G8Df7+z2KtqE91YgicCN7Vt90XSchj1Mgi6MSWurqrL2/yZwPPaE40z7f+ewPU9+/9buqce51pmSVqcTwJPStcF4IOq6hq6Gya/0NIe2dbZF7ilqr7Ts+3X6FpS0JZ/bcqyfXuWXTdl2ULsB9zSph8MfKin7LiarjJuNV3F3Fd2sp8j6B5Y/JudvVlVbamq46rqIe39vkvXUmPSN9p13OTr7IVkSlrBvsWUc58e+7Tlk3qvUX7MXa1MHwzsO+Vc5dV0ZcGkG3qmvwfcZ4b3nPTYqtqzqh5SVX/c3m+HMq661mc3c1cZuEOMzF4OTY3pfjOtWFVnVtVT6B5Y+h3gtVNarv1+Tzn02J28p6TpPXvK7/k7e5bd+V2tqu+1yfvRfcdvqapbZ9n3vsB1rRyZ1Hv+9GvA4cDXkvxrkp9v6Q8Gjp9Sth3Q9rcvsLVajVLPPnfm4pa3vavqCVX1L3TXVffk7udvM5Vre9O1xl2Ssk3Ts7JrtH2a7mne9bOs9166puYHVNUD6C5Kpg5M3PsFf17b51Ponlpe09IDfJOuNnv/nvUP6Jm+DvjXKYXc/arqd+ecq5njmn3lrn/qfwZmGtx4XvuTNC+jXiZ9ua2/s+brf9ZiO7iq7k/3NOXOYqeq3ltVT6I72Sq6AaQlLb1RL4Og6/bip9OND3YD3TiCe9NdwE0X23V0ed67Z//3r6rJMcXmUmZJWpxP05UNvwX8O0BVfZvuieHfoqvQ+Wqb3yvJ7j3b/hSwtU1/g+5coXfZN9r09exYtvzUfINMcgBdtzn/1pKuAw6bUj7dp6q2tmV3GwO5xzuBjwAXtO5aZ1VV19F1k/jI+cYuaUaT5z7/szcxyf2Aw+i6Gp10QM/ye9Cdu3yD7vv+1Sllwe5V1XvusRR2KONa2fFA7ioD4e7nODsrh+atujHNPgB8AcsiadCuozsv2mOW9b4BHNDKrUl3nj9V1Weraj3dw37/CEw+OHMd8PopZdt9q+p9dOdV+/V0pzi5z/n6Fl0L1annbzOVa98C/oslLtu0Iyu7RlhV3UY3GOlfJ3lOugGC75Hk0UDvRcfudLXl/9X6PX7eLLvene6E6Wa6JqZ/1vOed9D1B31ikvsm+Vm6GzOTPgz8TJIXtP6f75nk5/rVx2iS/em6DZmulRjAjXT9qEpaYqNeJrWnel4B/H9JXpTk/i3+JyWZHMR4d7om+rcn2Y+uD/kZJXlYkienG2D+v+iarP94Z9tIWphRL4PaU4gPoRun59Ht9Ui6yrkXTl2/vf/1dP3Xn9xTZj0kyS/1xD7nMkvS/LVeKj5Hdw7xbz2LPtXSPtnWu46uxdefJ7lPukHSj6FrcQldlzx/nORBSfYG/k/PsrOBDUkenuS+wGvmGl8rm36JbjzDz9CN4wNdRf/r043PRXvfyYcFzgSekuTIJKuSPLCVpb2Oo3tQ6J+y48Dqk++7Z5I/SfLQVjbtDbyYrusfSUugqm6nO/d5W5JntPOMNXRlxha68WgmPS7J/2wtsl5Od25zMV258J0kJyTZtbVof2SSn1vicN8HvCjJo9u10Z8Bl7QHlqdzalv/0FaG7NfOs+YlyYYkR/ScFx5GNz7QJQvNiKTFa9cx/0x37bZnK79+cZpVL6Fr4fTKts46ugYOZyW5V5LnJ3lAVf2IrgvVyfst7wR+J12vHkmy22RZQPegwHbg99s+/yfdNdh883AHXXn7+lbGPJju3O/vZ1j/x3RdQf9lkn1befvzrUzUErGya8RV1RvpvkivpKvIuZGu+5oT6C6moOu/+E+TfIfuomm27iHOoGt2uRW4irtfkBxH9/TiDXQnT++jO1GidcvxNLoB2L/R1nkD3YDxy+U3kmxLsg34LN0TlX8yw7p/TncReVuSmQYwlbRAo14mVdU5dGPsvLitfyNdP/PntlX+BHgscDtwPlMGg57Gven6y/9We++foOsDX9IyGPEy6Gjg3Kq6oqpumHwBbwGema47tOm8kG5g9qvoxsc4h7u6Y51vmSVpYf6V7jf+Uz1p/9bSPtmT9ly61qHfAD5EN37fv7Rlr6OrNPsCcAVwWUujqv6ZbnzBjwOb2t/ZvL2Vcze2bf8BeEZPN0BvoWvl+rG23sV0Y/dQVV+na1F6PF23h5cDj+rdeXtI6Fi6G+rnJrnPlPf/Ycvrv9DdfLqSrmzcMIfYJc1RO/d5NfAXdN+1S+haNBxaVT/oWfVcuuucW+m6Tf6fraXTHcAz6R6y+Srddcu76M5tljLOfwH+P7qy6Hq6B3yO2sn6nwFeBLyJ7jzmX9mx9cRcfZvu+HydbrydNwK/W1Wf2tlGkublnybvy7bXh+a43QvoWkZ9iW6s85dPXaGqfkhXuXUYXfn018ALq+pLPfvYnK7L9t+h6zKeqvocXQv7t9OVe5to5yBtn/+zzd9CVzYu9DrppXTdNF9Ldx74XroKrZn8Id153mfbe78B62eWVHbsnlKavyRvAH6yqo4edCySZJkkaZAsgyRJ0jBJciLw0Kr6X4OORZKk5WTNoeYtyc8m+e+tGejj6brfmGutvSQtKcskSYNkGSRJkiRJ0uCtGnQAGkm703XRsy9dtxgnc1cXX5LUb5ZJkgbJMkiSJEmSpAGzG0NJkiRJkiRJkiSNLLsxlCRJkiRJkiRJ0sga6m4M995771qzZs2i9/Pd736X3XbbbfEBLYFhigWMZ2eGKRbofzyXXnrpt6rqQX17wyE217Jo2P5nFmpc8gHmZVjNNS+WQ3cZtXLIOIxjXOKwHLrLqJVDCzGqsY9q3GDsc2E5dJeVUA7NxryNnnHIl+XQXcalHBr2+GD4YzS+xZlvfHMuh6pqaF+Pe9zjail84hOfWJL9LIVhiqXKeHZmmGKp6n88wOdqCMqBYXjNtSwatv+ZhRqXfFSZl2E117xYDo1uOWQcOzKOHY1SHJZDo1sOLcSoxj6qcVcZ+1xYDq2scmg25m30jEO+LIfGrxwa9viqhj9G41uc+cY313LIbgwlSZIkSZI0qySnJbkpyZU9aXsluTDJNe3vni09Sd6aZFOSLyR5bM82R7f1r0ly9CDyIkmSxouVXZIkSZIkSZqLdwPPmJK2Ebioqg4CLmrzAIcBB7XXscA7oKscA14DHAI8HnjNZAWZJEnSQlnZJUmSJEmSpFlV1SeBW6YkrwdOb9OnA8/uST+j9UB0MbBHkn2ApwMXVtUtVXUrcCF3r0CTJEmal1WDDkCSZpPkNOCZwE1V9ciW9n+BXwF+CHwFeFFV3daWvQo4BrgD+P2q+mhLfwbwFmAX4F1VdVKfsyJJkiRJ42Z1VV3fpm8AVrfp/YDretbb0tJmSr+bJMfStQpj9erVTExMzBrMtm3b5rTeKDJvo2dc8yVJw8jKLkmj4N3A24EzetIuBF5VVduTvAF4FXBCkocDRwGPAPYF/iXJz7Rt/gp4Kt3F1GeTnFdVV/UpD5IkSZI01qqqktQS7u8U4BSAtWvX1rp162bdZmJigrmsN4rM2+gZ13xJ0jCysksaYWs2nr/D/OaTjhhQJMurqj6ZZM2UtI/1zF4MPKdNrwfOqqofAF9NsomuH3iATVV1LUCSs9q6VnaNsSu23s6Gnu/JuH5HJN2l97fx+IO3s25woUgrkr+90op0Y5J9qur61k3hTS19K3BAz3r7t7StsMNP9P7AxFIFYzkkadAsh6TBsLJL0jh4MfD+Nr0fXeXXpN4uMaZ2lXHITDtcyd1ljEs+AFbv2t3snjTK+Rqnz2Wc8iJJkiTOA44GTmp/z+1JP649aHgIcHurEPso8GdJ9mzrPY2upw5JkqQFs7JL0khL8r+B7cCZS7nfldxdxrjkA+BtZ57LyVfc9VO3+fnrBhfMIo3T5zJOeZEkSVpJkryPrlXW3km2AK+hq+Q6O8kxwNeAI9vqFwCHA5uA7wEvAqiqW5K8FvhsW+9Pq+qWvmVCkiSNJSu7pDGyUro1nJRkA/BM4NCqmuwXfqauMthJuiRJkiRpFlX13BkWHTrNugW8ZIb9nAactoShSZKkFe4egw5AkhYiyTOAVwLPqqrv9Sw6Dzgqyb2THAgcBHyG7qnBg5IcmORewFFtXUmSJEmSJEnSCLOyS9LQa11lfBp4WJItrXuMtwO7AxcmuTzJ3wBU1ReBs4GrgI8AL6mqO6pqO3Ac8FHgauDstq4kLUqSA5J8IslVSb6Y5GUtfa8kFya5pv3ds6UnyVuTbEryhSSPHWwOJEmSJEmSRpvdGEoaejN0lXHqTtZ/PfD6adIvoOs3XpKW0nbg+Kq6LMnuwKVJLgQ2ABdV1UlJNgIbgROAw+hanR5EN1j7O9pfSZIkSZIkLYAtuyRJkhahqq6vqsva9HfoWo/uB6wHTm+rnQ48u02vB86ozsXAHkn26W/UkiRJkiRJ48PKLkmSpCWSZA3wGOASYHVVXd8W3QCsbtP7Adf1bLalpUmSJEmSJGkB7MZQkiRpCSS5H/APwMur6ttJ7lxWVZWk5rm/Y4FjAVavXs3ExMSs22zbtm1O6y23QcZx/MHb75xevSsr/ngYx/DHIUmSJElaPCu7JEmSFinJPekqus6sqg+25BuT7FNV17duCm9q6VuBA3o237+l7aCqTgFOAVi7dm2tW7du1jgmJiaYy3rLbZBxbNh4/p3Txx+8nSNX+PEwjuGPQ5IkSZK0eHZjKEmStAjpmnCdClxdVX/Zs+g84Og2fTRwbk/6C9N5AnB7T3eHkiRJkiRJmidbdkmSJC3OE4EXAFckubylvRo4CTg7yTHA14Aj27ILgMOBTcD3gBf1NVpJkiRJkqQxY2WXJEnSIlTVp4DMsPjQadYv4CXLGpQkSZIkSdIKsqhuDJOcluSmJFf2pJ2YZGuSy9vr8J5lr0qyKcmXkzx9Me8tSZIkSSvJDNdfeyW5MMk17e+eLT1J3tquv76Q5LE92xzd1r8mydHTvZckSZIkjZLFjtn1buAZ06S/qaoe3V4XACR5OHAU8Ii2zV8n2WWR7y9JkiRJK8W7ufv110bgoqo6CLiozQMcBhzUXscC74Cucgx4DXAI8HjgNZMVZJIkSZI0qhZV2VVVnwRumePq64GzquoHVfVVunEqHr+Y95ckSZKklWKG66/1wOlt+nTg2T3pZ1TnYmCPJPsATwcurKpbqupW4EKmf4BRkiRJkkbGco3ZdVySFwKfA45vF1H7ARf3rLOlpe0gybF0Tx6yevVqJiYmFh3Mtm3blmQ/S2GYYgHj2ZlhigWmj+f4g7fvdJthil+SJEnLYnVVXd+mbwBWt+n9gOt61pu8/pop/W4Wcm22etcdz1FH6Xx02M7/52pU4wZjlyRJ0tJZjsqudwCvBar9PRl48Vw3rqpTgFMA1q5dW+vWrVt0QBMTEyzFfpbCMMUCxrMzwxQLTB/Pho3n73Sbzc9ft9PlkiRJGh9VVUlqCfc372uzt515Lidfcddl5iidjw7b+f9cjWrcYOySJElaOosds+tuqurGqrqjqn4MvJO7uircChzQs+r+LU2SJEmStDA3tu4JaX9vaukzXX95XSZJkiRp7Cx5ZdfkhVbzq8CVbfo84Kgk905yIN1AyZ9Z6veXNJ6SnJbkpiRX9qTtleTCJNe0v3u29CR5a5JNSb6Q5LE92xzd1r8mydGDyIskSdISOg+YPKc5Gji3J/2F7bzoCcDtrbvDjwJPS7JnO3d6WkuTJEmSpJG1qMquJO8DPg08LMmWJMcAb0xyRZIvAL8M/AFAVX0ROBu4CvgI8JKqumNR0UtaSd7N3QdP3whcVFUHARe1eYDD6CrUD6IbZ+Id0FWOAa8BDqFrdfqayQoySZKkYTfD9ddJwFOTXAM8pc0DXABcC2yi63Hj9wCq6ha67uY/215/2tIkSZIkaWQtasyuqnruNMmn7mT91wOvX8x7SlqZquqTSdZMSV4PrGvTpwMTwAkt/YyqKuDiJHu0VqfrgAsnb+gkuZCuAu19yx2/JEnSYs1w/QVw6DTrFvCSGfZzGnDaEoYmSZLUF0lOA54J3FRVj2xpJwK/BXyzrfbqqrqgLXsVcAxwB/D7VfXRlv4M4C3ALsC7quokJI20Je/GUJL6aHXrjgfgBmB1m94PuK5nvS0tbaZ0SZIkSdIiJPmDJF9McmWS9yW5T5IDk1zSuph/f5J7tXXv3eY3teVrBhy+pNHxbu7e8w/Am6rq0e01WdH1cOAo4BFtm79OskuSXYC/ousZ6OHAc9u6kkbYolp2SdKwqKpKUku1vyTH0nWByOrVq5mYmJh1m23bts1pvWE3LvkAWL0rHH/w9jvnRzlf4/S5jFNeJEmSBEn2A34feHhVfT/J2XQ3mA+nuwF9VpK/oWtd8Y7299aqemiSo4A3AL8xoPAljZAZev6ZyXrgrKr6AfDVJJvohrUA2FRV1wIkOaute9VSxyupf6zskjTKbkyyT1Vd37opvKmlbwUO6Flv/5a2lbu6PZxMn5hux1V1CnAKwNq1a2vdunXTrbaDiYkJ5rLesBuXfAC87cxzOfmKu37qNj9/3eCCWaRx+lzGKS+SJEm60ypg1yQ/Au4LXA88GXheW346cCJdZdf6Ng1wDvD2JGldsErSQhyX5IXA54Djq+pWut58Lu5Zp7eHn6k9/xzSlyglLRsruySNsvOAo+kGYj8aOLcn/bj2ZM4hwO2tQuyjwJ8l2bOt9zTgVX2OWZIkSZLGSlVtTfIXwNeB7wMfAy4Fbquqya4Wem8y39nFfFVtT3I78EDgW737XUiPG+PUu8NU49xDwrjmbVzzNYTeAbwWqPb3ZODFS7HjcSyHRuH/cthjNL7FWa74rOySNBKSvI+uVdbeSbYAr6Gr5Do7yTHA14Aj2+oX0HWXsQn4HvAigKq6Jclrgc+29f60qm7pWyYkSZIkaQy1BwrXAwcCtwEfYPoxdeZlIT1ujFPvDlONcw8J45q3cc3XsKmqGyenk7wT+HCbnannH3aSPnXfY1cOjcL/5bDHaHyLs1zxWdklaSRU1XNnWHToNOsW8JIZ9nMacNoShiZJkiRJK91TgK9W1TcBknwQeCKwR5JVrXVX783kyRvQW5KsAh4A3Nz/sCWNg8khLtrsrwJXtunzgPcm+UtgX+Ag4DNAgIOSHEhXHh3FXV2uShpRVnZJkiRpZKzZeP4O85tPOmJJ15ckSQvydeAJSe5L143hoXTj5nwCeA5wFnfvev5o4NNt+ccdr0vSXMzQ88+6JI+m68ZwM/DbAFX1xSRnA1cB24GXVNUdbT/HAR8FdgFOq6ov9jcnkpaalV2SJEmSJElasKq6JMk5wGV0N5Q/T9ft1/nAWUle19JObZucCrwnySbgFrpWFZI0qxl6/jl1mrTJ9V8PvH6a9AvohsGQNCas7JJGyNSn0yVJkiRJGgZV9Rq6Fha9rgUeP826/wX8ej/ikiRJK8M9Bh2AJEmSJEmSJEmStFBWdkmSJEmSJEmSJGlkWdklSZIkSZIkSZKkkWVllyRJkiRJkiRJkkaWlV2SJEmSJEmSJEkaWVZ2SZIkSZIkSZIkaWRZ2SVJkrQISU5LclOSK3vSTkyyNcnl7XV4z7JXJdmU5MtJnj6YqCWNmyR/kOSLSa5M8r4k90lyYJJLWpnz/iT3auveu81vasvXDDh8SZIkSVoUK7skSZIW593AM6ZJf1NVPbq9LgBI8nDgKOARbZu/TrJL3yKVNJaS7Af8PrC2qh4J7EJX1ryBrix6KHArcEzb5Bjg1pb+praeJEmSJI2sVYMOQJIkaZRV1Sfn0SpiPXBWVf0A+GqSTcDjgU8vV3zauTUbz99hfvNJRwwoEmnRVgG7JvkRcF/geuDJwPPa8tOBE4F30JVFJ7b0c4C3J0lVVT8DliRJkqSlYmWXJEnS8jguyQuBzwHHV9WtwH7AxT3rbGlpd5PkWOBYgNWrVzMxMTHrG27btm1O6y235Yzj+IO37zA/9X16l6/edX7rT7d8KayEz8U4Bquqtib5C+DrwPeBjwGXArdV1eQ/eW95sx9wXdt2e5LbgQcC3+rd70LKoanfu1E6xqP6PzGqcYOxS5IkaelY2SVJkrT03gG8Fqj292TgxfPZQVWdApwCsHbt2lq3bt2s20xMTDCX9ZbbcsaxYWpLrOevm3H58Qdv5+QrVs15/emWL4WV8LkYx2Al2ZOutdaBwG3AB5i+e9V5WUg59LYzz93he7cc36nlMqr/E6MaNxi7JEmSlo5jdkkaaQ7GLmkYVdWNVXVHVf0YeCddV4UAW4EDelbdv6VJ0mI8BfhqVX2zqn4EfBB4IrBHksmap97y5s6yqC1/AHBzf0OWJEmSpKVjZZekkeVg7JKGVZJ9emZ/FbiyTZ8HHNUq3w8EDgI+0+/4JI2drwNPSHLfJAEOBa4CPgE8p61zNHBumz6vzdOWf9zxuiRJkiSNMiu7JI26ycHYV7HjYOzntOWnA89u0+vbPG35oe2GkCQtWJL3AZ8GHpZkS5JjgDcmuSLJF4BfBv4AoKq+CJxNdxP6I8BLquqOAYUuaUxU1SV05zaXAVfQXeedApwAvCLJJroxuU5tm5wKPLClvwLY2PegJUmSJGkJOWaXVrQ1U8fpOOmIAUWihViuwdglaT6q6rnTJJ86Tdrk+q8HXr98EUlaiarqNcBrpiRfy13dqPau+1/Ar/cjLkmSJEnqByu7JI2s5RqMve37WOBYgNWrVzMxMTHrNtu2bZvTesNuXPIBsHpXOP7g7XfOj3K+xulzGae8SJIkSZIkafCs7JI0yu4cjB0gyQ6DsbfWXdMNxr5ltsHYq+oUuu5/WLt2ba1bt27WYCYmJpjLesNuXPIB8LYzz+XkK+76qdv8/HWDC2aRxulzGae8SJIkSZIkafAcs0vSKHMwdkmSJEmSJEla4azskjSyHIxdkobLmo3ns2bj+Vyx9fa7jYspSZIkSZK0XOzGUNJIczB2SZIkSRq8JHsA7wIeCRTwYuDLwPuBNcBm4MiqurX1zPEW4HDge8CGqrqs/1FLkqRxYcsuSZIkSZIkLdZbgI9U1c8CjwKuputN46KqOgi4iLt61zgMOKi9jgXe0f9wJUnSOLFllyRJkpbF1K4MN590xIAikSRJyynJA4BfBDYAVNUPgR8mWQ+sa6udDkzQdTu/HjijjaF8cZI9kuxTVdf3OXRJkjQmFlXZleQ04JnATVX1yJa2FzZRlyRJkiRJWikOBL4J/F2SRwGXAi8DVvdUYN0ArG7T+wHX9Wy/paXtUNmV5Fi6ll+sXr2aiYmJWQNZvSscf/D2O+fnss2o2LZt21jlp9e45m1c8yVJw2ixLbveDbwdOKMnbbKJ+klJNrb5E9ixifohdE3UD1nk+0uSJEmSJGmwVgGPBV5aVZckeQt3dVkIQFVVkprPTqvqFOAUgLVr19a6detm3eZtZ57LyVfcdbtr8/Nn32ZUTExMMJdjMIrGNW/jmi9JGkaLGrOrqj4J3DIleT1d03Ta32f3pJ9RnYuBPZLss5j3lyRJkiRJ0sBtAbZU1SVt/hy6yq8bJ+/9tL83teVbgQN6tt+/pUmSJC3Ioiq7ZjDfJuqSJEmSJEkaUVV1A3Bdkoe1pEOBq4DzgKNb2tHAuW36POCF6TwBuN3xuiRJ0mIsthvDnVpIE/WF9Mc8m2HqH3eYYgHj6e3HG3bsy3sYj83xB98xr22GKX5JkiRJ0lh7KXBmknsB1wIvonvI+uwkxwBfA45s615AN6b7Jrpx3V/U/3AlSdI4WY7KrhuT7FNV1y+kifpC+mOezTD1jztMsYDxbNh4/g7zvX15D+OxOflT353XNuPUN7kkSdNZM+W3XJIkDUZVXQ6snWbRodOsW8BLljsmSZK0cixHN4Y2UZdmsGbj+Tu8JEmSJEmSJM1NktOS3JTkyp60vZJcmOSa9nfPlp4kb02yKckXkjy2Z5uj2/rXJDl6uveSNFoWVdmV5H3Ap4GHJdnSmqWfBDw1yTXAU9o8dE3Ur6Vrov5O4PcW896SJEmSJEmSpBXl3cAzpqRtBC6qqoOAi9o8wGHAQe11LPAO6CrHgNcAhwCPB14zWUEmaXQtqhvDqnruDItsoi5JkiRJfZJkD+BdwCOBAl4MfBl4P7AG2AwcWVW3JgnwFrrxcr4HbKiqy/oftSRJ0vxU1SeTrJmSvB5Y16ZPByaAE1r6Ge2+9MVJ9mjD7qwDLqyqWwCSXEhXgfa+5Y5f0vJZjjG7JEmSJEn99RbgI1X1nCT3Au4LvJruKeeTkmyke8r5BHZ8yvkQuqecDxlM2JIkSYu2ume4nBuA1W16P+C6nvW2tLSZ0u8mybF0rcJYvXo1ExMTswezKxx/8PY75+eyTT9t27Zt6GKaathjNL7FWa74rOySJEmSpBGW5AHALwIbAKrqh8APk8zrKWfHVJYkSaOuqipJLeH+TgFOAVi7dm2tW7du1m3edua5nHzFXbfdNz9/9m36aWJigrnkY5CGPUbjW5zlis/KLkmSJEkabQcC3wT+LsmjgEuBlzH/p5x3qOwaxyeZd2bYn4CdyajGDcYuSVoyN04+uNO6KbyppW8FDuhZb/+WtpW7HgiaTJ/oQ5ySlpGVXZJGmuNTSNJdrth6Oxs2nn/n/OaTjhhgNJL6aBXwWOClVXVJkrdw18DswMKech7HJ5l3ZtifgJ3JqMYNxi5JWjLnAUcDJ7W/5/akH5fkLLoum29vFWIfBf4syZ5tvacBr+pzzJKW2D0GHYAkLdLk+BQ/CzwKuJru5s5FVXUQcBF33ezpHZ/iWLrxKSRJkkbdFmBLVV3S5s+hq/y6sT3dzByfcpYkSRpqSd4HfBp4WJItSY6hq+R6apJrgKe0eYALgGuBTcA7gd8DqKpbgNcCn22vP21pkkaYLbskjSzHp5Ck8bemp6WapOlV1Q1JrkvysKr6MnAocFV7zfkp5wGELkmSNC9V9dwZFh06zboFvGSG/ZwGnLaEoUkaMCu7JI2yZRmfYqWavKF8/MHb7+wGzS7QJC2l6SquLGekJfNS4Mwk96J7gvlFdD15nN2eeP4acGRb9wK6bp030XXt/KL+hytJkiRJS8fKLmmI9d4U7Ab69is7xbKMTwELG5B91AepnhxMvndg+VHOD+yYFxjt/Iz6/1evccoLQJLTgGcCN1XVI1vaXjh2oKQ+qqrLgbXTLJrXU86SJEmSNIq8cy5plE03PsVG2vgUbdDRBY1PsZAB2Ud9kOoNPS27JgeWH6VB5afztjPPvTMvMNr5GfX/r17jlJfm3cDbgTN60ibHDjwpycY2fwI7jh14CN3YgYf0NVpJkiRJkqQxc49BByBNWrPxfK7YejtrNp7v+Byak6q6AbguycNa0uT4FOfRjUsBdx+f4oXpPAHHp5C0BKrqk8DUwYzX040ZSPv77J70M6pzMbBHq5SXJEmSJEnSAtmyS9Koc3wKScPIsQMlSZIkSZL6xMouSSPN8SkkDbt+jh046HHqphv7bzazxTjX/Uxnujimvt9sy5fCsIxTZxzDGYckSZIkafGs7JKGiN03StLYGMjYgYMep266sf9mM1uMGxbx2zhtHFd8d8paOy5fjmM2LOPUGcdwxiFJkiRJWjzH7JIkSVp6jh0oSZIkSZLUJ7bskiRJWoQk7wPWAXsn2QK8BjgJxw6UJEmSJEnqCyu7JEmSFqGqnjvDIscOlCRJkiRJ6gO7MZQkSZIkSdKiJdklyeeTfLjNH5jkkiSbkrw/yb1a+r3b/Ka2fM1AA5ckSSPPyi5JkiRJkiQthZcBV/fMvwF4U1U9FLgVOKalHwPc2tLf1NaTJElaMCu7JEmSJEmStChJ9geOAN7V5gM8GTinrXI68Ow2vb7N05Yf2taXJElaEMfskiRJkiRJ0mK9GXglsHubfyBwW1Vtb/NbgP3a9H7AdQBVtT3J7W39b/XuMMmxwLEAq1evZmJiYtYgVu8Kxx+8/c75uWwzKrZt2zZW+ek1rnkb13xJ0jCysktjY83G8++WtvmkIwYQiSRJkiRJK0eSZwI3VdWlSdYt1X6r6hTgFIC1a9fWunWz7/ptZ57LyVfcdbtr8/OXLJyBm5iYYC7HYBSNa97GNV+SNIys7JIkSZIkSdJiPBF4VpLDgfsA9wfeAuyRZFVr3bU/sLWtvxU4ANiSZBXwAODm/octSZLGhZVdWjZTW1rZykqSJEmSpPFTVa8CXgXQWnb9YVU9P8kHgOcAZwFHA+e2Tc5r859uyz9eVdXnsCVJ0hi5x6ADkCRJkiQtXpJdknw+yYfb/IFJLkmyKcn7k9yrpd+7zW9qy9cMNHBJ4+wE4BVJNtGNyXVqSz8VeGBLfwWwcUDxSZKkMWHLLg3MdGNs9XN7SZIkacy8DLiarvswgDcAb6qqs5L8DXAM8I7299aqemiSo9p6vzGIgCWNn6qaACba9LXA46dZ57+AX+9rYJIkaazZskuSJEmSRlyS/YEjgHe1+QBPBs5pq5wOPLtNr2/ztOWHtvUlSZIkaSRZ2SVp5NlljyRJEm8GXgn8uM0/ELitqra3+S3Afm16P+A6gLb89ra+JEmSJI0kuzGUxth0XT1uPumIAUSy7OyyR5IkrVhJngncVFWXJlm3hPs9FjgWYPXq1UxMTMy6zepd4fiDt985P5dthsW2bdtGKt5Joxo3GLskSZKWjpVdkkZaT5c9r6cb+Hiyy57ntVVOB06kq+xa36ah67Ln7UlSVdXPmCVJkpbYE4FnJTkcuA/dA0BvAfZIsqq13tof2NrW3wocAGxJsgp4AHDz1J1W1SnAKQBr166tdevWzRrI2848l5OvuOsyc/PzZ99mWExMTDCXPA6bUY0bjF2SJElLx8ouSaPuzXRd9uze5ufcZU+SyS57vtW3aCVJO5jaCnnQLZCHLR5pLqrqVcCrAFrLrj+squcn+QDwHOAs4Gjg3LbJeW3+0235x334R5IkSdIos7JLfTNdl3rDpjfG4w/ezrrBhaI5WK4ue9q+591tz6h3ZTLZ5VBv90OjnB8Y7a6Uphr1/69e45QXSRpyJwBnJXkd8Hng1JZ+KvCeJJuAW4CjBhSfJEmSJC0JK7s0tEahckwDtyxd9sDCuu0Z9a5MNrTv3PEHb7+z+6FR6npoOqPcldJUo/7/1Wuc8iJJw6aqJoCJNn0t8Php1vkv4Nf7GpgkSZIkLaNlq+xKshn4DnAHsL2q1ibZC3g/sAbYDBxZVbcuVwySxptd9kiS+s1uDiVJkiRJGj7L3bLrl6uqdyycjcBFVXVSko1t/oRljkG6k63FVgy77JEkSZIkSZKkFaLf3RiuhzuHQTqdrnsNK7skLZpd9kiSJEmSJK1c8+lpLEnohsI4HPgesKGqLhtE3JKWxnJWdhXwsSQF/G0b/2Z1VV3flt8ArJ66UZJjgWMBVq9evSQD2G/btm1J9rMUhikWWN54jj94+7y3Wb3rwrabydS8zWffq3e9+/aLNfX95xPfUh2bYfr/kyRpKlthS5IkSVqEufY0dhhwUHsdAryj/ZU0opazsutJVbU1yU8AFyb5Uu/CqqpWEcaU9FOAUwDWrl1bSzGA/cTEBEuxn6UwTLHA8sazYQE3q44/eDsnX7F0/5abn79uh/n5xHT8wds5comPzd3e/4rvTllj5rwv1bGZekwkSZIkSZKkMTVTT2PrgTPaWO4XJ9kjyT49DTUkjZhlq+yqqq3t701JPkTXpdiNk4VGkn2Am5br/SXw6XBJkiRJkiRphZhPT2P7Adf1bLulpVnZJY2oZansSrIbcI+q+k6bfhrwp8B5wNHASe3vucvx/pIkSZIkSZKkFWVBPY3tzEKG3Jk6FMmwDSkybMPsTGfYYzS+xVmu+JarZddq4EPdOH+sAt5bVR9J8lng7CTHAF8Djlym95ckSZIkSZIkrRDz7GlsK3BAz+b7t7Sp+5z3kDtvO/PcHYYiGbYhRYZtmJ3pDHuMxrc4yxXfslR2VdW1wKOmSb8ZOHQ53lP9N7WLwM0nHTGgSCRJGk5JNgPfAe4AtlfV2iR7Ae8H1gCbgSOr6tZBxShJkiRJo24BPY2dBxyX5CzgEOB2x+uSRtuyjdklSZIkAH65qr7VM78RuKiqTkqysc2fMJjQJEmSJGkszLensQuAw4FNwPeAF/U/ZElLycouSZKk/loPrGvTpwMTWNk1tKa2ZJckSZI0fObb01hVFfCSPoQmqU+s7JIWwa4cJUmzKOBjbRDkv239va/u6R7jBronEO9mFAdCnnzvqXEMSj/imMsxHpbBgY1jOOOQJEmSJC2elV2SJEnL50lVtTXJTwAXJvlS78KqqlYRdjejOBDyhvYQyPEHb98hjkHpRxxzOcbDMjiwcQxnHJI0DpIcAJxB9xBPAadU1VtmGqs0XT9jb6HrQux7wIaquqwfsfrQqiRJ4+kegw5AkiRpXFXV1vb3JuBDwOOBG5PsA9D+3jS4CCVJkpbEduD4qno48ATgJUkezl1jlR4EXNTmAQ4DDmqvY4F39D9kSZI0TqzskiRpiK3ZeD5rNp7PFVtvd+ygEZNktyS7T04DTwOuBM4Djm6rHQ2cO5gIJUmSlkZVXT/ZMquqvgNcDexHN1bp6W2104Fnt+n1wBnVuRjYY/JhIEmSpIUYfP8ykiRJ42k18KGulx5WAe+tqo8k+SxwdpJjgK8BRw4wRkmSpCWVZA3wGOASZh6rdD/gup7NtrS063vSlmUM06njeY7S+I3jPN7kuOZtXPMlScPIyi5pGdkKQ5JWrqq6FnjUNOk3A4f2PyJJ42qUxsqRNN6S3A/4B+DlVfXt9tAPsPOxSmeyHGOYbpg6ZlefxzhdjHEeb3Jc8zau+ZKkYWRll6SR5Y0dSRosH+qQhsbkWDmXte5TL01yIbCBbqyck5JspBsr5wR2HCvnELqxcg4ZSOSSxkaSe9JVdJ1ZVR9syTcm2aeqrp8yVulW4ICezfdvaZIkSQtiZVefTN4MOv7g7WzYeD6bTzpiQdtPmu/20pjyxo4kaex5HqjZtC7Crm/T30nSO1bOurba6cAE3TnRnWPlABcn2WPyZnS/Y5c0HtqDhacCV1fVX/Ysmhyr9CR2HKv0POC4JGfRXZPdbhkkSZIWw8ouSSPLGzuSJEk7GvaxcobZqI6rMqpxg7GPmScCLwCuSHJ5S3s1XSXXdGOVXkDX48Ymul43XtTXaCVJ0tixskvSWFjKGzttf/O+uTPqF7yTN6Z6b1KNcn5gtG+4TZr6uYxiHqYa9e+KtBi20tJyGoWxcobZqI6rMqpxg7GPk6r6FJAZFt9trNL2AOJLljWoOfK3WZKk8WBll5aM43ZoUJb6xk7bbt43d0b9gndDT3erkzepRukG1XRG+YbbpKmfyyjmYapR/65I0jByrBxJmp73KiRJWhms7JLmwZPk4eONHUmStNI5Vo4kSZKklc7KrhVszcbzOf7g7Xe2GrCp/uJZGdZf3tiRJEkCHCtHkpbMdNf13i+RJGn4WdklaZR5Y0eS+siHOma3FON+eJw1X6M8Vo4kSZIkLQUruySNLG/sSJIkSZIkSZKs7JIkSZKWydRuo6dbLkmSJEmSFsfKriGxFF3ezPc9NDuPmSRJ2hnPFaTh049rK0mSJEnD5R6DDkCSJEmSJEmSJElaKCu7JEmSJEmSJEmSNLLsxnCMLbZbHbvlkSRJkjTuJq97JsfXs9tDSVPZPaokScPPyq4hZUWTNHqu2Ho7G3q+u14ASZKWgzfcpPnxOyNpqVmuSJI0fOzGUJIkSZIkSZIkSSPLll2SJEnSCPPpckmSBsvfYkmSBs/KrgGxm0JJkiRJ2rnZrpu8oSxJkiQJrOxaMj7FI0mSJEmSJO8RSZLUf1Z2zZEnKpIkSZI0+mZrLea1nyRJkjR6rOySJEmSJI0ku4eXJEmSBFZ2SZIkSZIkScvGFqOSJC2/sa3s6j2ROP7g7awbXCjLYronGBd7suRTkZIkqZfnBqPJG2oaZcNY7sz3O+V3UNJ8WW5IkrR4fa/sSvIM4C3ALsC7quqkfscgaWWzHJI0aJZDkgZtUOXQONzQnW+F3Gzrj+IxkJbCSj4fcuxAaXgMa1k03/MHyw2pz5VdSXYB/gp4KrAF+GyS86rqqn7G0Q+DeCJxGJ+ClIbNSiqHJA0nyyH12+Q54vEHb2fDxvMXfWHshfTo62c5NN8buvI7ppXB86H5me23fKb1J1mOSNPrV1k0l/Od+X5PF3OONVmWLOb9pWHU75Zdjwc2VdW1AEnOAtYDnsxI6hfLIanPpp5kv/sZuw0okqFhOaSBWupWKbOtvxQXzt60W3KWQ0NksRWC092wmsqnvzWELIcWYRh+m6UxMTRl0aAfALIlusZBqqp/b5Y8B3hGVf1mm38BcEhVHdezzrHAsW32YcCXl+Ct9wa+tQT7WQrDFAsYz84MUyzQ/3geXFUP6uP79cVcyqGWvpCyaNj+ZxZqXPIB5mVYzTUvlkOjWw4Zx46MY0ejFIfl0OiWQwsxqrGPatxg7HNhObSyyqHZmLfRMw75GstyCJb1XvWwf+7DHh8Mf4zGtzjzjW9O5VDfx+yaTVWdApyylPtM8rmqWruU+1yoYYoFjGdnhikWGL54xt1CyqJx+YzGJR9gXobVOOVlOY1yOWQcxmEc42GUy6GFGNXYRzVuMHbNbqWVQ7Mxb6NnXPO1koxjOTTs8cHwx2h8i7Nc8d1jqXc4i63AAT3z+7c0SeoXyyFJg2Y5JGnQLIckDZrlkKRhYFkkjZF+V3Z9FjgoyYFJ7gUcBZzX5xgkrWyWQ5IGzXJI0qBZDkkaNMshScPAskgaI33txrCqtic5DvgosAtwWlV9sQ9vvaTdIi7SMMUCxrMzwxQLDF88I2mZy6Fx+YzGJR9gXobVOOVl3lZIOWQcOzKOHRnHgK2QcmghRjX2UY0bjH3FshxaMPM2esY1X2NhGcuiYf/chz0+GP4YjW9xliW+VNVy7FeSJEmSJEmSJEladv3uxlCSJEmSJEmSJElaMlZ2SZIkSZIkSZIkaWSNZGVXktOS3JTkyp60RyX5dJIrkvxTkvv3LHtVkk1Jvpzk6T3pz2hpm5Js7Ec8SZ6a5NKWfmmSJ/ds87iWvinJW5NkOWPpWf5TSbYl+cOetL4fm7bsv7dlX2zL79PSF31s5htPknsmOb2lX53kVT3bLPr4JDkgySeSXNXy+7KWvleSC5Nc0/7u2dLT8r4pyReSPLZnX0e39a9JcvRC4tHCLdX3ZdCm+36Mqpm+X6MoyX2SfCbJf7S8/MmgY1qMJLsk+XySDw86lnHSz3JoJ79fJybZmuTy9jq8Z5tpz8WWIJbN7Xf68iSfa2nz/h1dgjge1pPvy5N8O8nL+3FMZji36fu5xAxx/N8kX2rv9aEke7T0NUm+33Nc/qZnm0Wd880Qx7w/h3H5be+3YT5uOym7+l5mLDD+HX4/kxyY5JIW3/uT3Kul37vNb2rL1ww47j2SnNPKgquT/PwIHfM/aP8rVyZ5X7pzspE47ivZMJdDsxn1cmouRrUsm80ol3VaesNQDo1KeTLMZcKwf6+H7TwlQ3JdSlWN3Av4ReCxwJU9aZ8FfqlNvxh4bZt+OPAfwL2BA4Gv0A04uEub/mngXm2dh/chnscA+7bpRwJbe7b5DPAEIMA/A4ctZyw9y88BPgD8YZsf1LFZBXwBeFSbfyCwy1IdmwXE8zzgrDZ9X2AzsGapjg+wD/DYNr078J/t//WNwMaWvhF4Q5s+vOU97Vhc0tL3Aq5tf/ds03v26/u40l9L+X0Z9Gu678eovmb6fg06rgXmJcD92vQ9gUuAJww6rkXk5xXAe4EPDzqWcXn1uxzaye/XiZPnElPWn/ZcbIli2QzsPSVtXr+jy/R53AA8uB/HZLqyexDnEjPE8TRgVZt+Q08ca2b6rWGR53wzxDGvz6Hf36lxeQ37cdtJ2TXQMmMe8e/w+wmcDRzVpv8G+N02/XvA37Tpo4D3Dzju04HfbNP3AvYYhWMO7Ad8Fdi153hvGJXjvlJfw14OzSH+kS6n5pjHkSzL5pCvkSzrfC3L/8JQlEOjUp4Mc5kwzN9rhvA8hSG5Lh3Jll1V9UnglinJPwN8sk1fCPxam15PV2Hxg6r6KrAJeHx7baqqa6vqh8BZbd1ljaeqPl9V32jpXwR2bbWr+wD3r6qLq/t0zwCevZyxACR5Nt2X44s96w/k2NDdEPlCVf1H2/bmqrpjqY7NAuIpYLckq4BdgR8C32aJjk9VXV9Vl7Xp7wBX0xVW6+kKVNrfZ7fp9cAZ1bkY2KMdm6cDF1bVLVV1a8vDM+YbjxZsyb4vgzbD92Mk7eT7NXLad35bm71ne9UAQ1qwJPsDRwDvGnQsY6av5dACvl8znYstl/n+ji61Q4GvVNXXZolxSY7JDGV3388lpoujqj5WVdvb7MXA/jvbx1Kc883zt2zZrxNWmKE+bkt47t13U38/kwR4Mt1Di3D3uCfzcw5waFu/75I8gO7Gx6kAVfXDqrqNETjmzSq66/VVdA8/Xs8IHPcVbqjLodmMcjk1F6Nals1mDMo6La2hKIdGoTwZ5jJhRL7XQ3WeMizXpSNZ2TWDL3JX4fHrwAFtej/gup71trS0mdKXO55evwZcVlU/aO+9ZZnimTaWJPcDTgCmdok1qGPzM0Al+WiSy5K8siee5To2O4vnHOC7dIXF14G/qKpbWIbj05qPPoauxcbqqrq+LboBWN2mB/W/rJ3z+A+5Kd+vkdSa9l8O3ET3wz+qeXkz8ErgxwOOY9wMrBya5vt1XOuG4LTJLgqWOb4CPpaua+hjW9p8f0eX2lHA+3rm+31MYDjPJV5M9/TepANblyX/muR/9MS3XOd88/kc/G1fmJE5bos89x6EN7Pj7+cDgdt6KpN7Y7sz7rb89rb+IBwIfBP4u/Z9f1eS3RiBY15VW4G/oLsOvJ7uOF7KaBz3lWxo/ocWawTLqbl4M6NZls1mZMs6LYuh+3yHuDx5M8NbJgz193qEzlP6fl06TpVdLwZ+L8mldM0zfzjM8SR5BF13Lr89wFhOBN7U02KgX2aKZxXwJOD57e+vJjl0gPE8HrgD2JeukDs+yU8v9Zu3Ssd/AF5eVd/uXdaeah7JFhzSMNjZ92uUVNUdVfVoulYRj0/yyAGHNG9JngncVFWXDjoWLY1pvl/vAB4CPJruhPvkPoTxpKp6LHAY8JIkv9i7sN+/o61P9GfRdQ8NgzkmOxiGc4kk/xvYDpzZkq4HfqqqHkPruiRTxpRdYgP/HDQ8Ru3ce8R/P1fRdWfzjvZ9/y5dFzZ3GsZjDtAqxdfTXQfuC+yGvWeoT0atnJqLES/LZjOyZZ3G37CWJyNQJgz193oUz1P6dbzGprKrqr5UVU+rqsfRPU37lbZoKzu2qtq/pc2UvtzxTDbT/BDwwqrqjbO3a5cli2cnsRwCvDHJZuDlwKuTHMfgjs0W4JNV9a2q+h5wAV3BsmzHZpZ4ngd8pKp+VFU3Af8OrGUJj0+Se9L96JxZVR9syTdONnVtf29q6QP5X9asPP5Daobv10hrzeY/wZCfxMzgicCz2m/OWcCTk/z9YEMaG30vh6b7flXVja1i9sfAO7mrW75li6890Ub7nf5Qe8/5/o4upcPoWu3f2OLq+zFphuZcIskG4JnA89sFDtV1G3hzm76U7tzrZ1imc74FfA7+ti/M0B+3JTr37re7/X4Cb6Hr7mXVNLHdGXdb/gDg5n4G3GMLsKWnRfo5dNd3w37MAZ4CfLWqvllVPwI+SPdZjMJxX8mG6X9oQUa0nJqLUS7LZjPKZZ2W3tB8vkNengx7mTDs3+tROU/p+3Xp2FR2JfmJ9vcewB/TDcIGcB5wVLpxsQ4EDqIb+PqzwEFJDmxP4R7V1l3WeJLsAZxPNzjbv0+u35r0fTvJE1qfmS8Ezl3OWKrqf1TVmqpaQ9d09M+q6u0M6NgAHwUOTnLf9sX7JeCq5Tw2s8TzdbrCltZU9QnAl1ii49PycipwdVX9Zc+i84Cj2/TR3JXX84AXpvME4PZ2bD4KPC3Jnq1m/2ktTf2xrN8XLcxOvl8jJ8mD2m8HSXYFnkpXFo2UqnpVVe3ffnOOAj5eVf9rwGGNi76WQzN9v7Jjn+S/ClzZpmc6F1tsHLsl2X1ymu7370rm/zu6lJ5LTxeG/T4mPYbiXCLJM+i6JnlWe5BpMv1BSXZp0z9Nl/9rl+ucbwGfg7/tCzPUx20Jz737aobfz+fTPfzynBninszPc9r6A3nquKpuAK5L8rCWdChwFUN+zJuvA09o16bhrtiH/rivcENdDs1mVMupuRjlsmw2I17WaekNRTk07OXJsJcJI/C9HpXzlP5fl1bVyL3obiJcD/yIrqb1GOBlwH+210lAetb/33RPjH4ZOKwn/fC2/leA/92PeOgqU74LXN7z+om2bC3dxfdXgLf35mG5jk3PdicCfzjIY9PW/190Y2hdCbyxJ33Rx2YBn9X96Loh+iJdgfFHS3l86LpqLOALPf8Lh9P1mXoRcA3wL8Bebf0Af9Xe8wpgbc++Xkw3qPom4EWD/o6utNdSfV8G/Zru+zHomBaRl2m/X4OOa4F5+e/A51tergT+z6BjWoI8rQM+POg4xunVz3JoJ79f72m/T1+gO3ndp2ebac/FFhnHTwP/0V5fnMz3Qn5Hlyie3eiejntAT9qyH5Ppyu5BnEvMEMcmuj7XJ/9P/qat+2vtM7scuAz4lZ79LOqcb4Y45v059PM7NU6vYT5uOym7BlJmLDAP62i/n3Rl4Gfa9+wDwL1b+n3a/Ka2/KcHHPOjgc+14/6PwJ6jcszpxrb+UiuT3gPce1SO+0p+DXM5NIfYR76cmmM+R64sm0OeRras87Us/w8DL4dGqTwZ1jJh2L/XDNl5CkNyXTp5U1+SJEmSJEmSJEkaOWPTjaEkSZIkSZIkSZJWHiu7JEmSJEmSJEmSNLKs7JIkSZIkSZIkSdLIsrJLkiRJkiRJkiRJI8vKLkmSJEmSJEmSJI0sK7skSZIkSZIkSZI0sqzskiRJkiRJkiRJ0siyskuSJEmSJEmSJEkjy8ouSZIkSZIkSZIkjSwruyRJkiRJkiRJkjSyrOySJEmSJEmSJEnSyLKySyMvybuTvG7QcUjSVJZP0srh911SPyT5myT/36DjAMs9ScsvyUSS35xh2ZoklWRVv+OSNP6SbE7ylBmWrUuypd8xaXZWdo2xJH+f5Pok307yn1NPEJK8OslXk2xLsiXJ+5chhs1Jvt/e48Z2QXS/pX4fSYOV5ElJ/l+S25PckuTfk/zcoOPaGcsnaeUa1Pe/XRRVkhOW+70kjZZWLv0wyd5T0j/fyo01AFX1O1X12iV6z6Pa+2ZK+qokNyV55lK8j6TRMdeyaJ773CPJaUluSPKddn9q45IFLWkstfvafzcl7ZeS3JxknznuY/8k/5DkW+1+1ZVJNixLwBoKVnaNtz8H1lTV/YFnAa9L8jiAJEcDLwCeUlX3A9YCFy1THL/S3uOx7X3+eD4b+5SONNyS3B/4MPA2YC9gP+BPgB/Mcz+D+K5bPkkr16K+/wt0NHAL8MKdrWTZIq1YXwWeOzmT5GDgvsv4fv8I7AH80pT0ZwAFfGQZ31vS8FrqsuhNwP2A/wY8gO7+1KbFBChpRXgZcFiSpwIkuQ/wTuD4qrp+6sozXEO9B7gOeDDwQLp74TcuW8QaOCu7xlhVfbGqJm82V3s9pM3/HPDRqvpKW/eGqjplctskG5Jc2566+WqS5/ekfyrJXyS5tS07bI7xbAX+GXhk29ezknwxyW2tafp/63n/zUlOSPIF4Lvt6cLJliO3JbluSk38nknOb/FekuQhSOqXnwGoqvdV1R1V9f2q+lhVfWFyhSS/leTq9h29KsljW/p03/Un9HzX/yPJup79PCDJqelarW5N8roku7Rllk+S5m2e3///1tJua+s8a67vk2Q34DnAS4CDkqztWTbZDc8xSb4OfLylv7iVnbcm+WiSB/ds85ZW3nw7yaVJ/sdij4WkgXsPO1aGHw2c0btCeroOTLJ3kg+3MumWJP+W5B5t2QFJPpjkm+megH771Derqv8CzubuFfAvBN5bVduTfCBda4zbk3wyySOWML+ShtNcyqIHJDmjlTFfS/LHk+XPNH6Orky5tap+XFVfqqpzevb1C0k+28qZzyb5hel2kmSXdq33rSTXAkcsLpuShllV3Qy8FDilXUu9BvhKVb0bIMmJSc5J1wLs28CGaXbzc8C7q+q7VbW9qj5fVf88uXBn1369kuzazsFuTXJV26+GkJVdYy7JXyf5HvAl4HrggrboYuCFSf4oydrJm8Vtm92AtwKHVdXuwC8Al/fs9hDgy8DewBuBU5Mdu76YIZYDgMOBzyf5GeB9wMuBB7W4/inJvXo2eS7dycsedC1F/pmu5ciDgEdPiekoupYke9I9IfT62eKRtGT+E7gjyelJDkuyZ+/CJL8OnEh3wTTZ0vTmnlV6v+urgfOB19G1EvtD4B+SPKit+25gO/BQ4DHA04DeLlotnyTNy1y//0nuCfwT8DHgJ+guvM5M8rA5vtX/BLYBHwA+SnfjaKpfonvq+elJ1gOvbts9CPi3Ftukz9KVN3sB7wU+kO5pR0mj62Lg/q1ifRe6c4i/38n6xwNb6MqI1XRlRrVtPwx8DVhDd65y1gz7OB14TpJdobuBDfxKS4fuHOcgunLvMuDMhWZO0siYS1n0NrpWWj9Nd/7yQuBFO9nf65O8KMlBvQuS7EV3/fdWulYXfwmcn+SB0+znt4Bn0l0HrqV7iEjSGKuqD9Cdf7wPOLa9eq0HzqG7NzPdOcrFwF+l67r5p3oXzPHez6TX0DUgeQjwdKa/ltMQsLJrzFXV7wG7A/8D+CCtW7Gq+nu6mzRPB/4VuCk7jh/xY+CRSXatquur6os9y75WVe+sqjvoLoL2obu4msk/JrkN+FR7rz8DfgM4v6ourKofAX8B7EpXsTbprVV1XVV9H3ge8C+t5ciPqurmqrq8Z90PVdVnqmo7XeH26LkeI0mLU1XfBp5E13r0ncA3k5yXZLJc+E3gjVX12epsqqqv9eyi97v+v4ALquqC9tTfhcDngMPb/g4HXt6eyrmJrkuMo3r2Zfkkaa7m+/1/Al0XPCdV1Q+r6uN0N5OfO93Op3E08P5WPr0XOKpVoPU6sZVv3wd+B/jzqrq6lR9/Bjx6snVXVf19K2+2V9XJwL2BuVa8SRpeky0qngpcDWzdybo/ojvXeXA7B/m3qirg8cC+wB+1MuW/qupT0+2gqv6drjufX21JRwL/OXkuU1WnVdV3Wo8hJwKPahViksbbjGVRTwXYq1r5sBk4ma57sOm8lO466DjgqiSbclcPHEcA11TVe9o5zfvoHtb+lWn2cyTw5nYddgvd0B2Sxt/vAU8G/rSqrpuy7NNV9Y/t/tH3p9n21+keGvz/gK8muTx3jS8/l3s/k44EXl9Vt7QY3roE+dIysLJrBWjdin0K2B/43Z70M6vqKXS1378DvDbJ06vqu3Rf+N8Brk/X/dbP9uzyhp59fK9N7mxQ92dX1R5V9eCq+r1W+OxL96Th5H5+TNeH6n492/UWYAcAX9nJe9zQM/29WeKRtMTazdgNVbU/XVdg+wJvbotn+/72ftcfDPx6a0J+W7sR/STajRzgnnTl0uSyv6V70niS5ZOkuZrv939f4LqWNulr7Fg2TKu1Hvtl7nra8FzgPty9+52p5eFbesq7W4BMvl+SP0zXxeHtbfkD6Fq1Shpt76F7kGYDU7oNm8b/pWs1/rF0XdBvbOkH0D0AtH2O73kGd3VZ9oLJ921dhp2U5Cute6DNbR3LGmn87aws2pvuuqz3AcYZz4mq6+b+z6rqcXStt86ma5G+F1POvWbZ177seK40dTtJY6iqbgS+BXxxmsVTK7+mbntrVW2sqkfQPQh9Od1Dj2Fu934mWf6MCCu7VpZV3DVm153aU4AfAL5AG6+iqj5aVU+lu8H8JbrWGkvpG3Q3cQBohcwB7PjkYvVMXzdd7JKGT1V9ia67wUe2pNm+v1O/6+9pN6AnX7tV1Ult2Q+AvXuW3b+dtCwlyydp5drZ9/8bwAFTxqP4KXbe6mLSC+jOu/8pyQ3AtXSVXVO7v5hatvz2lPJw16r6f+nG53ol3ROGe1bVHsDtdJVhkkZYa/3+VbrW7B+cZd3vVNXxVfXTdN1EvyLJoXTlx09l+oHap/Me4NAkP0/XinWyYv55dN0DPYWuQn1NS7eskcbcLGXRt+halj64J21O50TV9QryZ8BuwIFMOfeaZV/X052X9a4naWWr2VdpK1Z9i6711r50XcHP5d7PJMufEWFl15hK8hOtP9L7tSfynk7Xzc5FbfmGJEck2T3JPVoT8kcAlyRZnWR9G7vrB3TjS/x4xjdbmLOBI5Ic2rrwOb691/+bYf0zgackOTLJqiQPTPLoJY5J0gIk+dkkxyfZv80fQFfeXNxWeRfwh0kel85DJ7vhmsbfA7+S5Omt7LpPknVJ9q+q6+nGyjk5yf1b2fWQJL+0xFmyfJJWrp19/y+ha535yiT3TLKOroudmcbB6XU03dh9j+55/RpdF63TjUkB8DfAq5I8Au4cCP7X27Ld6cYv/CawKsn/oRsTUdJ4OAZ4cutxY0ZJntnOq0JX4X0H3XXbZ+huypyUZLd2PvXEmfbTuiD7FN24FRdW1WSr9N3pysCbgfvS3aCWtHJMWxa1LpnPphuHa/d2bfcKZhhjMMn/l+Tn0o2Beh/gZcBtdGMtXwD8TJLntWup3wAeTtdV9FRnA7+fZP9040RvnGYdSbpTkjckeWQrX3an6/FsU1XdzPzu/ZxNd222Z7v39dJ+5UHzY2XX+Cq6L/AW4Fa6muuXV9V5bfm36QYw/jrdScYbgd9t3R3eg+5E5Rt0Xeb8Ej3dHy5JcFVfphub5210TwX9CvArVfXDGdb/Ot0TRce3mC4HHrWUMUlasO8Ah9BVln+XrpLrSrrv6+SAoq+nG6PmO8A/0j1Fczet7+P1dOXTN+meTP4j7vq9eiFwL+AqurLtHLoWqEvG8klauXb2/W9lwK8Ah7Vlfw28sLVmnVGSJ9A9MfhXVXVDz+s8uu7Hph3zq6o+BLwBOKt1H3Zle2+AjwIfAf6TrguN/2KWLjwkjY6q+kpVfW4Oqx4E/Avdw4mfBv66qj7RbkT/CvBQuuu9LXTd1O/M6XRlVW93ZWfQlTFb6c69Lp5mO0ljapay6KXAd+laq3+K7lrvtJl2Bfwd3fnTN+jGATuiqra1G87PpLuWupmu5fozWwuMqd5Jdw70H8BlzNL6VZLoHtb5EN2972vpznWeBfO+9/MndOdEX6V7CPs9yx24Fibd+LWSJEmSJEmSJEnS6LFllyRJkiRJkiRJkkaWlV2SJEmSJEmSJEkaWVZ2SZIkSZIkadGS7JLk80k+3OYPTHJJkk1J3p/kXi393m1+U1u+ZqCBS5KkkWdllyRJkiRJkpbCy4Cre+bfALypqh4K3Aoc09KPAW5t6W9q60mSJC2YlV2SJEmSJElalCT7A0cA72rzAZ4MnNNWOR14dpte3+Zpyw9t60uSJC3IqkEHsDN77713rVmzZk7rfve732W33XZb3oAWYZjjG+bYwPgWa6HxXXrppd+qqgctQ0gjZ65l0TD9LxjL9IYpFhiueIYxFsuhu4xiObRY45KXcckHrMy8WA7dZSWWQ3OxkvK7kvIKw5PfESuH3gy8Eti9zT8QuK2qtrf5LcB+bXo/4DqAqtqe5Pa2/rd6d5jkWOBYgF133fVxBxxwwHLGfzc//vGPucc9hus58WGLadjiAWOaq7nG9J//+Z+jVA4tq5V4PmRehtO45GXJr8uqamhfj3vc42quPvGJT8x53UEY5viGObYq41ushcYHfK6GoBwYhtdcy6Jh+l8wlukNUyxVwxXPMMZiOTTa5dBijUtexiUfVSszL5ZDK7scmouVlN+VlNeq4cnvqJRDwDOBv27T64APA3sDm3rWOQC4sk1fCezfs+wrwN47e4/53CNaKsPyf9Br2GIatniqjGmuPB/yfGguzMtwGpe8LHU5NNQtuyRJkiRJkjT0ngg8K8nhwH2A+wNvAfZIsqq61l37A1vb+lvpKr+2JFkFPAC4uf9hS5KkcTFc7WclaRpJDkjyiSRXJflikpe19L2SXJjkmvZ3z5aeJG9NsinJF5I8tmdfR7f1r0ly9KDyJEmSJEnjoqpeVVX7V9Ua4Cjg41X1fOATwHPaakcD57bp89o8bfnH25PbkiRJC2Jl1//f3t0H23HWhx3//rCMcUyCXyC3quxWTlBenCgY9xaLkrYXjI1smAhmiGPXxRJxqkxjT0NRWsukrUkIHdFWvDnUQcSq5VSxcQNUGuTEuI7vMLT4lRjLL7i+OCKWRlgBG4HKhFbm1z/2OdLR9b26L+fcs7vnfj8zO3f32T17fs/dc57z7D7PPiupDQ4DGzLzHGAVcHVEnANsBO7OzBXA3WUZ4GJgRZnWAzdC1TgGXA+cD7wOuL7TQCZJkiRJ6rtrgfdGxATVM7luKuk3AWeU9Pdy9FxOkiRpXhzGUFLjZeZ+YH+Z/15EPEH1QOM1VOPBA2wDxqlOptYAt5SegfdGxKkRsbRse1dmPgcQEXcBq4FbB5YZSZIkSRpimTlOdW5GZj5N1dFw8jZ/A/zyQAOTJElDzTu7JLVKRCwHXgvcB4yUhjCAbwIjZX4Z8EzXy/aWtOnSJUmSJEmSJEktNTR3du3ed5B1G3cdWd6z6a01RiNpIUTEy4HPAO/JzO9GxJF1mZkR0bcx3iNiPdUQiIyMjDA+Pj7jaw48d5Abtu84srxy2Sv6Fc6cHTp0aFYxD4KxTK9J8RjLcLA+JKlulkOStDgsL2X9hpWHWbdxl+W9NGT8jquNhqaxS9Jwi4gTqRq6tmfmZ0vysxGxNDP3l2EKD5T0fcBZXS8/s6Tt4+iwh5308aneLzO3AFsARkdHc2xsbKrNjnHD9h1s3n20WN1zxcyvWSjj4+PMJuZBMJbpNSkeY5EkSZIkSVJbOYyhpMaL6haum4AnMvPDXat2AmvL/FpgR1f6lVFZBRwswx3eCVwUEadFxGnARSVNkiRJkiRJktRS3tklqQ3eALwL2B0RD5e09wGbgNsj4irgG8ClZd0dwCXABPB94N0AmflcRHwAeKBs97uZ+dxAciBJkiRJkqQFExF7gO8BLwCHM3M0Ik4HPg0sB/YAl2bm86Vj9ceorh99H1iXmV+pI25J/WFjl6TGy8wvATHN6gum2D6Bq6fZ11Zga/+ikyRJGoyIOAu4BRgBEtiSmR+bz0WciFgL/Juy69/LzG2DzIskSdICeWNmfqtreSNwd2ZuioiNZfla4GJgRZnOB24sfyW1lMMYSpIkSVI7HAY2ZOY5wCrg6og4h6MXcVYAd5dlOPYiznqqiziUxrHrqS7ovA64vgzxLEmSNGzWAJ1OPduAt3el35KVe4FTy/PgJbWUd3ZJkiRJUguUZ5DuL/Pfi4gngGVUF2vGymbbgHGqHstHLuIA90ZE5yLOGHBXZzjniLgLWA3cOrDMSJIk9V8CX4iIBD6ZmVuAkVKHAvgm1R3yUNWhnul67d6Str8rjYhYT9VpiJGREcbHx2cM4tChQ7Parsk2rDwMwMjJ1Xzb8wPDcVw6hiUv/c7HjI1dDpUhSZIkSc0SEcuB1wL3MfeLONOlT36POV/c6VwQ6RiGk/DjGZYLDbOxmPIKiy+/kjQkfjEz90XEjwN3RcTXuldmZpaGsFkrDWZbAEZHR3NsbGzG14yPjzOb7Zps3cZdQFWv27x7CXuuGKs3oD4YhuPSMSx56Xc+ZnNnV2eojK9ExI8CD5Wef+uYw3inXUNljFI1mj0UETsz8/m+5UaSJGkB2PlHUpNExMuBzwDvyczvVkVOZT4XcaYzn4s7N2zfwebdR08zh+HCyPEMy4WG2VhMeYXFl19JGgaZua/8PRARn6MarvnZiFiamfvLHe4Hyub7gLO6Xn5mSZPUUjM+sysz93cuzmTm94DuoTLmMt7pWyhDZZQGrs5QGZIkSU3nc3IkNUJEnEjV0LU9Mz9bkp/tPGNilhdxvLgjSZKGSkScUm7UICJOAS4CHgV2AmvLZmuBHWV+J3BlVFYBB7vulJcaafnGXSzfuIvd+w6yvNx9p6NmbOzqNoihMiRJkprGzj+SmqDcNXoT8ERmfrhr1Vwv4twJXBQRp5UG94tKmiRJUluNAF+KiK8C9wO7MvPPgE3AhRHxFPDmsgxwB/A0MAF8CviNwYcsqZ9mM4whMLihMuYzLjw0f2z4Jo/33eTYwPh61fT4JKlt7PwjqUZvAN4F7I6Ih0va+6gu2tweEVcB3wAuLevuoBpOdYJqSNV3A2TmcxHxAeCBst3vZuZzA8mBJEnSAsjMp4HXTJH+beCCKdITuHoAoUkakFk1dh1vqIw5jHe6DxiblD4++b3mMy48NH9s+CaP993k2MD4etX0+CSpTQbV+ae815w7ADW9889cDEtnjWHJB5iXJsjMLwExzeo5XcTJzK3A1v5FJ0mSJEn1mbGxaxZDZWzixUNlXBMRt1E9j+JgaRC7E/j3Xc+luAi4rj/ZkCRJWliD7PwD8+sA1PTOP3MxLJ01hiUfYF4kSZIkSc01m2d2dYbKeFNEPFymS5jjeKdlWIzOUBkP4FAZkiSpJXxOjiRJkiRJUnPNeGeXQ2VIkiT5nBxJkiRpoSzfuOuY5T2b3lpTJFLvdu87yLquz7SfZ2kwZvXMLkmSpMXMzj+SJEmSJEnNZWOXJEmSJEmSJEkaWt5xN/xm88wuSZIkSZIkSZIkqZFs7JIkSZIkSZIkSVJr2dglSZIkSZIkSZKk1rKxS5IkSZIkSZIkSa1lY5ckSZIkSZIkSZJay8YuSZIkSZIkSZIktZaNXZIkSZIkSZIkSWotG7skSZIkSZIkSZLUWjZ2SZIkSZIkad4i4mURcX9EfDUiHouI3ynpZ0fEfRExERGfjoiXlvSTyvJEWb+81gxIkqTWs7FLkiRJkiRJvfgB8KbMfA1wLrA6IlYBHwI+kpmvBp4HrirbXwU8X9I/UraTJEmaNxu7JEmSJEmSNG9ZOVQWTyxTAm8C/qSkbwPeXubXlGXK+gsiIgYTrSRJGkZL6g5AkiRJkiRJ7RYRJwAPAa8GPgF8HfhOZh4um+wFlpX5ZcAzAJl5OCIOAmcA35q0z/XAeoCRkRHGx8cXOBfHOnTo0MDfcyb9iGn3voPHLK9c9oo572PDyuqwjpxczfcaU2d/Hb3sb1iPW781MaZ+KGXRg8C+zHxbRJwN3EZVxjwEvCsz/29EnATcAvw94NvAr2TmnprCltQHNnZJkiRJkiSpJ5n5AnBuRJwKfA74mT7scwuwBWB0dDTHxsZ63eWcjI+PM+j3nEk/Ylq3cdcxy3uumPv+OvvYsPIwm3cvmdc++h1Tx7Aet35rYkx98pvAE8CPleXOcKq3RcQfUA2jeiNdw6lGxGVlu1+pI2BJ/eEwhpIaLyK2RsSBiHi0K+39EbEvIh4u0yVd664rDzp+MiLe0pW+uqRNRMTGQedDkiRJkoZdZn4HuAd4PXBqRHQ6Wp8J7Cvz+4CzAMr6V1DdWSFJ8xYRZwJvBf6wLAcOpyotGjZ2SWqDm4HVU6R/JDPPLdMdABFxDnAZ8HPlNf85Ik4ot7F/ArgYOAe4vGwrSZIkSepBRLyq3NFFRJwMXEh1Z8U9wDvLZmuBHWV+Z1mmrP/zzMyBBSxpWH0U+NfAD8vyGcxyOFWgM5yqpJZyGENJjZeZX4yI5bPcfA1wW2b+APjLiJgAXlfWTWTm0wARcVvZ9vF+xytJkiRJi8xSYFvpZPgS4PbM/HxEPA7cFhG/B/wFcFPZ/ibgj8r52nNUHRYlad4i4m3Agcx8KCLG+rjfOT87sPMsu442Phut38/lawKPS/P0+9mBNnZJarNrIuJKqgePbsjM56l65tzbtU13r51nJqWfP92O216ZadKDZo1lek2Kx1gkSZI0X5n5CPDaKdKf5mjnw+70vwF+eQChSVo83gD8UnnMxcuontn1McpwquXuramGU917vOFU5/PswBu272Dz7qOX3Xt9pl0d+v1cvibwuDRPv58daGOXpLa6EfgAkOXvZuBX+7XztldmmvSgWWOZXpPiMRZJkiRJUltl5nXAdQDlzq7fyswrIuK/UQ2XehtTD6f6ZRxOVRoKPrNLUitl5rOZ+UJm/hD4FEd7Cx550HHR6bUzXbokSVIrRMTWiDgQEY92pb0/IvZFxMNluqRr3XURMRERT0bEW7rSV5e0iYjYOOh8SJIkDdC1wHvLsKlncOxwqmeU9PcC1omklvPOLkmtFBFLM3N/WXwH0LnosxP444j4MPC3gRXA/UAAKyLibKpGrsuAfzLYqCVJknpyM/D7wC2T0j+Smf+pOyEizqGq7/wcVZ3of0TET5XVnwAupBrW+YGI2JmZPsdUkiQNhcwcB8bLvMOpSouEjV2SGi8ibgXGgFdGxF7gemAsIs6lGsZwD/DrAJn5WETcDjwOHAauzswXyn6uAe4ETgC2ZuZjg82JJEnS/GXmFyNi+Sw3XwPclpk/AP6y9FruXOiZKBd+iIjbyrY2dkmSJElqrRmHMXSoDEl1y8zLM3NpZp6YmWdm5k2Z+a7MXJmZv5CZv9R1lxeZ+cHM/MnM/OnM/NOu9Dsy86fKug/WkxtJkqS+uyYiHinnbqeVtGXAM13b7C1p06VLkiRJUmvN5s6um3GoDEmStMhFxFbgbcCBzPz5kvZ+4J8Bf102e19m3lHWXQdcBbwA/IvMvLOkrwY+RnWX6R9m5qZB5kPS0LkR+ADV3e4fADYDv9qPHUfEemA9wMjICOPj4zO+ZuRk2LDy8JHl2bymzQ4dOjT0eexYTHmFxZdfSZKktpuxscuhMiRJkgA7AElqoMx8tjMfEZ8CPl8W9wFndW16ZknjOOmT970F2AIwOjqaY2NjM8Zzw/YdbN599DRzzxUzv6bNxsfHmc3/ZRgsprzC4suvJElS2/XyzK5rIuJK4EFgQ2Y+TzX8xb1d23QPiTF5qIzzp9rpfHoPQvN7EDa5V1iTYwPj61XT45OktrADkKQmioilXcM5vwPoDD+/E/jjiPgwVaP7CuB+IIAVEXE2VSPXZcA/GWzUkiRJktRf823sWrChMubTexCa34Owyb3CmhwbGF+vmh6fJA2BxnQAanrnn7kYls4aw5IPMC9NEBG3AmPAKyNiL3A9MBYR51Kdm+0Bfh0gMx+LiNupGtMPA1dn5gtlP9cAd1INp7o1Mx8bbE4kSZIkqb/m1di1kENlSJIktUijOgA1vfPPXAxLZ41hyQeYlybIzMunSL7pONt/EPjgFOl3AHf0MTRJkiRJqtVL5vOiiFjatTh5qIzLIuKkMixGZ6iMByhDZUTES6mGytg5/7AlSZLql5nPZuYLmflD4FMcHapwug5Ax+sYJEmSJEmSpHmY8c4uh8qQJEmams/KkSRJkiRJqt+MjV0OlSFJkmQHIEmSJEmSpKaa1zO7JEmSFhs7AEmSJEmSJDXTvJ7ZJUmSJEmSJEmSJDWBjV2SJEmSJEmSJElqLRu7JEmSJEmSJEmS1Fo2dkmSJEmSJEmSJKm1bOySJEmSJEmSJElSa9nYJUmSJEmSJEmSpNaysUuSJEmSJEmSJEmtZWOXJEmSJEmSJKm1IuJlEXF/RHw1Ih6LiN8p6WdHxH0RMRERn46Il5b0k8ryRFm/vNYMSOqZjV2SJEmSJEmSpDb7AfCmzHwNcC6wOiJWAR8CPpKZrwaeB64q218FPF/SP1K2k9RiNnZJkiRJkiRJklorK4fK4ollSuBNwJ+U9G3A28v8mrJMWX9BRMRgopW0EJbUHYAkSZIkSZIkSb2IiBOAh4BXA58Avg58JzMPl032AsvK/DLgGYDMPBwRB4EzgG9N2ud6YD3AyMgI4+PjM8YxcjJsWHn4yPJsXtM0nfg7eWljHibzuDTPoUOH+poHG7skSZIkSZIkSa2WmS8A50bEqcDngJ/pwz63AFsARkdHc2xsbMbX3LB9B5t3H73svueKmV/TNOs27gKqBpXNu5e0Mg+TeVyaZ3x8nNl8p2bLxi5JkiRJkiSpoZaXi5tQXeAcqy8UqRUy8zsRcQ/weuDUiFhS7u46E9hXNtsHnAXsjYglwCuAb9cSsKS+8JldkiRJkiRJmreIOCsi7omIxyPisYj4zZJ+ekTcFRFPlb+nlfSIiI9HxEREPBIR59WbA0ltFxGvKnd0EREnAxcCTwD3AO8sm60FdpT5nWWZsv7PMzMHFrCkvrOxS5IkSZIkSb04DGzIzHOAVcDVEXEOsBG4OzNXAHeXZYCLgRVlWg/cOPiQJQ2ZpcA9EfEI8ABwV2Z+HrgWeG9ETFA9k+umsv1NwBkl/b0cLZ8ktZTDGEqSJEmSJGneMnM/sL/Mfy8ingCWAWvgyKh724BxqgvPa4Bbyl0U90bEqRGxtOxHkuYsMx8BXjtF+tPA66ZI/xvglwcQmqQB8c4uSa0QEVsj4kBEPNqVNuchMSJibdn+qYhYO9V7SZIkSZLmJyKWU11wvg8Y6WrA+iYwUuaXAc90vWxvSZMkSZoX7+yS1BY3A78P3NKV1hkSY1NEbCzL13LskBjnUw2JcX5EnA5cD4wCCTwUETsz8/mB5UKSJEmShlREvBz4DPCezPxuRBxZl5kZEXN6Hk5ErKca5pCRkRHGx8f7GO3MDh06NPD3nMqGlYePzI+cTM8xde8P5re/zj5GTq7mmxBTR1OOWzdjkqSFZ2OXpFbIzC+WHoLd5jQkRtn2rsx8DiAi7gJWA7cudPySJEmSNMwi4kSqhq7tmfnZkvxsZ3jCck52oKTvA87qevmZJe0YmbkF2AIwOjqaY2NjCxX+lMbHxxn0e05l3cZdR+Y3rDzMpT3G1L0/gD1XzH1/nX1sWHmYzbuXzGsf/Y6poynHrZsxSdLCcxhDSW021yExHCpDkiRJkvosqlu4bgKeyMwPd63aCXSGj18L7OhKv7IMQb8KOOjzuiRJUi+8s0vSUJjPkBjHM5/hMjrDN3TUORxAk4YjMJbpNSkeY5Gk5ouIrcDbgAOZ+fMl7XTg08ByYA9waWY+Xy48fwy4BPg+sC4zv1Jesxb4N2W3v5eZ2waZD0lD6Q3Au4DdEfFwSXsfsAm4PSKuAr4BXFrW3UFVPk1QlVHvHmi0kiRp6NjYJanN5jokxj6ODnvYSR+fasfzGS7jhu072Lz7aLHa6zAOvWjScATGMr0mxWMsktQKN+MzTCU1UGZ+CYhpVl8wxfYJXL2gQUmSpEVlxmEMI2JrRByIiEe70k6PiLsi4qny97SSHhHx8YiYiIhHIuK8rtesLds/VXoSSlKv5jokxp3ARRFxWim3LippkjQj60SS6paZXwSem5S8hurZpZS/b+9KvyUr9wKdZ5i+hfIM09LA1XmGqSRJkiQtmOUbdx0z9dts7uy6GXsPSqpZRNxKdVfWKyNiL1WZMqchMTLzuYj4APBA2e53M3PyBSNJms7NWCeS1DwL9gzTtg/rPAiLaejdxZRXWHz51cKafEFvz6a31hSJJEnDa8bGrsz8YkQsn5S8hqNDgW2jGgbsWrp6DwL3RkSn9+AYpfcgQER0eg/e2nsWJC0GmXn5NKvmNCRGZm4FtvYxNEmLhHUiSU3X72eYtn1Y50FYTEPvLqa8wuLLryRJUtvN95ldjeo9CM3vQdjkXmFNjg2Mr1dNj0+SWm7B6kSSNEsL9gxTSZIkSWqL+TZ2HdGE3oPQ/B6ETe4V1uTYwPh61fT4JGlY9LtOtNiHDxuWzhrDkg8wLw3WeYbpJl78DNNrIuI2quFUD5YGsTuBf995xiDVM0yvG3DMkiRJktRX823ssvegJEnSAtaJFvvwYcPSWWNY8gHmpQl8hqkkSZIkTe0l83xdp/cgvLj34JVRWUXpPQjcCVwUEaeVHoQXlTRJkqQ2s04kaWAy8/LMXJqZJ2bmmZl5U2Z+OzMvyMwVmfnmTsNVVq7OzJ/MzJWZ+WDXfrZm5qvL9F/qy5EkSZIk9ceMd3bZe1CSJMk6kSRJkiRJUlPN2NiVmZdPs+qCKbZN4Opp9rMV2Dqn6CRJkhrCOpEkSZLUTMs37joyv2Hl4WPGDZckLQ7zHcZQkiRJkiRJkiRJqp2NXZIkSZIkSZIkSWotG7skSZIkSZIkSa0VEWdFxD0R8XhEPBYRv1nST4+IuyLiqfL3tJIeEfHxiJiIiEci4rx6cyCpVzZ2SZIkSZIkSZLa7DCwITPPAVYBV0fEOcBG4O7MXAHcXZYBLgZWlGk9cOPgQ5bUTzZ2SZIkSZIkSZJaKzP3Z+ZXyvz3gCeAZcAaYFvZbBvw9jK/BrglK/cCp0bE0sFGLamfltQdgCRJkiRJkiRJ/RARy4HXAvcBI5m5v6z6JjBS5pcBz3S9bG9J29+VRkSsp7rzi5GREcbHx2d8/5GTYcPKw0eWZ/OapunE38lLG/Mwmcelft3/f4BDhw71NQ82dkmSJEmSJEmSWi8iXg58BnhPZn43Io6sy8yMiJzL/jJzC7AFYHR0NMfGxmZ8zQ3bd7B599HL7nuumPk1TbNu4y6gapzYvHtJK/Mwmcelfp34O25efQqz+U7NlsMYSpIkSZIkSZJaLSJOpGro2p6Zny3Jz3aGJyx/D5T0fcBZXS8/s6RJaikbuyRJkiRJkiRJrRXVLVw3AU9k5oe7Vu0E1pb5tcCOrvQro7IKONg13KGkFnIYQ0mSJEmSJEnqo+Vdw3VtWHmYsfpCWSzeALwL2B0RD5e09wGbgNsj4irgG8ClZd0dwCXABPB94N0DjVZS39nYJUmSJEmSJElqrcz8EhDTrL5giu0TuHpBg5I0UA5jKEmSJEmSJEmSpNaysUuSJEmSJEmSJEmtZWOXJEmSJEmSJEmSWsvGLkmSJEmSJEmSJLWWjV2SJEmSJEmSJElqLRu7JEmSJEmSJEmS1FpL6g5AkiRJkiRJkjS95Rt3HbO8Z9Nba4pEkprJxi5JkiRJkiTNW0RsBd4GHMjMny9ppwOfBpYDe4BLM/P5iAjgY8AlwPeBdZn5lTrilqZjw5IktY/DGEqSJEmSJKkXNwOrJ6VtBO7OzBXA3WUZ4GJgRZnWAzcOKEZJkjTEbOyS1HoRsScidkfEwxHxYEk7PSLuioinyt/TSnpExMcjYiIiHomI8+qNXpIkSZLaLTO/CDw3KXkNsK3MbwPe3pV+S1buBU6NiKUDCVSSJA0tG7skDYs3Zua5mTlalu1FKEmSJEn1GcnM/WX+m8BImV8GPNO13d6SJkmSNG8+s0vSsFoDjJX5bcA4cC1dvQiBeyPi1IhY2nUSJkmS1DoRsQf4HvACcDgzR31ejqSmyMyMiJzr6yJiPVUnRUZGRhgfH+93aC+ye9/BI/MjJ8MN23ewctkretrnhpWHj1meaz66Xz9y8txf3+94uvcxcnI1X3dMTf4fNSmmbocOHRrId0qSBqWnxi5PqCQ1RAJfKCdPn8zMLcy9F+ExjV3zOanqVPI76qw0NqnSaizTa1I8xtIb60SSGuKNmfmtruXOne6bImJjWb6WY+90P5/qTvfzBx2spKH3bKdjYRmm8EBJ3wec1bXdmSXtRcq53RaA0dHRHBsbW8BwK+s27joyv2HlYTbvXsKeK3p73+59AnPe3+SYLu3x/9BrPN378H/Urpi6jY+PM4jvlCQNSj/u7PKESlLdfjEz90XEjwN3RcTXulfOpxfhfE6qbti+g827jxarvVY8e9GkSquxTK9J8RhLX1gnktQ03ukuqU47gbXApvJ3R1f6NRFxG1Ud6KDljyRJ6tVCDGPoCZWkgcrMfeXvgYj4HPA6+tCLUJJ6ZJ1I0iB5p3sN2ng38nwtprzC4stvryLiVqp6zysjYi9wPVUj1+0RcRXwDeDSsvkdVHe4T1Dd5f7ufsayfPLdL5ve2s/dS5Kkhuq1sasRJ1TQ/JOqJleUmxwbGF+vmh5fryLiFOAlmfm9Mn8R8LvYi1DSYDWiTtT0+tBcDMvv17DkA8xLC3inew1afDfynC2mvMLiy2+vMvPyaVZdMMW2CVy9sBFJkqTFptfGrkacUEHzT6qaXFFucmxgfL1qenx9MAJ8rnoEDkuAP87MP4uIB6ihF6GkRasRdaKm14fmYlh+v4YlH2Bems473SVJkiQtZi/p5cXdJ1TAMSdUAJ5QSVpomfl0Zr6mTD+XmR8s6d/OzAsyc0VmvjkznyvpmZlXZ+ZPZubKzHyw3hxIGgbWiSTVKSJOiYgf7cxT3en+KEfvdIcX3+l+ZVRW4Z3ukiRpCETE1og4EBGPdqWdHhF3RcRT5e9pJT0i4uMRMRERj0TEefVFLqkf5t3Y5QmVJEmSdSJJjTACfCkivgrcD+zKzD+jGs75woh4CnhzWYbqTvenqe50/xTwG4MPWZIkqe9uBlZPStsI3J2ZK4C7yzLAxcCKMq0HbhxQjJIWSC/DGDp0mCRJknUiSTXLzKeB10yR/m18Xo4kSVokMvOLEbF8UvIaYKzMbwPGgWtL+i2lXnRvRJzaGf55QOFK6rN5N3Z5QiVJkmSdSJIkSZIabKSrAeubVJ0VAZYBz3Rtt7ek2dgltVQvd3ZJkiRJkiRJkhpu+cZdxyzfvPqUmiKpT2ZmRORcXhMR66mGOWRkZITx8fEZXzNyMmxYefjI8mxe0zSd+Dt5aWMeJvO41K/7/w9w6NChvubBxi5JkiRJkiRJ0jB6tjM8YUQsBQ6U9H3AWV3bnVnSjpGZW4AtAKOjozk2NjbjG96wfQebdx+97L7niplf0zTrSuPohpWH2bx7SSvzMJnHpX7rpmh0n813arZe0rc9SZIkSZIkSZLUHDuBtWV+LbCjK/3KqKwCDvq8LqndvLNLkiRJkiRJktRqEXErMAa8MiL2AtcDm4DbI+Iq4BvApWXzO4BLgAng+8C7Bx6wpL6ysUuSJEmSJEmS1GqZefk0qy6YYtsErl7YiCQNksMYSpIkSZIkSZIkqbVs7JIkSZIkSZIkSVJr2dglSZIkSZIkSZKk1rKxS5IkSZIkSZIkSa1lY5ckSZIkSZIkSZJay8YuSZIkSZIkSZIktZaNXZIkSZIkSZIkSWotG7skSZIkSZIkSZLUWjZ2SZIkSZIkSZIkqbVs7JIkSZIkSZIkSVJr2dglSZIkSZIkSZKk1rKxS5IkSZIkSZIkSa1lY5ckSZIkSZIkSZJay8YuSZIkSZIkSZIktZaNXZIkSZIkSZIkSWotG7skSZIkSZIkSZLUWjZ2SZIkSZIkSZIkqbUG3tgVEasj4smImIiIjYN+f0myHJJUN8shSXWzHJJUN8shSU1gWSQNjyWDfLOIOAH4BHAhsBd4ICJ2Zubjg4xD0uJlOSSpbpZDkuo2yHJo+cZdxyzv2fTWfr+FpBayPiSpCSyLpOEy0MYu4HXARGY+DRARtwFrAAsQSYNiOTSNyRejwAtS0gKxHJJUN8shSXWzHJLUBJZF0hAZdGPXMuCZruW9wPkDjkHS4jY05dBUjVMdG1YeZt1x1sPsGrKO9x6zNZtYOmaKaaZ4bJxTSwxNOSSptWorh+Z6p5d3hklDy/qQpCawLJKGSGTm4N4s4p3A6sz8tbL8LuD8zLyma5v1wPqy+NPAk7Pc/SuBb/Ux3H5rcnxNjg2Mr1fzje/vZuar+h1M3WZTDpX0+ZRFTfosGMvUmhQLNCueJsZiOdTucqhXw5KXYckHLM68WA4t7nJoNhZTfhdTXqE5+bUcmt81on5pyuegW9Nialo8YEyztajrQ7Cg16qbeLzny7w007Dkpa/l0KDv7NoHnNW1fGZJOyIztwBb5rrjiHgwM0d7C2/hNDm+JscGxterpsdXgxnLIZhfWdSk/7WxTK1JsUCz4jGWgVoU5VCvhiUvw5IPMC9DxnKoTxZTfhdTXmHx5bcGC1YO9VMTPwdNi6lp8YAxzVYTY6rBglyrHqb/rXlppmHJS7/z8ZJ+7WiWHgBWRMTZEfFS4DJg54BjkLS4WQ5JqpvlkKS6WQ5JqpvlkKQmsCyShshA7+zKzMMRcQ1wJ3ACsDUzHxtkDJIWN8shSXWzHJJUN8shSXWzHJLUBJZF0nAZ9DCGZOYdwB0LsOvabmufpSbH1+TYwPh61fT4Bm6RlEPGMrUmxQLNisdYBmiRlEO9Gpa8DEs+wLwMFcuhvllM+V1MeYXFl9+BW8ByqJ+a+DloWkxNiweMabaaGNPALVBZNEz/W/PSTMOSl77mIzKzn/uTJEmSJEmSJEmSBmbQz+ySJEmSJEmSJEmS+qb1jV0RsToinoyIiYjYWFMMWyPiQEQ82pV2ekTcFRFPlb+nlfSIiI+XeB+JiPMGEN9ZEXFPRDweEY9FxG82KcaIeFlE3B8RXy3x/U5JPzsi7itxfLo8KJKIOKksT5T1yxcyvvKeJ0TEX0TE55sWW3nfPRGxOyIejogHS1ojju9iUEc51KRyp0llTBPLk6aUH00qJyLi1Ij4k4j4WkQ8ERGvt8zqTR3lUC+aVG70Q1O+570apu9mRPzL8tl6NCJuLb8PrTwubdK2smg6/frNjIi1ZfunImJtXfmZLPpUj5wufxHx98r/b6K8Ngabw6Omyev7I2JfOb4PR8QlXeuuK3E/GRFv6Uqf8rM9Xbmidotp6ilNMLnOUbep6g4NiOlFdYAaYph1OVtzTP+xHLtHIuJzEXHqIGNqm+nKhnn+hv6diPhC+d48HgOsf/YrHxHxxq7f0ocj4m8i4u2Dykc/81LW/YeyjyeihvpLn/PyoVIGPhoRv9LwfPxMRHw5In4QEb81aV9zP7fIzNZOVA8O/DrwE8BLga8C59QQxz8CzgMe7Ur7D8DGMr8R+FCZvwT4UyCAVcB9A4hvKXBemf9R4H8D5zQlxvI+Ly/zJwL3lfe9HbispP8B8M/L/G8Af1DmLwM+PYD/4XuBPwY+X5YbE1t5rz3AKyelNeL4DvtUVznUpHKnSWVME8uTppQfTSongG3Ar5X5lwKnWmb19P9sRH1ojjE3ptzoU34a8T3vQz6G4rsJLAP+Eji563isa+txacvUxrLoOHnp+TcTOB14uvw9rcyfVnfeSmw91yOPlz/g/rJtlNde3LC8vh/4rSm2Pad8bk8Czi6f5xOO99merlxxavfENPWUuuMq8RxT56h7Yoq6Q83xTFkHqCGOWZezNcd0EbCkzH9o0DG1bZqubJjrb2hZNw5cWOZfDvxIG/PRtc/TgecGmY9+5gX4B8D/7Prd/zIw1tK8vBW4C1gCnAI8APxYg/Px48DfBz5IV/2MeZ5bDOyALdA/7/XAnV3L1wHX1RTLco79wXgSWNp1kJ8s858ELp9quwHGugO4sIkxAj8CfAU4H/gWR390jxxr4E7g9WV+SdkuFjCmM4G7gTcBny+FSCNi64pxDy8+IW/c8R3Gqc5yqKnlTlPKmCaUJ00qP5pSTgCvoDoBjbpjGZapznKoj3loRLkxz9gb8z3vMR9D892kutD1DNVJ95JyXN7SxuPSpmkYyqKu2Hv+zQQuBz7ZlX7MdnVP9FiPnC5/Zd3XutKP2a4heX0/Uzd2HfOZ7ZQN0322j1feOw3XRKmnNCCOY+ocDYhnyrpDzTFNVQe4qKZYZlXO1hnTpHXvALbXfQzbNDHPcxiqC/9fqjv+XvMxaR/rm/D56eGYvB54CDiZ6lrSg8DPtjQv/wr4t13pNwGXNjUfXdu9n2Mbu+Z1btH2YQw7P2Ide0taE4xk5v4y/01gpMzXGnO5Lfa1VHc7NCbGqG7Ffxg4QNX6/HXgO5l5eIoYjsRX1h8EzljA8D4K/Gvgh2X5jAbF1pHAFyLioYhYX9Iac3yHXJP+n7Uf8yaUMQ0rTz5Kc8qPppQTZwN/DfyXqIZg+cOIOKWmWIZFq/9HTSg3evRRmvM978XQfDczcx/wn4C/AvZT/Z8fop3HpU0a+5mYh378Zrbt/9Gv/C0r85PTm+aaMuTP1jg6lNhc83q88l5DYlI9pW4f5dg6R92mqzvUZqo6QGZ+oc6YukxXzjbFr1LdJaJZ6PEc5qeA70TEZ8t35z9GxAmDifxYfTwXuwy4deEinVkvecnMLwP3UJUb+6kaWZ4YRNxT6fG4fBVYHRE/EhGvBN4InDWIuCebZT6mM6+6dNsbu1ohq+bHrDuOiHg58BngPZn53e51dceYmS9k5rlUPZVeB/xMXbF0i4i3AQcy86G6Y5nBL2bmecDFwNUR8Y+6V9Z9fDV4dRzzppQxTSlPGlh+NKWcWEI1fMaNmfla4P9Q3cJeRyyqWVPKjflq4Pe8F0Pz3SwXrtdQXYT721TDd6yuNSi1TVN+M2sx7PkDbgR+EjiX6oLW5lqjUWMdr55SQyxNrHPMWHcYtKnqABHxT+uMaSpNK2cj4reBw8D2umNpgz6cwywB/iHwW1TDt/0E1ZDbA9Wvc7GIWAqspLojuha95iUiXg38LNV1pGXAmyLiHy5QuMfVa15KA/8dwP+iaoD8MvDCwkQ7vbrO9dve2LWPY1smzyxpTfBs+bJ3vvQHSnotMUfEiVQfsO2Z+dkmxgiQmd+hakl/PXBqRCyZIoYj8ZX1rwC+vUAhvQH4pYjYA9xGNVzAxxoS2xGl9xKZeQD4HNUF/sYd3yHVpP9nbce8iWVMA8qTRpUfDSon9gJ7M7PTO/ZPqE6SLbPmr5X/oyaWG/PQqO95j4bpu/lm4C8z868z8/8Bn6U6Vm08Lm3S5M/EnPTpN7Nt/49+5W9fmZ+c3hiZ+WzpHPVD4FNUxxfmntdvM325opabpp5SpxfVOSLiv9Yb0rR1hzpNVQf4BzXH1DFdOVuriFgHvA24olyA1nH06RxmL/BwZj5d7g7+7wz4u9Pnc7FLgc+V79zA9Skv7wDuzcxDmXmI6i7H1w8i/m79Oi6Z+cHMPDczL6Qadvl/DyL+jjnmYzrzqku3vbHrAWBFRJwdES+lumVyZ80xdewE1pb5tVTjU3bSr4zKKqpbqvdPtYN+iYigGp/zicz8cNNijIhXRcSpZf5kqnE8n6C6SP3OaeLrxP1O4M8X6gc5M6/LzDMzcznV5+vPM/OKJsTWERGnRMSPduapHjD6KA05votAk8qhWo55k8qYJpUnTSo/mlROZOY3gWci4qdL0gXA43XEMkSaVA7NSpPKjV406XveqyH7bv4VsCqqoTuCo3lp3XFpmdaVRVPp42/mncBFEXFaVHcaXESNPZ5noS/5K+u+GxGryvfvyq59NULnQkvxDqrjC1VeL4uIkyLibGAFcD/TfLZLOTFduaIWO049pTbT1DlqvWPpOHWHOk1VB6htKLJJpitnaxMRq6mGxvylzPx+3fE0XR/PYR6g6izxqrLdmxjgd2cBzsUup6YhDPuYl78C/nFELImqoeYfM+Cyo195ierRHmeUff4C8AvAwIZznUc+pjO/c4us8UFr/ZiAS6haJ78O/HZNMdxKNfzB/6Nqnb+Kavzuu4GngP8BnF62DeATJd7dwOgA4vtFqlsDHwEeLtMlTYmR6kv3FyW+R4F/V9J/gurkYgL4b8BJJf1lZXmirP+JAR3nMcpDYJsUW4nlq2V6rPM9aMrxXQxTHeVQk8qdJpUxTS1P6i4/mlZOUA0b9GA5Tv8dOM0yq+f/ae31oTnG25hyo495qvV73qc8DM13E/gd4GtUvwV/BJzU1uPSpqltZdE0eejbbybV808myvTuuvPWFVdf6pHT5Q8YLd+9rwO/D0TD8vpHJS+PUF00Wdq1/W+XuJ8ELp7psz1dueLU7olp6il1x9UV3xilzlH3xBR1hwbE9KI6QA0xzLqcrTmmCapn4nQ+539Q9/Fr8jRd2TDP39ALy352AzcDL21pPpZT3W3zkjYfE+AE4JNUDVyPAx9ucV5eVvLwOHAvcG7D8/G3qMqk7wLfKfM/VtbN+dwiygslSZIkSZIkSZKk1mn7MIaSJEmSJEmSJElaxGzskiRJkiRJkiRJUmvZ2CVJkiRJkiRJkqTWsrFLkiRJkiRJkiRJrWVjlyRJkiRJkiRJklrLxi5JkiRJkiRJkiS1lo1dkiRJkiRJkiRJai0buyRJkiRJkiRJktRa/x9HbVdvy0mLfQAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 2160x1440 with 36 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "## visualizing numerical features\n",
+    "X_train.select_dtypes(np.number).hist(bins = 50,figsize =(30,20))\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 11,
+   "metadata": {
+    "scrolled": true
+   },
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABZgAAAhoCAYAAABP6NsdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdebhkVX3v//dHcJ4AaYky2KitBo2i6QA3enNRkMkBTYyBJNIYtfUK0SQmEYcbiEpC/MUxUQyGDmAUJA6hjURticaQiNAQZFJDiyjdMjSjA07g9/fHXgeK02fqM1TVOfV+PU89tWvt6bur6qyz97fWXitVhSRJkiRJkiRJW+tegw5AkiRJkiRJkrQ4mWCWJEmSJEmSJM2KCWZJkiRJkiRJ0qyYYJYkSZIkSZIkzYoJZkmSJEmSJEnSrJhgliRJkiRJkiTNignmAUnygST/b562tVuSHyTZpr3+YpKXz8e22/b+Ncmq+dreVuz3bUluTHJdv/e9EObzM5f6xbpqRvtdUnWVNGysh2a03znVQ0kqyWPb9ClJ3ja/EUr9Z90xo/0O3TlMkuOS/OOg45DGWJfMaL8Dr0uS7Jtk46D2LxPMCyLJ1Ul+lOT7SW5N8l9JXpXkrve7ql5VVW+d4bb2n2qZqvpOVT2oqu6ch9i3+IdeVQdX1alz3fZWxrEb8Dpgj6r6hQnm79suhj45rvwprfyLPWWHJrk4yfdapfdvSXafaJ+tsh//uCPJv831mGb6mUv9Yl01d9PVVW2ZNyb5VqtPNib5aM+8eT2pnGDfXqRpqFkPzd1M6qG23O5Jfp7kxP5FJy0M6465m+H11lYna2byI9VMr8+khWZdMncLVZfMt3Rek+SyJD9s12X/lOSX5mHbC3pNt1iYYF44z6uqBwOPAk4AXg+cPN87SbLtfG9zSOwG3FRVN0yxzGbgfyV5WE/ZKuB/xl6ka41zGl2F91Bgd+B9wBYVek9lf9cD+FXgR8BfzPWApCFlXTU3U9ZVrQXBS4D9W52yEjhnphtfwu+b1Mt6aG5mcs4EcARwC/BbSe678GFJC866Y25mWnfMq625PpP6xLpkbgZSl8zCe4DXAq8BdgAeB/wz8JwBxjStRfW9qSof8/wArqZLJvSW7QX8HHhSe30K8LY2vSPwL8CtwM3Af9Al/z/U1vkR8APgT4HlQAEvA74DfKmnbNu2vS8CfwmcD3wPOAvYoc3bF9g4UbzAQcBPgZ+1/X21Z3svb9P3At4MfBu4ge7k4KFt3lgcq1psNwJvmuJ9emhbf3Pb3pvb9vdvx/zzFscpE6y7L7AR+ABwVCvbBtgE/BnwxVb2IuDiWX6OD6FLVr+5p+y+wLuB77bHu4H7jovpde29uRZ4ac+6vZ/5dMs+DPhU+/wuAN4GnDvo77aPpfXAuqofddXfAu+eZLvH011M/bit/7etvICjgCuBb7Wy5wIXt/f+v4An92znkcDHW3zfAl7Tyid8n3z4GKaH9dDC10Nt/QDfBP4vcD3wonHzC3js+Pe7vZ6w/gH+BPj4uO28F3jPoL9XPpb+w7qjf9dbk2z3F1vMtwKXA89v5avbsf20bfdTE6w75fUZcBxwZov7+237K3vmH0NXn30fuAJ4Yc+8I4H/pDv/ug34OrDfuPfjZLprr01011jbDPr77GNwD6xLBl2XPAf473bs1wDH9cybMkbg/u2zuaXVBX8yxX5W0F137bW1x9jmHQmcC/x129+3gIPbvMmu6X6VLpdzW3v+1cm+d3T13j+OO+67vjeD/juZ6cMWzH1SVefTJRT/9wSzX9fmLQN2At7YrVIvoftCPa+6FrVv71nn/9D9Yz9wkl0eAfwe8AjgDroT/uli/AxdS92Ptv09ZYLFjmyPZwKPBh5E9w+81zOAxwP7AX+W5Bcn2eXf0P0RP7odzxF0SdbPAwcD321xHDlF2Ke19aB7Ly6jS/yOuQh4QpJ3JXlmkgdNsa3x/oEuwXN8T9mbgH2APYGn0P3zeXPP/F9ox7QzXYXwviTbT7L9qZZ9H/DDtsyq9pAWnHXVhOZSV50HHJHkT5KsTOtvrR3Hm+hOSo9u6x/ds94LgL2BPZI8FVgDvJLux6e/A9YmuW+7fe9TwFfp6pL9gD9IcuAM3ydp6FgPTWiu50zPAHYBzqBL3MzovGKq+gf4R+CgJNu1ZbcFDqM7N5P6zrpjQvNxvXUPSe5Nd+7xOeDhwO8DH07y+Ko6Cfgw8Pa23edNsImZXJ89n66+2g5Yyz2P/5t0n/FDgT8H/jHJI3rm792W2RE4FvhEkh3avFPoPqvHAk8FDgBG/rZ23ZN1yYTmvS5pfti2tR1dsvn/JnnBDGM8FnhMexzI1Oc2+9Eln8+fYpkJj7Fn/t7AN+jqlrcDJyfJRNd0rc75NN1n+TDgncCnx919P53pvjdDxwRzf32Xrin+eD+jq0weVVU/q6r/qPbTxRSOq6ofVtWPJpn/oaq6rKp+CPw/4MW9iY05+B3gnVV1VVX9AHgDcNi4Zvt/XlU/qqqv0iU9tqjsWiyHAW+oqu9X1dXAO+huJZ+xqvovYIckj6erAE4bN/8qul/Mdqa7oLqx9Qs2ZaI5yeuAXwZeMu6z+B3gLVV1Q1Vtpjup6Y35Z23+z6rqbLpfsB4/yW4mXLa9N78BHFtVt1fVFUBf+1HSyLOuauZaV1XVP9JdeB0I/DtwQ5LXz2DVv6yqm9v7thr4u6r6SlXdWV2/aj+h+7HrV4BlVfWWqvppq/M+2GKWFjProWaezplWAf9aVbcAH6FLDD98ButNWv9U1bV0rbF+sy17EHBjVV24FXFJ8826o5mv660J7EOXqDqhnXv8G12LzsNnsvIMr8/Oraqzq+un9kP0HF9V/VNVfbeqfl5VH6VrELRXz7o30N099rM2/xvAc5LsBBwC/EH7XG8A3oXnTJqYdUmzgHUJVfXFqrq0/T1fApxOl1jtNVmMLwaOb9dM1zB1Yv5hdHcuTGiGx/jtqvpgq5dOpfse7DTJJp8DXFlVH6qqO6rqdLo7Kib60W0y031vho4J5v7ame42ivH+P2AD8LkkVyU5ZgbbumYr5n8buDfdLy1z9ci2vd5tb8s9/7B6Rw69ne4EZLwdW0zjt7XzLGL6EHA03S9znxw/s6rOq6oXV9Uyul8hf42uJfKEkjyDLnH8oqoa/3lNdPyP7Hl9U1Xd0fN6suOfatlldO9p72c43ectzSfrqrvNua6qqg9X1f50v8y/Cnhrkul+ie59Xx4FvK4NPHJrkluBXemO8VHAI8fNeyOTn+xIi4X10N3mVA8luT9dEvjDAFX1ZbpWVr89g9Wnqn+gu8D63Tb9u3TnZNIgWXfcbT6vt8bHd01V/Xy2253B9dn447vfWFIsyRFtgMCxOulJ3PN93zQu4Td2vfYouvfj2p51/46uFbY0nnXJ3RaqLiHJ3km+kGRzktvorpXGH/tkMT6SLd+7ydxElxCezEyO8a44qur2NjlZrmf8ez/R9qaz6HJAJpj7JMmv0H2Zzh0/r/1C8rqqejTd7UB/lGS/sdmTbHK6X8l27Zneje6XthvpbkF4QE9c29AlNGe63e/S/XPu3fYddP35bY0bW0zjt7VpK7cD3cXMq4Gze/7QJ1RVFwCfoDsR2UL7ZfujwB9X1foJFpno+L87wXJzsZnuPd2lp2zXSZaV5pV11Rbmra5qrRz+CbiEu+ugmbxv19D9Or9dz+MB7Zfwa+j6ae6d9+CqOmSa7UtDy3poC3Oth15IN67E+5Ncl+Q6uvd3Jt1kTFX/QDc4zpOTPImur+YPzzAmad5Zd2xhPq+3en0X2LV10zXRdrfq3GO667NeSR5Fd6fW0cDDqmo7ui4S07PYzkl6X49dr11DdwfGjj312UOq6olbE6+WPuuSLSxUXQLdXVVrgV2r6qF0Y2xl6lXuci1bvneTOQfYJcnKSebP9RjHfxbj3/vx27vHZ0vXNep02xx6JpgXWJKHJHkuXR9S/1hVl06wzHOTPLb9I7yNroPwsV+Er6frA2Zr/W6SPZI8AHgL8LHWlP9/6H4Bfk7rP+vNdAPXjbkeWD7uhKHX6cAfJtm93cY01u/PHZMsP6EWy5nA8Uke3E4W/oiuP7+tUlXforuNYotWyUmekeQVY7eBJnkC3T+C8yZYdhu6z+nfquoDk+zudODNSZYl2ZFuQMGtjnkq7b35BHBckge0mI+YZjVpTqyrJjbXuirJke0YHpzkXkkOBp4IfKXnOKZ73z4IvKr9wp8kDxzbJt2AIN9P8vok90+yTZIntRPjse1P9T5JQ8N6aGLzcM60iq4f5V+iG0NiT+DpwFOS/NI0605V/1BVPwY+RneBeH5VfWdrjk2aD9YdE5uv660k9+t90J173A78aZJ7J9mX7rbvM3qOb9L3c2uuzybwQLqky+a27kvZMjH9cOA1LbbfpOvD9OzquvX5HPCO9p25V5LHJBl/O75GlHXJxBaqLmnv4YOBm6vqx0n2YmZ3V405E3hDku2T7ELXLeFkx3Al8H7g9CT7JrlPi+GwJMfMwzGO/+zPBh6X5LeTbJvkt4A96LoTgm7w5MNaPbWSbvDTRc8LzoXzqSTfp/ul9E10nXq/dJJlVwCfp+uD98vA+6vqC23eX9IlNG9N8sdbsf8P0Q1icB1wP+A1AFV1G11r37+n+/Xkh3Sd1I/5p/Z8U5KLJtjumrbtL9GNnPljpvhDnsbvt/1fRffr4Efa9rdaVZ1bVRO1JL6V7oTl0iQ/AD5D143G2ydY9ul0/YH9RpIfjHtc3pZ5G7CergXipXSDVLxtNjFP42i6Duavo3u/T6f7xV2ab9ZV05tLXfU9ui4rvkNXH70d+L9VNdYi4j3Ai5LckmTCfsPa3RSvoBuU4xa62/KObPPupGs1uCfdcd5I9549tK0+3fskDQProenNqh5KMjb457ur6rqex4V050RTtmKeqv7pcSpd8truMdRv1h3Tm+v11s7Aj8Y9dqVLKB9Md97xfuCIqvp6W+dkukGKb03yzxNs81Zmfn12D9WNTfMOus/werq65z/HLfYVus/7RrrB2l9UVTe1eUcA9wGuoKvTPsbUt81rNFiXTG8h6pLH0B3fW9r7/2d0Sd6Z+nO6bie+Rffj0XTnIa+hO595H1099E26u7w+1ebP5RjvcU3X6pzn0g0KeRPwp8Bzq+rGtvz/ozv+W9pxfGSG+xlqqWn7I5c0aEn+CviFqprRqO+SJEn9kGQ3uoFrfqGqvjfoeCSNriRHAi+vqmcMOhZJGjW2YJaGUJInJHlyux11L+BlTDCAoSRJ0qC023L/CDjD5LIkSdLo2nbQAUia0IPpusV4JN3tX+8AzhpoRJIkSU2SB9Kdo3wbOGjA4UiSJGmA7CJDkiRJkiRJkjQrdpEhSZIkSZIkSZqVoe4iY8cdd6zly5cPOgxJc3DhhRfeWFXLBh3H1rDukRY36x1J/Wa9I6nfrHckDcJkdc9QJ5iXL1/O+vXrBx2GpDlI8u1Bx7C1rHukxc16R1K/We9I6jfrHUmDMFndYxcZkiRJkiRJkqRZMcEsSZIkSZI0ApLsmuQLSa5IcnmS17byHZKsS3Jle96+lSfJe5NsSHJJkqf1bGtVW/7KJKsGdUySBs8EsyRJkiRJ0mi4A3hdVe0B7AMclWQP4BjgnKpaAZzTXgMcDKxoj9XAidAlpIFjgb2BvYBjx5LSkkaPCWZJkiRJkqQRUFXXVtVFbfr7wNeAnYFDgVPbYqcCL2jThwKnVec8YLskjwAOBNZV1c1VdQuwDjiof0ciaZiYYJYkSZIkSRoxSZYDTwW+AuxUVde2WdcBO7XpnYFrelbb2MomK5c0gkwwS5IkSZIkjZAkDwI+DvxBVX2vd15VFVDztJ/VSdYnWb958+b52KSkIbTtoAOYq+XHfHrO27j6hOfMQySSNDfzUZ8tJta90uBZ70iajUHVHf4NS/Mjyb3pkssfrqpPtOLrkzyiqq5tXWDc0Mo3Abv2rL5LK9sE7Duu/Ivj91VVJwEnAaxcuXLWSWvrHWm42YJZkiRJkiRpBCQJcDLwtap6Z8+stcCqNr0KOKun/Ih09gFua11pfBY4IMn2bXC/A1qZpBG06FswS5IkSZIkaUaeDrwEuDTJxa3sjcAJwJlJXgZ8G3hxm3c2cAiwAbgdeClAVd2c5K3ABW25t1TVzX05AklDxwSzJEmSJEnSCKiqc4FMMnu/CZYv4KhJtrUGWDN/0UlarOwiQ5IkSZIkSZI0KyaYJUmSJEmSJEmzYoJZkiRJkiRJkjQrJpglSZIkSZIkSbNiglmSJEmSJEmSNCsmmCUNnSS7JvlCkiuSXJ7kta18hyTrklzZnrdv5Uny3iQbklyS5Gk921rVlr8yyapBHZMkSZIkSdJSZIJZ0jC6A3hdVe0B7AMclWQP4BjgnKpaAZzTXgMcDKxoj9XAidAlpIFjgb2BvYBjx5LSkiRJkiRJmjsTzJKGTlVdW1UXtenvA18DdgYOBU5ti50KvKBNHwqcVp3zgO2SPAI4EFhXVTdX1S3AOuCg/h2JJEmSJEnS0maCWdJQS7IceCrwFWCnqrq2zboO2KlN7wxc07PaxlY2WbkkSZIkSZLmgQlmSUMryYOAjwN/UFXf651XVQXUPO5rdZL1SdZv3rx5vjYrSZI0qSRrktyQ5LKesv8vydfbuBKfTLJdK1+e5EdJLm6PD/Ss88tJLm3jUbw3SQZwOJIkaURNm2Ce5KTnuCSbek5uDumZ94Z2YvONJAf2lB/UyjYkOWb8fiSpV5J70yWXP1xVn2jF17euL2jPN7TyTcCuPavv0somK99CVZ1UVSurauWyZcvm70AkSZImdwpbdt+1DnhSVT0Z+B/gDT3zvllVe7bHq3rKTwRewd1jUtglmCRJ6puZtGA+hYlPUN7Vc3JzNkAbhOsw4Iltnfcn2SbJNsD76Abi2gM4vC0rSVtorW5OBr5WVe/smbUWWNWmVwFn9ZQfkc4+wG2tK43PAgck2b4N7ndAK5MkSRq4qvoScPO4ss9V1R3t5Xl0P5BPqv3o/pCqOq/d4XUad49TIUmStOC2nW6BqvpS6wN1Jg4FzqiqnwDfSrIB2KvN21BVVwEkOaMte8XWhyxpBDwdeAlwaZKLW9kbgROAM5O8DPg28OI272zgEGADcDvwUoCqujnJW4EL2nJvqap7XMRJkiQNsd8DPtrzevck/w18D3hzVf0H3fgSG3uWmXTMiSSrgdUAu+2224IELEmSRs+0CeYpHJ3kCGA98LqquoXuROa8nmV6T27GD7S19xz2LWkJq6pzgcn6DtxvguULOGqSba0B1sxfdJIkSQsvyZuAO4APt6Jrgd2q6qYkvwz8c5Inbs02q+ok4CSAlStXzttYFpIkabTNdpC/E4HHAHvSnei8Y74CcqAtSZIkSaMsyZHAc4HfaT+kU1U/qaqb2vSFwDeBx9GNL9HbjcakY05IkiQthFklmKvq+qq6s6p+DnyQu7vBcKAtSZI0MpL8YZLLk1yW5PQk90uye5KvtIGNP5rkPoOOU9LikeQg4E+B51fV7T3ly9rYNiR5NN1gfle1cSe+l2SfNo7FEdw9ToUkSdKCm1WCuQ0kMeaFwGVtei1wWJL7Jtmd7qTnfLr+T1e0C6770A0EuHb2YUuSJA1Wkp2B1wArq+pJwDZ05zh/RTcY8mOBW4CXDS5KScMsyenAl4HHJ9nYxpn4W+DBwLokFyf5QFv814BL2vgUHwNe1TO2xKuBv6cbj+KbwL/28TAkSdKIm7YP5nbSsy+wY5KNwLHAvkn2BAq4GnglQFVdnuRMusH77gCOqqo723aOBj5Ld/G1pqoun++DkSRJ6rNtgfsn+RnwALquw54F/HabfypwHF33YpJ0D1V1+ATFJ0+y7MeBj08ybz3wpHkMTZIkacamTTBvzUlPW/544PgJys8Gzt6q6CRJkoZUVW1K8tfAd4AfAZ8DLgRurao72mK9Ax7fQ5LVwGqA3XbbbeEDliRJkqQFMNtB/iRJkkZaku2BQ4HdgUcCDwQOmun6jjshSZIkaSkwwSxJkjQ7+wPfqqrNVfUz4BPA04HtkozdJTbpwMaSJEmStBSYYJYkSZqd7wD7JHlAkgD70Y1D8QXgRW2ZVcBZA4pPkiRJkhacCWZJkqRZqKqvAB8DLgIupTuvOgl4PfBHSTYAD2OKsSskSZIkabGbdpA/SZIkTayqjgWOHVd8FbDXAMKRJEmSpL6zBbMkSZIkSZIkaVZMMEuSJEmSJEmSZsUEsyRJkiRJkiRpVkwwS5IkSZIkSZJmxQSzJEmSJEmSJGlWTDBLkiRJkiSNgCRrktyQ5LKesuOSbEpycXsc0jPvDUk2JPlGkgN7yg9qZRuSHNPv45A0XEwwS5IkSZIkjYZTgIMmKH9XVe3ZHmcDJNkDOAx4Ylvn/Um2SbIN8D7gYGAP4PC2rKQRte2gA5AkSZIkSdLCq6ovJVk+w8UPBc6oqp8A30qyAdirzdtQVVcBJDmjLXvFfMcraXGwBbMkSZIkSdJoOzrJJa0Lje1b2c7ANT3LbGxlk5VvIcnqJOuTrN+8efNCxC1pCJhgliRJkiRJGl0nAo8B9gSuBd4xXxuuqpOqamVVrVy2bNl8bVbSkLGLDEmSJEmSpBFVVdePTSf5IPAv7eUmYNeeRXdpZUxRLmkE2YJZkiRJkiRpRCV5RM/LFwKXtem1wGFJ7ptkd2AFcD5wAbAiye5J7kM3EODafsYsabiYYJYkSZKkAWh9nd6Q5LKesh2SrEtyZXvevpUnyXuTbGj9pD6tZ51Vbfkrk6waxLFIWhySnA58GXh8ko1JXga8PcmlSS4Bngn8IUBVXQ6cSTd432eAo6rqzqq6Azga+CzwNeDMtqykEWUXGZIkSZI0GKcAfwuc1lN2DHBOVZ2Q5Jj2+vXAwXStB1cAe9P1mbp3kh2AY4GVQAEXJllbVbf07SgkLRpVdfgExSdPsfzxwPETlJ8NnD2PoUlaxGzBLEmSJEkDUFVfAm4eV3wocGqbPhV4QU/5adU5D9iu3dZ+ILCuqm5uSeV1wEELHrwkSVJjglmSJEmShsdOVXVtm74O2KlN7wxc07PcxlY2WfkWkqxOsj7J+s2bN89v1JIkaWSZYJY0dCbpj/C4JJuSXNweh/TMe0Prj/AbSQ7sKT+olW1ot5hKkiQtGlVVdN1ezNf2TqqqlVW1ctmyZfO1WUmSNOJMMEsaRqcw8a2d76qqPdvjbIAke9CNWvzEts77k2yTZBvgfXT9Fe4BHN6WlSRJGmbXt64vaM83tPJNwK49y+3SyiYrlyRJ6gsTzJKGziT9EU7mUOCMqvpJVX0L2ADs1R4bquqqqvopcEZbVpIkaZitBVa16VXAWT3lR6SzD3Bb60rjs8ABSbZPsj1wQCuTJEnqCxPMkhaTo5Nc0rrQ2L6Vzbk/QrBPQkmS1H9JTge+DDw+ycYkLwNOAJ6d5Epg//Ya4GzgKrof0z8IvBqgqm4G3gpc0B5vaWWSJEl9se2gA5CkGTqR7uKp2vM7gN+br41X1UnASQArV66ct74OJUmSJlNVh08ya78Jli3gqEm2swZYM4+hSZIkzZgJZkmLQlVdPzad5IPAv7SXU/U7aH+EkiRJkiRJC8guMiQtCmOD3TQvBC5r02uBw5LcN8nuwArgfLpbRFck2T3JfegGAlzbz5glSZIkSZKWOlswSxo6rT/CfYEdk2wEjgX2TbInXRcZVwOvBKiqy5OcCVwB3AEcVVV3tu0cTTfIzTbAmqq6vL9HImmpS7Id8PfAk+jqp98DvgF8FFhOV1+9uKpuGUyEkiRJkrSwTDBLGjqT9Ed48hTLHw8cP0H52XQD4kjSQnkP8JmqelG7W+IBwBuBc6rqhCTHAMcArx9kkJIkSZK0UOwiQ5IkaRaSPBT4NdoPYFX106q6FTgUOLUtdirwgkHEJ0mSJEn9YAtmSZKk2dkd2Az8Q5KnABcCrwV2qqpr2zLXATtNtHKS1cBqgN12223ho9VIWn7MpwcdQl9dfcJzBh2CJEnSyLEFsyRJ0uxsCzwNOLGqngr8kK47jLtUVdH1zbyFqjqpqlZW1cply5YteLCSJEmStBBMMEuSJM3ORmBjVX2lvf4YXcL5+iSPAGjPNwwoPkmSJElacCaYJUmSZqGqrgOuSfL4VrQfcAWwFljVylYBZw0gPEmSJEnqi2kTzEnWJLkhyWU9ZTskWZfkyva8fStPkvcm2ZDkkiRP61lnVVv+yiSrJtqXJEnSIvP7wIeTXALsCfwFcALw7CRXAvu315IkSZK0JM2kBfMpwEHjyo4BzqmqFcA53N3f4MHAivZYDZwIXUIaOBbYG9gLOHYsKS1JkrRYVdXFrR/lJ1fVC6rqlqq6qar2q6oVVbV/Vd086DglSZIkaaFMm2Cuqi8B4y+MDgVObdOnAi/oKT+tOucB27W+Bw8E1lXVzVV1C7COLZPWkiRJkiRJkqRFZLZ9MO9UVde26euAndr0zsA1PcttbGWTlW8hyeok65Os37x58yzDkyRJkiRJkiQttDkP8ldVBdQ8xDK2vZParaYrly1bNl+blSRJkiRJkiTNs9kmmK9vXV/Qnm9o5ZuAXXuW26WVTVYuSZIkSZIkSVqkZptgXgusatOrgLN6yo9IZx/gttaVxmeBA5Js3wb3O6CVSZIkSZIkSZIWqW2nWyDJ6cC+wI5JNgLHAicAZyZ5GfBt4MVt8bOBQ4ANwO3ASwGq6uYkbwUuaMu9xRHVJUmSJEmSJGlxmzbBXFWHTzJrvwmWLeCoSbazBlizVdFJkiRJ0ohJ8njgoz1Fjwb+DNgOeAUwNhr6G6vq7LbOG4CXAXcCr6kq7xiVJEl9MW2CWZIkSZLUP1X1DWBPgCTb0I1f80m6O0TfVVV/3bt8kj2Aw4AnAo8EPp/kcVV1Zz/jliRJo2m2fTBLkiRJkhbefsA3q+rbUyxzKHBGVf2kqr5F12XhXn2JTpIkjTwTzJIkSZI0vA4DTu95fXSSS5KsaQOoA+wMXNOzzMZWdg9JVidZn2T95s2bx8+WJEmaFRPMkiRJkjSEktwHeD7wT63oROAxdN1nXAu8Y2u2V1UnVdXKqlq5bNmy+QxVkiSNMPtgliRJkqThdDBwUVVdDzD2DJDkg8C/tJebgF171tullWkeLD/m0wPb99UnPGdg+9bSlGQN8Fzghqp6UivbgW5g0eXA1cCLq+qWJAHeAxwC3A4cWVUXtXVWAW9um31bVZ3az+OQNFxswSxJkiRJw+lwerrHSPKInnkvBC5r02uBw5LcN8nuwArg/L5FKWkxOQU4aFzZMcA5VbUCOKe9hu5HrhXtsZruLoqxhPSxwN50/b0f29Nlj6QRZIJZkiRJkoZMkgcCzwY+0VP89iSXJrkEeCbwhwBVdTlwJnAF8BngqKq6s88hS1oEqupLwM3jig8Fxlognwq8oKf8tOqcB2zXfug6EFhXVTdX1S3AOrZMWksaIXaRIUmSJElDpqp+CDxsXNlLplj+eOD4hY5L0pK0U1Vd26avA3Zq05MNIDqjgUWhG1yUrvUzu+222zyGLGmY2IJZkiRJkiRJVFUBNY/bc3BRaQSYYJYkSZIkSRpd14/18d6eb2jlkw0g6sCiku7BBLMkSZIkSdLoWgusatOrgLN6yo9IZx/gttaVxmeBA5Js3wb3O6CVSRpRJpglDaUka5LckOSynrIdkqxLcmV73r6VJ8l7k2xIckmSp/Wss6otf2WSVRPtS5IkSZJGQZLTgS8Dj0+yMcnLgBOAZye5Eti/vQY4G7gK2AB8EHg1QFXdDLwVuKA93tLKJI0oB/mTNKxOAf4WOK2n7BjgnKo6Ickx7fXrgYOBFe2xN3AisHeSHYBjgZV0/YhdmGRtG+lYkiRJkkZKVR0+yaz9Jli2gKMm2c4aYM08hiZpEbMFs6ShVFVfAsb/Cn4ocGqbPhV4QU/5adU5D9iu9R12ILCuqm5uSeV1wEELHrwkSZIkSdKIMMEsaTHZqfX5BXAdsFOb3hm4pme5ja1ssvItJFmdZH2S9Zs3b57fqCVJkiRJkpYoE8ySFqV2u1bN4/ZOqqqVVbVy2bJl87VZSZIkSZKkJc0Es6TF5PrW9QXt+YZWvgnYtWe5XVrZZOWSNG+SbJPkv5P8S3u9e5KvtIFHP5rkPoOOUZIkSZIWiglmSYvJWmBVm14FnNVTfkQ6+wC3ta40PgsckGT7JNsDB7QySZpPrwW+1vP6r4B3VdVjgVuAlw0kKkmSJEnqAxPMkoZSktOBLwOPT7IxycuAE4BnJ7kS2L+9BjgbuArYAHwQeDVAVd0MvBW4oD3e0sokaV4k2QV4DvD37XWAZwEfa4v0DkgqSZIkSUvOtoMOQJImUlWHTzJrvwmWLeCoSbazBlgzj6FJUq93A38KPLi9fhhwa1Xd0V5PObgosBpgt912W9goJUmSJGmB2IJZkiRpFpI8F7ihqi6czfoOLipJkiRpKbAFsyRJ0uw8HXh+kkOA+wEPAd4DbJdk29aK2cFFJUmSJC1ptmCWJEmahap6Q1XtUlXLgcOAf6uq3wG+ALyoLdY7IKkkSZIkLTkmmCVJkubX64E/SrKBrk/mkwccjyRJkiQtGLvIkCRJmqOq+iLwxTZ9FbDXIOORJEmSpH6xBbMkSZIkSZIkaVZMMEuSJEnSkElydZJLk1ycZH0r2yHJuiRXtuftW3mSvDfJhiSXJHnaYKOXJEmjxASzJEmSJA2nZ1bVnlW1sr0+BjinqlYA57TXAAcDK9pjNXBi3yOVJEkjywSzJEmSJC0OhwKntulTgRf0lJ9WnfOA7ZI8YgDxSZKkEWSCWZIkSZKGTwGfS3JhktWtbKequrZNXwfs1KZ3Bq7pWXdjK7uHJKuTrE+yfvPmzQsVtyRJGjHbDjoASZIkSdIWnlFVm5I8HFiX5Ou9M6uqktTWbLCqTgJOAli5cuVWrStJkjQZWzBLkiRJ0pCpqk3t+Qbgk8BewPVjXV+05xva4puAXXtW36WVSZIkLTgTzJIkSZI0RJI8MMmDx6aBA4DLgLXAqrbYKuCsNr0WOCKdfYDberrSkCRJWlB2kSFJkiRJw2Un4JNJoLtm+0hVfSbJBcCZSV4GfBt4cVv+bOAQYANwO/DS/ocsSZJGlQlmSZIkSRoiVXUV8JQJym8C9pugvICj+hCaJEnSFubURUaSq5NcmuTiJOtb2Q5J1iW5sj1v38qT5L1JNiS5JMnT5uMAJEmSJEmSJEmDMR99MD+zqvasqpXt9THAOVW1AjinvQY4GFjRHquBE+dh35IkSZIkSZKkAVmIQf4OBU5t06cCL+gpP6065wHbjY2ALEmSJEmSJElafOaaYC7gc0kuTLK6le3UM2LxdXQDVADsDFzTs+7GVnYPSVYnWZ9k/ebNm+cYniRJkiRJkiRpocx1kL9nVNWmJA8H1iX5eu/MqqoktTUbrKqTgJMAVq5cuVXrSpIkSZIkSZL6Z04tmKtqU3u+AfgksBdw/VjXF+35hrb4JmDXntV3aWWSJEmSJEmSpEVo1gnmJA9M8uCxaeAA4DJgLbCqLbYKOKtNrwWOSGcf4LaerjQkSZIkSZI0IEmuTnJpkouTrG9lOyRZl+TK9rx9K0+S9ybZkOSSJE8bbPSSBmkuLZh3As5N8lXgfODTVfUZ4ATg2UmuBPZvrwHOBq4CNgAfBF49h31LkiRJkiRpfj2zqvasqpXt9THAOVW1AjinvQY4GFjRHquBE/seqaShMes+mKvqKuApE5TfBOw3QXkBR812f5IkSZIkSeqrQ4F92/SpwBeB17fy01qu57wk2yV5hHeqS6NpTn0wS5IkSZIkaUko4HNJLkyyupXt1JM0vo7ubnaAnYFretbd2MokjaBZt2CWpEFJcjXwfeBO4I6qWplkB+CjwHLgauDFVXVLkgDvAQ4BbgeOrKqLBhG3JEmSJA2xZ1TVpiQPB9Yl+XrvzKqqJLU1G2yJ6tUAu+222/xFKmmo2IJZ0mJl32CSJEmSNE+qalN7vgH4JLAXcH2SRwC05xva4puAXXtW36WVjd/mSVW1sqpWLlu2bCHDlzRAJpglLRWH0vUJRnt+QU/5adU5D9hu7ARJkuYiya5JvpDkiiSXJ3ltK59wtHVJkqRhleSBSR48Ng0cAFwGrAVWtcVWAWe16bXAEensA9xm/8vS6DLBLGkxmve+wZKsTrI+yfrNmzcvVNySlpY7gNdV1R7APsBRSfZg8jsqJEmShtVOwLlJvgqcD3y6qj4DnAA8O8mVwP7tNcDZwFXABuCDwKv7H7KkYWEfzJIWo3nvG6yqTgJOAli5cuVWrStpNLUfta5t099P8jW6H7AmG21dkiRpKFXVVcBTJii/CdhvgvICjupDaJIWAVswS1p0FqJvMEmaiyTLgacCX2HyOyrGr+OdE5IkSZIWPVswz6Plx3x6ztu4+oTnzEMk0tLV+gO7V2stONY32Fu4u2+wE9iyb7Cjk5wB7I19g0maZ0keBHwc+IOq+l6Su+ZNdUeFd05IkiRJWgpswSxpsbFvMElDI8m96ZLLH66qT7Tiye6okKQZmWIQ0eOSbEpycXsc0rPOG5JsSPKNJAcOLnpJkjRqbMEsaVGxbzBJwyJdU+WTga9V1Tt7Zk12R4UkzdTYIKIXJXkwcGGSdW3eu6rqr3sXbgOMHgY8EXgk8Pkkj6uqO/satSRJGkm2YJYkSZqdpwMvAZ41rjXhZHdUSNKMVNW1VXVRm/4+MDaI6GQOBc6oqp9U1bfo7tzaa+EjlSRJsgWzJEnSrFTVuUAmmb3FHRWSNBvjBhF9Ot3YEkcA6+laOd9Cl3w+r2e1jUydkJYkSZo3tmCWJEmSpCE0fhBR4ETgMcCewLXAO7Zye6uTrE+yfvPmzfMdriRJGlEmmCVJkiRpyEw0iGhVXV9Vd1bVz+kGLx7rBmMTsGvP6ru0snuoqpOqamVVrVy2bNnCHoAkSRoZJpglSZIkaYhMNohokkf0LPZC4LI2vRY4LMl9k+wOrADO71e8kiRptNkHsyRJkiQNl7FBRC9NcnEreyNweJI9gQKuBl4JUFWXJzkTuAK4Aziqqu7sc8ySJGlEmWCWJEmSpCEyxSCiZ0+xzvHA8QsWlCRJ0iTsIkOSJEmSJEmSNCsmmCVJkiRJkiRJs2KCWZIkSZIkSZI0KyaYJUmSJEmSJEmzYoJZkiRJkiRJkjQrJpglSZIkSZIkSbNiglmSJEmSJEmSNCsmmCVJkiRJkiRJs2KCWZIkSZIkSZI0KyaYJUmSJEmSJEmzYoJZkiRJkiRJkjQrJpglSZIkSZIkSbNiglmSJEmSJEmSNCvbDjoAzb/lx3x6ztu4+oTnzEMkkiRJkiRJkpYyWzBLkiRJkiRJkmbFFsySJEmSJEnSEJmPu9NnY1B3tI/a8S41JpglSZIkSdJdTPRIkraGXWRIkiRJkiRJkmal7y2YkxwEvAfYBvj7qjqh3zFIGi3WO5L6zXpHUr9Z70jqN+sdafYGdacILMzdIn1NMCfZBngf8GxgI3BBkrVVdUU/41D/zMcfzHx88YclDvWf9Y6kfrPekdRv1juS+s16R1Kvfrdg3gvYUFVXASQ5AzgUsAKStFCsdyT1m/WOpH6z3pHmwD6nZ8V6R9Jd+p1g3hm4puf1RmDv3gWSrAZWt5c/SPKNedjvjsCNk83MX83DHuYhDhieWIYlDhieWIYljj6bj1geNR+BzMG09Q4sWN2zWAzkO9fHvykNV73SD9Y7w896Z+kbtc/YemfmZv3dWKR/w3P6Wxi1Y/Z4t4r1zsyN2ncSRu+YPd6tsBB1T9/7YJ5OVZ0EnDSf20yyvqpWzuc2F3McMDyxDEscMDyxDEscMFyxLLSFqHsWi1H6nEeVn/Fwst7xO7mU+RkPp2God0btuzFqxwujd8yjdrxby3pnMEbtmD3ewbtXn/e3Cdi15/UurUySFor1jqR+s96R1G/WO5L6zXpH0l36nWC+AFiRZPck9wEOA9b2OQZJo8V6R1K/We9I6jfrHUn9Zr0j6S597SKjqu5IcjTwWWAbYE1VXd6HXQ/L7afDEgcMTyzDEgcMTyzDEgcMVyyzMsB6ZzFZ9J+zpuVn3EfWOzPid3Lp8zPuo0VW74zad2PUjhdG75hH7XgB651FYNSO2eMdsFTVoGOQJEmSJEmSJC1C/e4iQ5IkSZIkSZK0RJhgliRJkiRJkiTNiglmSZIkSZIkSdKs9HWQv0FL8htV9fFBxyH1SrIS+N/AI4EfAZcB66rqloEGJkmSJEmSJE1jpAb5S/Kdqtpt0HH0W5LfBD5VVT8ecBx/NNX8qnpnH2PZBTiMLRO7nwb+tap+3ocYXgr8PvAt4ELgBuB+wOOAp7d4/l9VfWehY2nxDPw9Uf8leUBV3T7oOCRJS4f/W6QtJXlCVX190HEslCT3rqqfjSvbsapuHFRMCyXJvQCq6udJ7gM8Cbi6qm4ebGQCSPLrU82vqk/0K5Z+SfIrwDVVdV17fQTwG8C3geOW6nczycuq6uRxZSdU1TGDimkhJbnfoPN6UxmpFsxA+raj5L1Tza+q1/QrFuC3gfcl+SxwOvDZqrqzj/sf8+Ce6VcCfzeAGEjyD8DOwL8Af8U9E7sHAW9KckxVfWmBQ3kA8PSq+tEkce4JrAAWPME8RO+J+iTJrwJ/DzwI2C3JU4BXVtWrBxuZ5iLJp4BJfzmuquf3MRwJ8Hs5Svzfoskk+T5b1gO3AeuB11XVVf2Pqu8+Byy5xk5Jngl8CLhfkouA1VV1dZv9OeBpg4ptISR5Ad117M+TvAp4I/AD4PFJ/m9VfWqQ8QmA500xr4All2Cm+07uD5Dk14AT6Bqz7QmcBLxoYJEtrN9I8uOq+jBAkvfR5TGWqsuSXA/8R3ucW1W3DTimu9iCeeH29VO61p9nAt9lXHK7qk7tRxw98TwEeCFdC9U9gbOA06vq3/sZR088/11VTx3Qvp9UVZdNMf8+wG5VtaEPsWwDvKaq3rXQ+5omjqF5T9QfSb5Cd6KxduxvMcllVfWkwUamuUjyf6aaP6g6X6PN7+Xo8H+LJpPkrcBG4CN010WHAY8BLgL+b1XtO7jo5s8UjYwCrKqqh/Qznn5IcgFwZFVdnuRFwF8CL6mq8wZ5zbdQkvw3cDBwf+CrwK9U1TeSPAr4eFWtHGiAukuSbQbUsK7vkny1qp7Spt8HbK6q49rri6tqzwGGt2CS3B9YC6yhaxh3a1W9drBRLawku9Hddf504BC6Y95zoEE1S64Fc5JLmbiVTICd+hjKI4DfBH4LuAP4KPCxqrq1jzHcpaq+B5wKnJrkYXQn/+9NskNV7TqIkAawz27HUyRS2/yfAn1JpFbVnUl+GxhognmY3hP1T1Vdk9zjt6+ROAFbysYSde3WwE9X1U8GHJLk93LE+L9Fk3j+WPKjOaklPV6f5I0Di2r+vRR4HTBRPXd4n2Ppl/tU1eUAVfWxJF8DPpHk9Qzwmm8h9XRD8J2q+kYr+/ZY1xkaGt9K8hm6XMy/1dJuXblNkm2r6g5gP2B1z7ylmPfboefly4F/Bv4T+POW41qqXYLsQpdY/t/AU4DLgXMHGlSPJfdFA5476AAAquom4APAB3r6tr0iyeur6kODiivJ9sCv0yW+dwA+NqhYBmWaHyGqqp7c55DOTfK3dP/4fjhWWFUX9SuAIXxPtPCuabcyV5J7A68FvjbgmDR/nge8K8mX6OqWz7QTTmmQ/F4uff5v0WRuT/Ji7r72eBEw1o/kUkr6XABcVlX/NX5GkuP6H05f/CzJL4wlXVtL5v3out57zGBDWxhJ7tXGp/m9nrJtgPsMLipN4Al0+aGjgJOT/AtwRlUNTUJuHp0O/HuSG+nGUvoPgCSPpeuOaKm5kO5/R3qen9MeBTx6cKEtqO/Q/Z/5i6p61aCDGW9kushovyYePtY3Sx/3+zS6X6ufTfdH8I6quqLPMTyIrnuMw4Gn0t1CcAbwxX7+ijcuiflY7m4R29ckZrt9aVJV9e1+xDEmyRcmDqOe1ccYhuo90cJLsiPwHrq+ukLXR95r249jWgJacudguh8UnwGsq6qXDzYqjTq/l0ub/1s0mSSPpvtu/C+664HzgD8ENgG/vFQSPq1V3Y9HaZDLJPvT3Y7/1XHl2wFHVdXxAwlsgbTB1C4dP9BWkuXAM6rqHwcSmKbUGtq9B/idqtpm0PEshCT70N1J/7mq+mErexzwwKr674EGp3nRxrZ4BvBrdH36Xwn8+/iBDgdlySWYW1/DR9ENWLYWWAccTXer0ler6tA+xfEWul9PvkaXzB1YK532K9ZnWhyfHT+6bx/jMIkpDYkky6pq86Dj0MJqybyD6G7Z/bWq2nHAIUl+L5cw/7dIk0vy9Kr6z0HH0U+jdsyjdryLQRsH4rfozjvWAx+tqo8PNqr+6udYZIPQ7pxaTk8PDVV12sACWmCtAekz6LrJ+F2Aqpoy19YvSzHBfBZwC/Blur5nHk7XguK1VXVxH+P4OfAtYOzX67E3uu9dDiT5xaoa2tsT+926fJJRrOHuz6avg28k+aMJim8DLuzXd3bY3hMtvCT/A1xNd5v6xwfVP7wWRpKxFqL7Al+kG3D2c3ZHoEHye7n0+b9Fk2mt6E4EdqqqJyV5Ml2/zG8bcGjzqnWT8GK6xk6fqarLkjwXeCNw/6U24B2M3jGP2vEuZkmuBv6b7nxj7Vir3lGT5JoBjbu14JJ8iK4rnou5e8yHqqrXDCyoBZRkPXBf4L/oukH5j2FqqLkUE8yXVtUvteltgGuB3cbfwtKHOIamtW6Si6rqaW3641X1G/3a97g4hqJ1+bBJ8hFgJfCpVvRc4BK6X+H+qarePqDQtMQl2Yuuf/gXAFfQ9UnmbX1LQKtXzgT+1QHVNCz8Xo4G/7doIkn+HfgT4O/GEnBJLquqJw02svmV5BRgV+B8YG/gu3Tn+cdU1T8PLrKFM2rHPGrHu5gleUhVfW9c2R9U1bsHFNJALOUWzG1Q0T2W+ACOdxn2O8WWYoL5rmTqRK8HbRB9QSf5754Tubum+21YWpdPENfDgfuNva6q7/R5/18CDqmqH7TXDwI+TXcbz4VVtUc/42kxDPQ9UX+1PjPfyRLuk2yUtB9XP19Vzxx0LNIYv5ejx/8t6pXkgqr6lXHXJRdX1Z4DDm1eJbkMeHJV/TzJ/YDrgMcs5X7IR+2YR+14l5qlmmyd5K5o6PItb6qqHfoZT78k+SfgNVV17aBj6YckDwWOpeuDGeDfgbdU1VAM5Ljt9IssOk9JMvYrVYD7t9d9vdV/uta6QD8HG6xJpvvt0T2ty/+eAbUuH5Pk+cA7gEcCNwCPousz+4l9DuXhQG9Lrp/R3T74oyR9beE1RO+JFliro15I18rsMcAngb0GGpTmRVXdmeTnSR46LCcbkt/L0eD/Fk3hxiSPoV2LJHkR3bXAUvPTqvo5QFX9OMlVI5B4HLVjHrXjXWoy6AAWyIOnmPeevkXRfzsCVyQ5n56cSlU9f3AhLag1wGV03fQAvAT4B+DXBxZRjyWXYB6iFhIf4u7Wui+n65MpwAsG0Fr3KT1J9vuPS8D3s3/duwYXbBeaGweVXG7eCuxD16LqqUmeSeskvc8+DHyltfAGeB7wkSQPpLu1tJ+G5T3Rwvsq8M90v3h+ecCxaP79ALg0yTrgrv7mlmp/ZFo0/F4uff5v0WSOAk4CnpBkE91YNb8z2JAWxBOSXNKmAzymve77ODx9NGrHPGrHu9QsrVv4m6r680HHMCDHDTqAPnvMuC5v/zzJxYMKZrwll2AeIkPTWneIku5D0bq8x8+q6qYk90pyr6r6QpJ39zkGquqtST4D/GorelVVrW/T/T7xHor3RH3x6FHpq2pEfaI94J6DzEqD5Pdy6fN/iyZUVVcB+7cGFPeiGwj9MGBoBieaJ7846AAGYNSOedSOd9GZZgD7+/c5nL5I8t6p5i/VH/Or6t/HplvXXDct8fOQHyV5RlWdC5Dk6cCPBhzTXUwwL5xha607cEOU6B5za+vv+EvAh5PcQE+Lqn6qqguSfJvW73GS3QbU7/HQvCdacDsm+VO67k96+9t+1uBC0lwlORTYpare116fDyyjO8l+/SBj0+jyezlS/N+iexjXbeBZwOfb69fRDWrdz24DF1w/B3IfFqN2zKN2vItRVU3VXcRSdWHP9J/T9dO7ZCXZBzgBuJnuLuwP0XWXca8kR1TVZwYZ3wJ6FXBa64sZul4TVg0wnntYcoP8DYskd3J3Ym7sl7LbGVxrXY3TWlD8iK4Vxe8ADwU+3O8+tCbo93g34OtV1fd+j4flPdHCS/I54KPAH9P9o1oFbK4qkz2LWJL/BA6rqmva64uBZwEPAv6hqvYbYHgaUX4vR4f/WzTesA7yvVCmaTm5JK8BR+2YR+14tfj0Dqa6VCVZT9cN7UPpul86uKrOS/IE4PQROP6HAFTV95L8QVW9e8AhASaYNYKSZLrbJmayzDzG81W6C+179HtcVS/rx/5bDEP1nmjhJbmwqn45ySVjfcWNjfA+6Ng0e+M/wyR/W1VHt+nzqmqfwUWnUeX3cnT4v0XjJbm0p9vAbRjwIN+StNQluaiqnjboOBZSkouras82/bWq+sWeeUs+wd4ryXeqardBxwFdK0Vp1Hwhye8nuccfYZL7JHlWklPp720GP2sthO/q9xhY2cf9w/C9J1p4Y934XJvkOUmeCuwwyIA0L7bvfTGWxGuW9TkWaYzfy9Hh/xaNd49uA4GR7zZQkjRnP++ZHt8H8ag1ihua8Uzsg1mj6CDg94DTk+wO3ErXhcm9gM8B766q/+5jPMPQ7/GwvSdaeG9rfTe9Dvgb4CHAHw42JM2DryR5RVV9sLcwySuB8wcUk+T3cnT4v0XjDdsg35K05IzruuUB4+rdpVjXPqXnf8n9xx3v/SZfbUkamoS6XWRopCW5N11n8D+qqlsHFMNQ9Xs8DO+JFk6S+9H1i/lY4FLg5Kq6Y7BRab4keTjwz8BPgIta8S8D9wVeUFXXDyg0jTC/l0uf/1skSZIWxjR9v9+/qoai8bAJZmlA7PdYg5Dko3S3q/4HcDDw7ap67WCj0nxL8ixgbKDQy6vq3wYZjwR+L5cy/7dIkiSNNhPM0oAk+SLwceCsqvpOT/l9gGfQ9Xn8hao6ZSABakkaN9jOtsD5S30QCEnSwvJ/iyRJ0mgbimbU0oiy32MNQu9gO3ckQzMmgCRp8fJ/iyRJ0gizBbNGTpLHAjtV1X+OK386cF1VfXMAMdnvsfoiyZ3cPYhk6H7UuJ2lOwCEJGmB+b9FkiRptNmCWaPo3cAbJij/Xpv3vH4GA1BVPwOu7fd+x0zTabwXhktIVW0z6BgkSUuL/1skSZJGmwlmjaKdqurS8YVVdWmS5QOIZ+Cq6sGDjkGSJEmSJEmLz70GHYA0ANtNMe/+/QpCkiRJkiRJWuxMMGsUrU/yivGFSV4OXDiAeMbH8Ywk7xt0HJIkSZIkSdJ0HORPIyfJTsAngZ9yd0J5JXAf4IVVdd0AYnoq8NvAbwLfAj5RVX/T7zgkSZIkSZKkrWGCWSMryTOBJ7WXl1fVv/V5/48DDm+PG4GPAn9cVY/qZxySJEmSJEnSbJlglgYkyc+B/wBeVlUbWtlVVfXowUYmSZIkSZIkzYx9MEuD8+vAtcAXknwwyX5ABhyTJEmSJEmSNGO2YJYGLMkDgUPpusp4FnAa8Mmq+txAA5MkSZIkSZKmYYJZGiJJtqcb6O+3qmq/QccjSZIkSZIkTcUEsyRJkiRJkiRpVuyDWZIkSZIkSZI0KyaYJUmSJEmSJEmzYoJZkiRJkiRJkjQrJpglSZIkSZIkSbNiglmSJEmSJEmSNCsmmCVJkiRJkiRJs2KCWZIkSZIkSZI0KyaYJUmSJEmSJEmzYoJZkiRJkiRJkjQrJpglSZIkSZIkSbNiglmSJEmSJEmSNCsmmCVJkiRJkiRJs2KCWZIkSZIkSZI0KyaYJUmSJEmSJEmzYoJZkiRJkiRJkjQrJpglSZIkSZIkSbNiglmSJEmSJEmSNCsmmCVJkiRJkiRJs2KCWZIkSZIkSZI0KyaYJUmSJEmSJEmzYoJZkiRJkiRJkjQrJpglSZIkSZIkSbNiglmSJEmSJEmSNCsmmCVJkiRJkiRJs2KCeYgl+UCS/zdP29otyQ+SbNNefzHJy+dj2217/5pk1Xxtbyv2+7YkNya5bh63eXmSfdv0cUn+sU3f4z2cZN0fJHn0fMUizTfrlRntd97rlUFLslOSLyX5fpJ3JHljkr8fdFxa2qxvZrTfgdc3SfZNsnGW6951niQtNOuUGe13QeuUrbnWSVJJHjvJvCOTnDuPcc3r5zfFfuY1bi1+1ksz2u/Az3V6YrnrPU3yO0k+N8Wy/zvJN/oX3eJngnlAklyd5EftYv/WJP+V5FVJ7vpMqupVVfXWGW5r/6mWqarvVNWDqurOeYh9i4uJqjq4qk6d67a3Mo7dgNcBe1TVL0wwf8ITgN73K8kpSd7WO7+qnlhVXxy/3vj3cKIKv82/ak4HJs2S9crczaBemVUiZqK6ZoJlkuQ1SS5L8sMkG5P8U5Jf2tr9TWA1cCPwkKp6XVX9RVUt+IWYli7rm7lbqPpmviU5NMnFSb7XLhD/Lcnug45LS4t1ytzNsE6pJO8fV35ukiNnsg+vdTRKrJfmbrp6qS3zkCTvTvKdlmD/Znu940LGVlUfrqoDeuK4x49iVfUfVfX4hdh3kpOSfCPJz2da/y4GJpgH63lV9WDgUcAJwOuBk+d7J0m2ne9tDondgJuq6oZBByINEeuVuRlkvfIe4LXAa4AdgMcB/ww8Zx62/SjgiqqqediWNMb6Zm6G/jymXWidRndx+FBgd+B9wJwvfqUJWKfMzUzqlB8CL0myvD8hLbwl/HlqOFgvzc2U9VKS+wDnAE8EDgIeAvwv4CZgr34FOQBfBV4NXDToQOZVVfkYwAO4Gth/XNlewM+BJ7XXpwBva9M7Av8C3ArcDPwH3Q8EH2rr/Aj4AfCnwHKggJcB3wG+1FO2bdveF4G/BM4HvgecBezQ5u0LbJwoXro/+p8CP2v7+2rP9l7epu8FvBn4NnAD3YXJQ9u8sThWtdhuBN40xfv00Lb+5ra9N7ft79+O+ectjlMmWPdI4NzJ3nu6Fn0/a8fzA+BT4z8b4DjgH8fFvi1wPN3F1Y/bun/blingsW36vsBft+O8HvgAcP+pPs9Bfy99LO4H1iv9qFe2OI6eeb/YYr4VuBx4fiufsK4Zt+4Kujplr62Nu807EjiXrs65BfgWcHDPZ967//3pqdvaMke0bd4E/D8m+C758NH7mOg7gvXNRO/TQtU3zwH+ux37NcBxPfOmjBG4f/tsbgGuAP5kiv28CLh4iuMbX5c8n67+u7W9p7847jN4Q9vnLcA/APfrmf9c4OK27n8BTx7099xH/x5Yp/StTgH+BviHnvJzgSN7Xv8e8LX2d/pZ4FE983qvdR4GfKq9XxcAb6Pn2qst+yrgyvY5vQ9Im3ck8J/A3wK3AV8H9utZ95HA2vbZbgBe0TPvOOBjwD+2fb+8vd9vbdv8PvA5YMeedaaqmyY8f+s5xrVtP+e3fWxxfeljaT6wXupHvfRyulzJg6bY/lR/o6fQ1S2fpvvb/wrwmJ75z6arX26jq2/+vec9OHLs77m9/0X3I9wPgN8a/x7PJY4pju0e9e9if9iCeYhU1fl0//T/9wSzX9fmLQN2At7YrVIvofujf151t1O8vWed/0P3R3DgJLs8gu4E4hHAHcB7ZxDjZ4C/AD7a9veUCRY7sj2eCTwaeBDdH3OvZwCPB/YD/izJL06yy7+hq7Ae3Y7nCOClVfV54GDguy2OI6eLfYJjOQn4MPD2to3nbcW6b6L7h3F0W/foCRY7ga4F4p7AY4GdgT9r8yb8PLf2GKTpWK9MaN7rlST3prvI+hzwcOD3gQ8nefwM65r96E5gzp9iNxPG3TN/b+AbdCe3bwdOTpJ2HL37//y42PcA3g/8Dt3n9lC6+kraKtY3E1qo85gftm1tR5ds/r9JXjDDGI8FHtMeB9JdQE7mIuAJSd6V5JlJHjTZgkkeB5wO/AHd53w28KnWOmnM77R9PobuHOnNbd2nAmuAV9IldP4OWJvkvlPEpiXOOmVC81GnHA/8RpItbv1Ocijde/nrdO/tf9D9XU/kfXR10S/Q1SMT1SXPBX4FeDLwYu753u8NfJPuvOVY4BNJdmjzzqD7fB9J90PXXyR5Vs+6h9IlmbejO8cB+G2686KHA/cB/rgd06R101Tnbz3H+GO678TvtYdGmPXShOZSL+0PfKaqfjDRhmfwNwpwGPDnwPZ0P0gd39bdEfgE3bnGjnT1zdMn2k9V/VqbfEqL9aPzFccoMcE8fL5Ld2v0eD+jq1QeVVU/q64/mOkSksdV1Q+r6keTzP9QVV1WVT+ka7H24kwxgN1W+B3gnVV1Vaso3gAcNu62jz+vqh9V1Vfpbg/YotJrsRwGvKGqvl9VVwPvAF4yDzEuqCSha7X4h1V1c1V9n66SP6wtMpvPU5ot65VmAeuVfehOzE6oqp9W1b/RtWA4fIbrPwy4drKZM4z721X1wer6bTuV7rPdaQb7fhFdq+pzq+qndD+EWR9ptqxvmoU8j6mqL1bVpVX186q6hC558n/GLTZZjC8Gjm/nJ9cwxcVqdX2t7kv3o9OZwI2tT/mJEs2/BXy6qtZV1c/o7qi4P/CrPcv8bVVdU1U30114jdWRq4G/q6qvVNWd1fUR+RO6ulWjzTqlma86paquo7uz8i0TzH4V8JdV9bWquoPu+mXPJI+aIJbfAI6tqtur6gq6c4/xTqiqW6vqO8AX6BrejLkBeHf7/D5K9yP5c5LsSpcEen1V/biqLgb+ni5pNebLVfXPrQ4c+zz/oar+p70+s2dfU9VNk56/9Rzjn7XvzWWTHKNGj/VSMw/10pTXQMzsGuuTVXV+q7M+zN1/+4cAl1fVx9rf/ruB2Q40OJc4RoYJ5uGzM93tFOP9f3S/gnwuyVVJjpnBtq7ZivnfBu5N98vOXD2yba9329tyz0RH7x/27XR/rOPt2GIav62Ztqy7o60/3r3pKv+FtAx4AHBhGxDgVuAzrRxm93lKs2W9cre51itTxXdNVf18ltu9ie6EdDIzifuu46+q29vkpK0NezySns+trXvTDNaTJmJ9c7eFqm9IsneSLyTZnOQ2uqTQ+GOfLMZ7/M2Pi28LVXVeVb24qpbRtdj6NeBNEyx6j/et1YfXcM/jHb/fR7bpRwGvGztnaudNu/bM1+iyTrnbfNYpfwUcmGR8wuhRwHt6/g5vBjLBPpbRHUPvezbR+zvVcW0al3wbqxMeCYw10OmdN1ldMt2+pqqbpjp/m+gYp6wvNTKsl+4213ppumugmVxjzeh8p9U3073fCxHHyDDBPESS/ArdF/Tc8fPar0Gvq6pH0/Uh9UdJ9hubPckmp/u1bNee6d3okq430t3q9ICeuLbh7sToTLb7XbqTk95t30HXt87WuLHFNH5bm2a4/neA3VprYgCSPIDuloaxCnAurfSmWvdGuv6GnlhV27XHQ6vqQTDt5ynNG+uVLcy1XpnMd4Fde0eVHrfd6Y7vHGCXJCsnmb9QcUPXamCXsRdJ7k/XmkDaKtY3W1jIv9uP0PULumtVPZSuNWKmXuUu17LlezcjVXUB3e2mT5pg9j3et3b+tSv3PN7x+/1um76GrlX1dj2PB1TVZLfmawRYp2xh3uqUqrqJrjXfW8fNugZ45bi/xftX1X+NW24z3THs0lO2K1tn597rNO6uE74L7JDkwePm9R7n1lzDTVU3TXX+NnaMs6ovtTRZL21hrvXS5+l+7HrgFHFOdY01lXuc7/T87c/GXOIYGSaYh0CShyR5Ll1fU/9YVZdOsMxzkzy2/VHcRjcY1NivJ9fT9XeztX43yR4t6foW4GPV3Vr9P8D9kjyn9TXzZroB68ZcDywf98fV63TgD5Ps3m6hHOv/546tCa7FciZwfJIHt1uz/ohuQIeZ+Apdn1nHJLlfq7ROANZzd4J5tu/dlOu2X7Y+CLwrycMBkuyc5MA2PdXnKc2Z9crE5qFeAaDVKXc96AbfuB340yT3TrIv8Dy693/s+CZ9P6vqSrp+kE9Psm+6fgHvl+SwJMfMV9yT+BjwvCS/mq6v1OOYeaJKsr6ZxELVN+09fDBdC78fJ9mLru/RmToTeEOS7ZPsQteP4GT7fkaSV/ScyzyB7qL5vEm2+5wk+7X3/XV03Vz0JqaOSrJLun5W3wSM9XH4QeBV6VpmJ8kD2+f3YDRyrFMmtgDnAu+k6yait1/VD9DVD08ESPLQJL85SSyfAI5L8oBWNxwxfrlpPBx4TTtv+s0Wx9nVdd3zX8BftjrvyXQDoc32OKeqm77CJOdvExzjHkzdZ72WMOulic1DvfQhuh+2Pp7kCUnuleRhSd6Y5BCm+BudwbY/DTwxya+n6/rjNXR9xk9mqs9oLnFsYexaj+6a696trlv0+dlFfwCL3KeSfJ/uD+pNdP/kXzrJsivoft35AfBl4P1V9YU27y+BN6e7lemPt2L/H6Ib7fI64H50f3BU1W3Aq+n6utpE9+vYxp71/qk935Tkogm2u6Zt+0vAt+iSvJNevEzj99v+r6L7lfAjbfvTqqqf0A18sy9d/FfR3drw4p7bsU4G9mjv3T9vZWzvAV6U5JYkE/Vf+Hq6W2TOS/I9us9vrBP4qT5PaS6sV6Y363ql2ZnuDoXex650JxkH0/2S/37giKr6eltnJnXNa+gG13gf3ejE3wReSDegxHzEPaGqurxt+wy6X/p/QNcv4k/mum0tedY301uI+uYxdMf3lvb+/xndxd1M/TndD+3fohus5kNTLHsrXUL50iQ/oOvu65N0A4neQ1V9A/hdusF+bqSrE59XXd/uYz7S9nkVXR33trbueuAVdHXgLXTnT0duxTFpabBOmd68nQtU1ffo/pZ36Cn7JF33GWe065fL6M5tJnI03cBe19Ed3+ls3bnDV+g+xxvp+mR/UWtZDV2/psvpWg1+kq6v589PtJHpTFU3tfppqvO3o+luc7+O7rvxD7OJQYua9dL05pqz2R/4OrAO+B5dw50dga/M4G90qm3fCPwmXSPDm+g+n/+cYpXjgFPbZ/TicduadRyT+BzdOd2vAie16V+bco1FIOW4YpIkqWmtGG4FVlTVtwYcjqQlIsnVwMtnmySSNNyS/BXwC1VlK19JGkG2YJYkacQleV67/fOBdKOrXwpcPdioJEnSsGq3sz+5dWuzF103Fp8cdFySpMEwwSxJkg7l7oF1VgCHlbc4SZKkyT2Yro/iH9L1p/4O4KyBRiRJGhi7yJAkSZIkSZIkzYotmCVJkiRJkiRJs7LtoAOYyo477ljLly8fdBiS5uDCCy+8saqWDTqOrWHdIy1u1juS+s16R1K/We9IGoTJ6p6hTjAvX76c9evXDzoMSXOQ5NuDjmFrWfdIi5v1jqR+s96R1G/WO5IGYbK6xy4yJEmSJEmSJEmzYoJZkiRJkiRJkjQrJpglSZIkSZIkSbNiglmSJEmSJEmSNCsmmCVJkiRJkiRJs7LtoAPot+XHfHrQIUzp6hOeM+gQJG2lha5XrBckbS3PdyTN1Pj6wr9PSYMwm3MX6ytpeNiCWZIkSZIkSZI0KyaYJUmSJEmSJEmzYoJZkiRJkiRJkjQrJpglSdLIS7Jrki8kuSLJ5Ule28p3SLIuyZXteftWniTvTbIhySVJntazrVVt+SuTrBrUMUmSJElSP5hgliRJgjuA11XVHsA+wFFJ9gCOAc6pqhXAOe01wMHAivZYDZwIXUIaOBbYG9gLOHYsKS1JkiRJS5EJZkmSNPKq6tqquqhNfx/4GrAzcChwalvsVOAFbfpQ4LTqnAdsl+QRwIHAuqq6uapuAdYBB/XvSCRJkiSpv0wwS5Ik9UiyHHgq8BVgp6q6ts26DtipTe8MXNOz2sZWNln5RPtZnWR9kvWbN2+evwOQJEmSpD4ywSxp6CRZk+SGJJf1lB2XZFOSi9vjkJ55b2j9oH4jyYE95Qe1sg1Jjhm/H0kaL8mDgI8Df1BV3+udV1UF1Hztq6pOqqqVVbVy2bJl87VZSZIkSeorE8yShtEpTHxL+buqas/2OBug9ZF6GPDEts77k2yTZBvgfXT9pO4BHN6WlaQJJbk3XXL5w1X1iVZ8fev6gvZ8QyvfBOzas/ourWyyckmSJElakqZNMDuquqR+q6ovATfPcPFDgTOq6idV9S1gA93AWnsBG6rqqqr6KXBGW1aStpAkwMnA16rqnT2z1gJj5yyrgLN6yo9o5z37ALe1rjQ+CxyQZPt2bnRAK5MkSZKkJWkmLZgdVV3SsDi6/XC1pqf+mHM/qGBfqJJ4OvAS4FnjuuI5AXh2kiuB/dtrgLOBq+h+1Pog8GqAqroZeCtwQXu8pZVJkiRJ0pK07XQLtNY417bp7yfpHVV937bYqcAXgdfTM6o6cF6SsVHV96WNqg6QZGxU9dPn8XgkLV0n0iVtqj2/A/i9+dp4VZ0EnASwcuXKeetjVdLiUFXnAplk9n4TLF/AUZNsaw2wZv6ikyRJkqThNW2CuVe/RlWXpPGq6vqx6SQfBP6lvZyqv1P7QZUkSZIkSVpAMx7kr1+jqnubuqSJjA2y1bwQuKxNrwUOS3LfJLvTdc9zPt2t6SuS7J7kPnQDAa7tZ8ySJEmSJElL3YxaME81qnpVXbsVo6rvO678i+P35W3qkpKcTldf7JhkI13/7fsm2ZPux6yrgVcCVNXlSc4ErqDrM/6oqrqzbedousG1tgHWVNXl/T0SSZIkSZKkpW3aBPMMRlU/gS1HVT86yRl0A/rd1pLQnwX+omdgrgOAN8zPYUhaSqrq8AmKT55i+eOB4ycoP5tuIC5JkiRJkiQtgJl0keGo6pIkSZLUJ0nul+T8JF9NcnmSP2/luyf5SpINST7augGjdRX20Vb+lTZ2jiRJUl9M24LZUdUlSZIkqa9+Ajyrqn7Quis8N8m/An8EvKuqzkjyAeBlwInt+ZaqemySw4C/An5rUMFLkqTRMuNB/iRJkiRJC686P2gv790eBTwL+FgrPxV4QZs+tL2mzd+vdXUoSZK04EwwS5IkSdKQSbJNkovpBlNfB3wTuLWq7miLbAR2btM7A9cAtPm3AQ/ra8CSJGlkmWCWJEmSpCFTVXdW1Z7ALsBewBPmus0kq5OsT7J+8+bNc92cJEkSYIJZkiRJkoZWVd0KfAH4X8B2ScbG0dkF2NSmNwG7ArT5DwVummBbJ1XVyqpauWzZsoUOXZIkjQgTzJIkSZI0RJIsS7Jdm74/8Gzga3SJ5he1xVYBZ7Xpte01bf6/tcHXJUmSFty20y8iSZIkSeqjRwCnJtmGrlHQmVX1L0muAM5I8jbgv4GT2/InAx9KsgG4GThsEEFLkqTRZIJZkiRJkoZIVV0CPHWC8qvo+mMeX/5j4Df7EJokSdIW7CJDkiRJkiRJkjQrJpglSZIkSZIkSbNiglmSJEmSJGkEJFmT5IYkl/WUHZdkU5KL2+OQnnlvSLIhyTeSHNhTflAr25DkmH4fh6ThYoJZkiRJkiRpNJwCHDRB+buqas/2OBsgyR50g4Y+sa3z/iTbtAFI3wccDOwBHN6WlTSiHORPkiRJkiRpBFTVl5Isn+HihwJnVNVPgG8l2cDdA41uaAOPkuSMtuwV8x2vpMXBFsyShs4kt239f0m+nuSSJJ9Msl0rX57kRz23c32gZ51fTnJpu23rvUkygMORJEmSpGF3dLvWWpNk+1a2M3BNzzIbW9lk5VtIsjrJ+iTrN2/evBBxSxoCJpglDaNT2PK2rXXAk6rqycD/AG/omffNntu5XtVTfiLwCmBFe0x0K5gkSZIkjbITgccAewLXAu+Yrw1X1UlVtbKqVi5btmy+NitpyJhgljR0qupLwM3jyj5XVXe0l+cBu0y1jSSPAB5SVedVVQGnAS9YgHAlSZIkadGqquur6s6q+jnwQe7uBmMTsGvPoru0ssnKJY0oE8ySFqPfA/615/XuSf47yb8n+d+tbGe6W7XGTHrbFnjrliRJkqTR1BrnjHkhMNZV4VrgsCT3TbI73V2h5wMXACuS7J7kPnQDAa7tZ8yShouD/ElaVJK8CbgD+HAruhbYrapuSvLLwD8neeLWbreqTgJOAli5cmXNV7ySJEmSNCySnA7sC+yYZCNwLLBvkj2BAq4GXglQVZcnOZNu8L47gKOq6s62naOBzwLbAGuq6vL+HomkYWKCWdKikeRI4LnAfq3bC9qIxj9p0xcm+SbwOLpbtHq70fC2LUmSJEkjraoOn6D45CmWPx44foLys4Gz5zE0SYuYXWRIWhSSHAT8KfD8qrq9p3xZkm3a9KPpbtu6qqquBb6XZJ8kAY4AzhpA6JIkSZIkSUuWLZglDZ1Jbtt6A3BfYF2XL+a8qnoV8GvAW5L8DPg58KqqGhsg8NXAKcD96fps7u23WZIkSZIkSXNkglnS0Nma27aq6uPAxyeZtx540jyGJmkJS7KGrhueG6rqSa3sOOAVwNjon29st4SS5A3Ay4A7gddU1Wdb+UHAe+j6JPz7qjqhn8chSZIkSf1kFxmSJEmdU4CDJih/V1Xt2R5jyeU96EZMf2Jb5/1Jtmld9rwPOBjYAzi8LStJkiRJS5ItmCVJkoCq+lKS5TNc/FDgjDbQ6LeSbAD2avM2VNVVAEnOaMteMd/xSpIkSdIwsAWzJEnS1I5OckmSNUm2b2U7A9f0LLOxlU1WLkmSJElLkglmSZKkyZ0IPAbYE7gWeMd8bTjJ6iTrk6zfvHnz9CtIkiRJ0hCaNsHcWuvckOSynrLjkmxKcnF7HNIz7w1JNiT5RpIDe8oPamUbkhwz/4ciSZI0v6rq+qq6s6p+DnyQu7vB2ATs2rPoLq1ssvKJtn1SVa2sqpXLli2b/+AlSZIkqQ9m0oL5FBzwRpIkjaAkj+h5+UJg7Af3tcBhSe6bZHdgBXA+cAGwIsnuSe5Dd160tp8xS5IkSVI/TTvInwPeSJKkUZDkdGBfYMckG4FjgX2T7AkUcDXwSoCqujzJmXTnMncAR1XVnW07RwOfBbYB1lTV5f09EkmSJEnqn2kTzFM4OskRwHrgdVV1C90gNuf1LNM7sM34AW/2nsO+JUmS5lVVHT5B8clTLH88cPwE5WcDZ89jaJIkSZI0tGY7yJ8D3kiSJEmSJEnSiJtVgtkBbyRJkiRJkiRJs0owO+CNJEmSJEmSJGnaPpgd8EaSJEmSJEmSNJFpE8wOeCNJkiRJkiRJmshsB/mTJEmSJEmSJI04E8yShlKSNUluSHJZT9kOSdYlubI9b9/Kk+S9STYkuSTJ03rWWdWWvzLJqkEciyRJkiRJ0lJlglnSsDoFOGhc2THAOVW1AjinvQY4mG5Q0RXAauBE6BLSdP3G7w3sBRw7lpSWJEmSJEnS3JlgljSUqupLwM3jig8FTm3TpwIv6Ck/rTrnAdsleQRwILCuqm6uqluAdWyZtJYkSZIkSdIsmWCWtJjsVFXXtunrgJ3a9M7ANT3LbWxlk5VvIcnqJOuTrN+8efP8Ri1JkiRJkrREmWCWtChVVQE1j9s7qapWVtXKZcuWzddmJUmSJEmSljQTzJIWk+tb1xe05xta+SZg157ldmllk5VLkiRJkiRpHphglrSYrAVWtelVwFk95Ueksw9wW+tK47PAAUm2b4P7HdDKJEmSJEmSNA9MMEsaSklOB74MPD7JxiQvA04Anp3kSmD/9hrgbOAqYAPwQeDVAFV1M/BW4IL2eEsrkyRJGlpJdk3yhSRXJLk8yWtb+Q5J1iW5sj1v38qT5L1JNiS5JMnTBnsEkiRplGw76AAkaSJVdfgks/abYNkCjppkO2uANfMYmiRJ0kK7A3hdVV2U5MHAhUnWAUcC51TVCUmOAY4BXg8cDKxoj72BE9uzJEnSgrMFsyRJkiQNkaq6tqouatPfB74G7AwcCpzaFjsVeEGbPhQ4rTrnAduNjVshSZK00EwwS5IkSdKQSrIceCrwFWCnNs4EwHXATm16Z+CantU2trLx21qdZH2S9Zs3b164oCVJ0kixiwxJkiRJGkJJHgR8HPiDqvpekrvmVVUlqa3ZXlWdBJwEsHLlyhmvu/yYT9/j9dUnPGdrditJkpY4WzBLkiRJ0pBJcm+65PKHq+oTrfj6sa4v2vMNrXwTsGvP6ru0MkmSpAVnglmSJEmShki6psonA1+rqnf2zFoLrGrTq4CzesqPSGcf4LaerjQk6S5J1iS5IcllPWU7JFmX5Mr2vH0rT5L3JtmQ5JIkT+tZZ1Vb/sokqybal6TRYYJZkiRJkobL04GXAM9KcnF7HAKcADw7yZXA/u01wNnAVcAG4IPAqwcQs6TF4RTgoHFlxwDnVNUK4Jz2GuBgYEV7rAZOhC4hDRwL7A3sBRw7lpSWNJrsg1mSJEmShkhVnQtkktn7TbB8AUctaFBTGN9HM9hPszSsqupLbfDQXocC+7bpU4EvAq9v5ae1Oua8JNu17nn2BdZV1c0ASdbRJa1PX+j4JQ0nWzBLkiRJkiSNrp16utW5DtipTe8MXNOz3MZWNlm5pBFlglmSJEmSJEljd0TUfG0vyeok65Os37x583xtVtKQMcEsSZIkSZI0uq5vXV/Qnm9o5ZuAXXuW26WVTVa+hao6qapWVtXKZcuWzXvgkoaDCWZJkiRJkqTRtRZY1aZXAWf1lB+Rzj7Aba0rjc8CByTZvg3ud0ArkzSiHORPkiRJkiRpBCQ5nW6Qvh2TbASOBU4AzkzyMuDbwIvb4mcDhwAbgNuBlwJU1c1J3gpc0JZ7y9iAf5JGkwlmSZIkIMka4LnADVX1pFa2A/BRYDlwNfDiqrolSYD30F103Q4cWVUXtXVWAW9um31bVZ3az+OQJEmaTFUdPsms/SZYtoCjJtnOGmDNPIYmaRGziwxJkqTOKcBB48qOAc6pqhXAOe01wMHAivZYDZwIdyWkjwX2BvYCjm23jkqSJEnSkmSCWdKikeTxSS7ueXwvyR8kOS7Jpp7yQ3rWeUOSDUm+keTAQcYvabhV1ZeA8bd3HgqMtUA+FXhBT/lp1TkP2K4NinMgsK6qbq6qW4B1bJm0liRJkqQlwy4yJC0aVfUNYE+AJNvQjVT8Sbq+wN5VVX/du3ySPYDDgCcCjwQ+n+RxVXVnP+OWtKjt1AazAbgO2KlN7wxc07PcxlY2WfkWkqyma/3MbrvtNo8hS5IkSVL/TNuCOcmaJDckuaynbIck65Jc2Z63b+VJ8t7WWvCSJE/rWWdVW/7K1jehJM3FfsA3q+rbUyxzKHBGVf2kqr5FNzjFXn2JTtKS0/ohrHnc3klVtbKqVi5btmy+NitJkiRJfTWTLjJOwf4IJQ2fw4DTe14f3X7YWtNTv2xVS8Ik65Os37x588JELGkxur51fUF7vqGVbwJ27Vlul1Y2WbkkSZIkLUnTJpjtj1DSsElyH+D5wD+1ohOBx9B1n3Et8I6t3aYtCSVNYi0wdufVKuCsnvIj2t1b+wC3ta40PgsckGT79mPXAa1MkiRJkpak2fbBbH+EkgbpYOCiqroeYOwZIMkHgX9pL21JKGnGkpwO7AvsmGQj3d1XJwBnJnkZ8G3gxW3xs4FD6LreuZ2uL3iq6uYkbwUuaMu9parG/1AvSZIkSUvGnAf5q6pKMq/9EQInAaxcuXLetitpSTmcnu4xkjyi50evFwJjfcavBT6S5J10g/ytAM7vZ6CSFo+qOnySWftNsGwBR02ynTXAmnkMTZIkSZKG1mwTzNePJXS2oj/CfceVf3GW+5Y0wpI8EHg28Mqe4rcn2ZNu8K2rx+ZV1eVJzgSuAO4AjqqqO/sasCRJkiRJ0hI2k0H+JmJ/hJIGoqp+WFUPq6rbespeUlW/VFVPrqrn97RmpqqOr6rHVNXjq+pfBxO1JEmSJEnS0jRtC2b7I5QkSZIkSZIkTWTaBLP9EUqSJEmSJEmSJjLbLjIkSZIkSZIkSSPOBLMkSZIkSZIkaVZMMEuSJEmSJEmSZmXaPpglSZIkSZqL5cd8+h6vrz7hOQOKRJIkzTdbMEuSJEmSJEmSZsUEsyRJkiRJkiRpVkwwS5IkSZIkSZJmxT6YJUmSJEkDN10/zePnT7SMJEnqP1swS5IkSZIkSZJmxQSzJEmSJEmSJGlWTDBLkiRJkiRJkmbFBLMkSZIkSZIkaVYc5E/SopPkauD7wJ3AHVW1MskOwEeB5cDVwIur6pYkAd4DHALcDhxZVRcNIm5JkiQtrOkGCpQkSfPPBLOkxeqZVXVjz+tjgHOq6oQkx7TXrwcOBla0x97Aie1ZkiRJI2Z8AhpMQkuSNFd2kSFpqTgUOLVNnwq8oKf8tOqcB2yX5BEDiE+SJEmSJGnJMcEsaTEq4HNJLkyyupXtVFXXtunrgJ3a9M7ANT3rbmxlkiRJkiRJmiMTzJIWo2dU1dPour84Ksmv9c6sqqJLQs9YktVJ1idZv3nz5nkMVZIkaeskWZPkhiSX9ZTtkGRdkivb8/atPEnem2RDkkuSPG1wkUuSpFFkglnSolNVm9rzDcAngb2A68e6vmjPN7TFNwG79qy+Sysbv82TqmplVa1ctmzZQoYvSZI0nVOAg8aVjY03sQI4p72Ge443sZpuvAnNwfJjPn2PhyRJmpoJZkmLSpIHJnnw2DRwAHAZsBZY1RZbBZzVptcCR7TWPfsAt/V0pSFJkjR0qupLwM3jih1vQpIkDaVtBx2AJG2lnYBPJoGuDvtIVX0myQXAmUleBnwbeHFb/mzgEGADcDvw0v6HLEmSNGdbO97EFj+ot7ErVgPstttuCxeppEUpydXA94E7gTuqamWSHYCPAsuBq4EXV9Ut6S7I3kN3rXU7cGRVXTSIuCUNnglmSYtKVV0FPGWC8puA/SYoL+CoPoQmSZLUF1VVSbZqvIm23knASQArV67c6vUljYRnVtWNPa/Huuc5Ickx7fXruWf3PHvTdc+zd7+DlTQc7CJDkiRJkobfnMabkKRZsnseSdOyBbMkSZIkDb+x8SZOYMvxJo5OcgZd60HHm+iD8YP/XX3CcwYUiTSvCvhcu0Pi79pdD3PqnseueaTRYIJZkiRpGvZJKKmfkpwO7AvsmGQjcCxdYtnxJhaJ8QloMAmtReEZVbUpycOBdUm+3jtzNt3z2DWPNBpMMEuSJM2MfRJK6ouqOnySWY43IWnBVNWm9nxDkk8Ce9G656mqa+2eR9Jk5tQHc5Krk1ya5OIk61vZDknWJbmyPW/fypPkvUk2JLkkydPm4wAkSZIGxD4JJUnSkpDkgUkePDYNHABcxt3d88CW3fMc0XI9+2D3PNJIm48WzLbmkaRFbKJbOOeTt4NqibBPQkmStJTtBHyy6+mLbYGPVNVnklyA3fNImsZCdJFxKF1/YdC15vkiXYL5rtY8wHlJthu7zWIBYpAkSZpP9kkoSZKWrKq6CnjKBOU3Yfc8kqYx1wSzrXkkSdKSZ5+EkqT5Nv4uMu/6kiQtVnNNMNuaR5IkLWmtH8J7VdX3e/okfAt390l4Alv2SXh0kjPougOzT0JJ0qyYhJYkLQZzSjDbmkeSJI0A+ySUJEmSpEnMOsFsax5JkjQK7JNQkiRJkiY3lxbMtuaRJEmSJGlAxnehAXajIUnqv1knmG3NI0mSJEmSJEmj7V6DDkCSJEmSJEmStDiZYJYkSZIkSZIkzYoJZkmLRpJdk3whyRVJLk/y2lZ+XJJNSS5uj0N61nlDkg1JvpHkwMFFL0mSJEmStPTMZZA/Seq3O4DXVdVFSR4MXJhkXZv3rqr6696Fk+wBHAY8EXgk8Pkkj6uqO/satSRJkiRJ0hJlglnSolFV1wLXtunvJ/kasPMUqxwKnFFVPwG+lWQDsBfw5QUPVpIkSRoCy4/59D1eX33CcwYUiSRpqTLBLGlRSrIceCrwFeDpwNFJjgDW07VyvoUu+Xxez2obmSQhnWQ1sBpgt912W7jAJUmSpCEyPgENJqElSVvHPpglLTpJHgR8HPiDqvoecCLwGGBPuhbO79jabVbVSVW1sqpWLlu2bD7DlSRJkiRJWrJMMEtaVJLcmy65/OGq+gRAVV1fVXdW1c+BD9J1gwGwCdi1Z/VdWpkkSZIkSZLmgQlmSYtGkgAnA1+rqnf2lD+iZ7EXApe16bXAYUnum2R3YAVwfr/ilSRJkiRJWursg1nSYvJ04CXApUkubmVvBA5PsidQwNXAKwGq6vIkZwJXAHcAR1XVnX2OWZIkSZIkackywSxp0aiqc4FMMOvsKdY5Hjh+wYKSJEmSJEkaYXaRIUmSJEmSJEmaFVswS5IkSZKkSS0/5tP3eH31Cc+Z1TKSpKXJFsySJEmSJEmSpFkxwSxJkiRJkiRJmhW7yJAkSZIkSQtqfBcaYDcakrRUmGCWJC1qE12szCcvfCRJkvrDfpwlaXGyiwxJkiRJkiRJ0qzYglmSJEmSJC0K07VytisOTWc2d0D6HZKmZoJZkiRJkiSNDLvikKT5ZRcZkiRJkiRJkqRZsQWzJEmS1GOhBw+dD7a2kyRJ0rAwwSxJkiRJktTYj7MkbR0TzJIkDdhCt5b0gkiSJEnqr9me43vursXIPpglSZIkSZIkSbPS9xbMSQ4C3gNsA/x9VZ3Q7xgkjRbrHUn9Zr0jqd+sd6T+Gt86daJWpzNZZjGz3hketpbWoPU1wZxkG+B9wLOBjcAFSdZW1RX9jEPS6LDekdRv1juS+s16R1K/We+Mrn4ms2ezL5Pmg9HvFsx7ARuq6iqAJGcAhwJWQJIWivWOtMDsQ3oL1jsaeQtdL8zVIqxXpmO9Iy1CMxlMcIhbQVvvaEnpZzK7X/vq548BqapZ7Ww2krwIOKiqXt5evwTYu6qO7llmNbC6vXw88I2+BTg7OwI3DjqIRcz3b+6G/T18VFUtG9TOZ1LvtPJ+1j3D/plNx/gHb7Efw0LHb70z/xb7d24Y+B7OzbC/f0uh3pnJezzdMvOxjaW2n8UUa7/2s5hiHeb9LIV6Zyb6Wf+7L/c16H0thmOasO7pex/M06mqk4CTBh3HTCVZX1UrBx3HYuX7N3e+h/Ojn3XPYv/MjH/wFvsxLPb458tiOufxM5s738O58f2bH1PVOzN5j6dbZj62sdT2s5hi7dd+FlOsi20/w2iu5zv9PG735b4Gva/FfEz3mq8NzdAmYNee17u0MklaKNY7kvrNekdSv1nvSOo36x1Jd+l3gvkCYEWS3ZPcBzgMWNvnGCSNFusdSf1mvSOp36x3JPWb9Y6ku/S1i4yquiPJ0cBngW2ANVV1eT9jWACL4tbWIeb7N3e+h1MY0npnsX9mxj94i/0YFnv8UxrSemeulvRn1ie+h3Pj+zeFeap3ZvIeT7fMfGxjqe1nMcXar/0splgX2376po/nO/08bvflvga9r0V7TH0d5E+SJEmSJEmStHT0u4sMSZIkSZIkSdISYYJZkiRJkiRJkjQrJpglSZIkSRoxSbZJ8uFBxyFJWvxMMKuv0tl10HFImrl28fGHg45jLpI8MMm9el7fK8kDBhmTJEnqJLnvTMqm2cY2Sf56Bsv95kzKWvn2SZ48Nr018SwGVXUn8Kgk95ntNmbyvk93DZjk3rPd/9Zo538v7se+JC09SXZN8ieDjmNYOcjfLCT5deAZQAHnVtUnBxzSopLk0qr6pUHHsdgleRKwB3C/sbKqOm1wEWk6SR4FrKiqzye5P7BtVX1/0HHNRJLzq2qvQccxW0nOA/avqh+01w8CPldVvzrYyEZTkh2q6uZBx6GJJfkbunOcCVXVa/oYzqKUZIep5vv9n5kklwBnAB+tqm8OOp6lKMlrgX8Avg/8PfBU4Jiq+lySbYDLq+oJ02zj6cBxwKOAbYEAVVWP7lnm7cDbgB8BnwGeDPxhVf1jm39RVT1t3HbvUZbkr6rq9eOWuUdZkvOqap9p4p1yX0m+CDy/HcuFwA3AfwK/C9zYpv8L+M+q+p9x2/n1qfZdVZ9oy830vd0J+AvgkVV1cJI9gP9VVSdPsvzjgD+pqlf0lAX4HeDRVfWWJLsBv1BV57f5pwG/CKwFftgT6zuTfIp7/j+o9h58Yeyza9uYyfs+6TVgkhva/k8H/q2mSVJMdU7dfpj4DWA53Wc4djxvafPXV9XKKbY9o/+B7b0+Edipqp7Ufoh4flW9rc2f9Ds/0+9J287BVfWv42J8VVV9YKptLAXtPV3OPT/HT0y6wuz2MaO/xXna1zuANVV1+ULvq+3vccCfcHfdDEBVPWse93HEVPMXIj/RGgm9Dtitql6RZAXw+Kr6l/neV9vfMuA3gcOBRwKfrKo/nud9LPhn1bOvrfq/sjW2nX4R9UryfuCxdP/8AF6ZZP+qOmqAYS02FyX5laq6YNCBLFZJjgX2pUswnw0cDJwLmGAeUkleAawGdgAeA+wCfADYb5BxbYX/TPK3wEe558XHRYMLaavc7/9n787jbZvrP46/3q7IPOdnJrMU6ZqikqIMoZIhU1JUEqlfaKJUv2gupcw0KEOikohkyHTNJLndCBmuMZGEz++Pz3ffs86+e5+zzzl7Oue8n4/HeZy91157fb97n33WXuuzPt/PtxZcBoiIf42XDGZJrwSOB5YBfgMcEhGPl8f6PvBfAg8nAC8C7yVPtl5esqV2ioiretk/a2harzswAVxPBigELA88Xm4vDPwdWKlnPRtf3gbsDJwh6UXyO+iMiPh7b7s1obw3Ir4l6S3AIsAewA/Ji7AvSLpT0vLDvOcnAh8lP/cvNFlny4j4hKS3A3cD7wAuk/Q78vttHkmvJv9PABYE6r+ntwAOqVu2Vd2yGyWdB5zJ4OOVn0vaCtgaWEbStyvPWRB4vnJ/oYj4p6T3AadFxOGSbomIl5UgwGvLz8dK4OFqMth8NPmZbSaAn5f+tPrenkJeAPhUuf8X4GeSrgO+SgY7fgF8FzgG2BD4Wt02vkd+B28OfJ68mHA2sH55/K/lZw5ggbrnNspMXhTYXdLaEXFoWdb0fa88b6hzwDWBHYFPA6dKOhs4PSKurl+xhWPqc4Enyc/jfxq09TtJH2f2Y9rahb9WvwOPJwNCPyjPv0XST8jjHGjymQd+RIufk+Izkv4TEZcASPoE8EbyNU9Ykk4ig/K3k59fmP29GbMR/C+2wx3AcZLmJP+vT4+IJzvY3pnk5+R4mu+bx2r9Jsu3I/ftnYhPnEz+f29c7t9Pvta2BZglLUD+z74bWI383K0UEcu2q4063fhb1ZxCg+8V8rt8TBxgHrnNgTVrV1UlnUru9Kx1G5IHJXeTX+q1LIdX9bRX48uOwDrAjRGxd7kK9aNhnmO9tT+wAXANQETcJellve3SiKxbfn++sizIfeJ48LSk9WoBcUmvITNKxoNjycywq4H3AVdI2q5k83VlSOkYfQPYCZgf+DWwQ0RcIWk94DvAJr3snM0uIk6FHDIeEWdWH1OTYeQ2WESsBCDpeDLT5fxyfytghx52bVyJiHuAo4GjS4bSZ4CjgCk97djEUgvobg38MCJuLxmvNYsAt0u6lsHBuO0q6zxZn2HZQO28cxvgzIh4sjTzFuA9ZJDwa5X+PAV8EkDSB4EPASuXrPaaBchs4qqXAo8y+PikFpT6BxmU2K78rnmKDJDP6qukpcjvrk9VllMylv8CnCJpZfJ9OxDYEjg6IvYe5n2oauW9XTwizpB0WHnseUkvkEGIY4GrgLcCNwGnArtFxLN17WwYEetJurFs43FVSmJExOcgswIj4pm61/uHRh0vweTrgVqAeaj3fVY/gN0k3UPdOWBEPEoGan8gaWkyW/Ab5Vj5pxFR/TsMd0y9bES8tVG/i50r26n29eVle6cO8dyqeSPi2sH/LoMuVDT7zDPCz8l2wK+Uw/LfCqwBbD+C549XG0XEWl1qq5X/xTGLiBOAEyStDuwN3CLpSuD4iPh9O9sqno+IYzuw3Vki4oDa7cpoiUPI85YvdqjZlSNiZ0m7lj48U/e91Q4PA9eSF72uiIgoF4s6peN/q4pm3ytj5gDzyE0nM1HuKfeXK8usdW/pdQcmgH9HxIuSnpe0ILkDdG3r/vafiHiu9t1XrlyPmxpFEfHGXvdhjA4CzpT0D/KE5n8YOMHodwtExAXl9lclXQ9cIGkPxsdn6CURcSuApJkRcQVk9nsZ1mr96zAyo2K4ZdbcRtWh6hHxmzJs2lpUhsLvXH5eAD7R2x5NONdLupDMqj+sZG29WHn8My1s4/eSvkIGE2dljNaNcvqVpD+TF3c/WDJ/ny3BvFMlvTMizm6y/Z+QI3j+j4GAJsBTUVduZqjAXUTcDNws6UcR8Xyz9ciL6b8ls5Kvk/Ry4C5Jtczljcnj7hlkEGV3YNCIrhaHILfy3j4taTHK972kjcjs3IUi4pSyzp2SDoyIZv8b/1WWAahtYwkqf2NJG5OZa/MDy0taB9gvIj7UrFMl67N6v5WAaUvngBHxD0knkiM/DiYvrlcDzMMdU/9R0itrxx4Ntj/kCBLNXhak/vm1oOMj5SJD7X3dEXigsmrDz3xZ9+Ch+hARX6/cfkTSdsDvyKD+jrVktwnuKklrRcSfutBWK/+LbVH+F9coP48ANwMHS9ovInZpc3O/lPQh4BwG75vbWqar/A++B/g4uU/cMSLubGcbdZ4r5xC1/72VaTxaYSwOA3YhR4CcLulnbd5+va78rYpm3ytj5hrMLap80SxEDgO4ttzfELg2IjbrXe/GF0lHksOD/hgRTw+3vs1OWarlk+RO72PAv4CbRng13LqoBBSeAPYEDiAzcf5Ul5HRt1o8UepryglkVi9374yI//ayP62SdDPw+uoQOmVNurOBRSNisZ51rgWSbo6IdcrtHSLiF5XHbouItXvWOWtIA8PIdyKHzNUsCKwVfV6WpZ9I+i1wOQOjjHYj/599sb0Fkq4hR2qcSdZhntHjLk04yglw1wVmRMQT5aRzGeAZsrbslXXrbwo8EJWa2JIaZd5F1NWOVNYmf7IEJ+cjL6A+WB6r1oI+HliPUgu6PN5qzeKmdXEl3crQgcMhR1Mqy7TcQI7MOac+27du3d+U1/OpiFinBGBujLoaxOX4qjbE/NqIeLju8dpon7WB24AlyJGMZ5D1QGtR3h+TQ7lVXssNlW3sRl6gWY/Mct4R+HRthEr5P9sROC8iXl2W3Vbev0b15Bchj2dXAfYp234c+CVZMuL1ZMmNI0twdH0yY66+jvBWwMMRcX25/1KydMSuZCD/ArIG+0WRkxHWnjfkMbWkP5W+/Y0M1AwaLasskXYwWb91X9XVb5X0hgaveZZaVne58HBc6evjpb3dysiLWl+rn/l5gQUj4kFlucOh2vicpKcY/Hmdi8yQjvJ6FhxqG+Nd+TucBzxIg7/jeCTpG8C2wCXAiVHqoJfH7oyI1Zs+eXTt/a3B4ohKffw2tLE/OYrjYuCoiLi7Xdseos0tyMzitYALydGQe3ciC7z8n+9C7pdWBQ4n9/9/GfKJI2+n43+rSlsNv1ci4pYhn9jKth1gbk2rXzQ2PEl7A68jr/4/RZ54XRYR5/a0Y+OApB3IwPzDlWUrkgcrY94hWOeUE7h9yCGUIjNjThgvGQitnij1M43TiTElvZs88b+6bvnywGeq2ZH9qJZ1U38iXrIN3hlZs9L6SMleW5fM4vtsWRzkd/alUWqA2/BKcOFwMuACeYH9cx3KSJlwJK3e4SyoSU9qPAEc+b9/WH0WqHJegC9FxFA1ZKvrtzrp3c3l+OItwAfI4MEPY/Akf+cCB8QQdVIl/YFSF7dBsHSF2mpkyaat6/pyT1m/YZCanE+glsW8ATka+AayTMVV1Qsgkq6LiPUl3Vjpx00RsW5lnZ2ArwCXlj69jpyg76y61zQneYFclAvkTYL6lZcyW3B/DbJGsYCLI+KOymPXRMSGdX2t/T3+xkA9ecrtR0ufjyzvyX+B+cjA821koHlTYN2I2FbSJWTwZ1bgtbSxAnByRGyurF38ZnIfeTrw65i91EfteUMeU1f+zvVvSu3v+zMyE3jP8vedlzy/WrfpO9q4HytFxN/KxZI5IuKp2rLKOq9l9knqWj72LP+fyw31mZ+oJE0nLwTcSiXjvv5zNMY26oP4g7QziF/+lp8Gvt4oyU7SQtHZesy1duaKiOfauL0XydHUMxn8Xnb0gkC5GLpRaedq8kJOR5OHyrnkrsDOEbFKJ9vqtEbfK23Z7jiJbdgEJOl/yOyojwOLRET9pBJWR9JZZGD+Gcrs1eQB0W097ZhNeK2cKPUzNZkYMyJ27GW/xkrdmZCkY8Z7/ycqSduT9VCPK4GMa8nshgA+UR/8sOEpyw5EVCYbteFNhNEz/U7SsZQJ4CJiTUmLkBlhRETDyZsk3Vq9wCzpr+QJ/uXA5RFxe+Wxk8vNl5GB2UvK/TeSx7DblvVuiYhXSfoWeSHrnOoxR1nnMuDV5EjShnVSWz1ekXRDNXhd91jTIHXdevOSk9ceRE7+NKXy2KXAO8ns2/WUQ5CPiog3VNa5GdiiljiiLKHwuxLYbSkw34omWchP1QIK5fzi6wxMEnggMDVaGK5fCd7PCdwXEf9TeawWpL5uiM9S7e++J5kV+FSrr2uIPv0wIvZotkzStIiY2iigXm6fERE7qUnGewxkQs/2GZJ0fUS8ptYmOQnhTQxM2hUR8RFJn4iIoyV9p0kbH6lsc9D/22Qh6aqI2Hj4NdvS1pFkeZMfkgG33YClIuKzQz5x5O305G9Zgtubk6Mcto2IJdu47YYXdGraeUGgQdsde12VNuZjoDzpamRpkwvaFaSX9PohHo6IuLwd7bTQFhFx2VjbcA3mEaq7yjUXOWzv6XZe3ZroJJ1ABnkeIg9Ed6Subpk1VguGSVqJDDS/FtivZJtcFxFbD/V8675mB6c1nbqq2wEdq9XUJeN6YkxlfcRlyNEeD5dsqkPJbKe+r78+3vs/CX0C2KWSzTAX8BqyPufJgAPMLSrZnqcBi5b7jwB7+cJwy06hQzOd2yzNJoCbd4jn1NfPX4sMTL4O+IpyAqtbIuLtUcq3Kes8rxURD5T7S5F/35rhakFDa3VSh6uL24qGk7dJWoiB4+/XksHuu8iM3frJBg8mh/evrJzEq1baomqOGFwS41FgjnK7liHeMDDP4MnzZlEOHf9ERGxRWXwD+V37OBk8Wxh4UNJDwPvJjPFvkd/T/yAzgvcv21sfuDcGSpnsSQbO7yEnIH4OZk0S9Y+67tSCqos06msxb3n+aWX7Q12saPWY+hXV5cryKq+pLBqufmstuLtto3aU2eCvABaquxCwIJVRcsBU8jPfqM+1DPJpzV5PxQ2S1o+I61pYdyK5sWS2/5LBNWlbvrgyAtvVLjAUx5YLQG0NMNPlv2U5X3s3ObnwouT/9cfb2UZlZECjQOxwk7+OSjdeV8VlwOsqF1+vI5Mkd2/T9v+3wbIAXkXut9s5qXHH23KAeYSqWbblisn2ZGq+tW4x8sP7BPAY8EgMPdGG1SnDseYmD/DnIQ9mPFlWf6odnNZmqv5h+b0742OCtppWTpT62bidGFM5cdK2ZAbMIcqaru8jJzt6bw+71pLx3v9Jaq6IuLdy/4rIkg6PlRMIa90PgIOj1AWUtBkDNTtteB2b6dxmaTYB3DRJ74+I46srS3ofWV6g6gWyTMIL5bkPl5+q5WrB5eIhcuL02jnVZ8ljixkR8Uy5qD1obpGI+EPJlls1In5XMojrT4j3J//H1pB0P6Uubmmnmm06j6RXM1D6oVq3uFmQejpZDuOPZAmh6yLi3zQQOZHtGxh6CPIF5Tvx9HJ/Z3KU1axJ85oF5iVtDnwfWBr4BXAUeTFGwBfr2rkIOCsiflu2sSUZJD4Z+F5EbFh7jxr4AVm6opb99mWy7vG65Pu8rKRvl3Zrtyn3lym3fyfpi2Td59p7KuBzDATOa5perKBJwLem7Cc+Sf5t/1npx3OlrzWHk/Wdl5P0Y7J+63sqj19SApunR6XWeKWd7UtfFmbgQgBkGalq2bLbyHIzs13giIhflt+nDvWaig2B3STdQ2buj/taxC2ahwwsb1lZFjS5uDJGTytrlf+0tLErlVESbdSVv6WkLwHvAv5O7l8+B0xr8fM2Wo0CsTvTfN8yYj16XSrfSfuQ+8ujy8WHtoi6clOSNiFLqTxI7mvbphttuURGG6hu+Ja1RtKa5GzCHwWmRMSyPe5S35P0STJzYgngTvIK/9XkgZdPuPpYo/1Eo6F1/UwdqtXUDRrHE2MqJ6tZLyKeLQdt9wJrRxcm0WiH8d7/yUjS9GhSW07SXyNi5W73abxSZdj1UMusMbVQZsDGRk0mgCODBeeQwblaQHkqOaLh7bWM1rKNZ8g6qV8nSzw82qCdY8gJkqrB1OkRcUB5fNih45LeD+xLTnC7snJytu9HxJsq60yJgUkE56iWXFCLdYvVePK23SPi7hKMPyoihs2WU5P6u5Lmjoj/lHXeQdYrhszYPaduG3dExJqV+3MAtwPPkudQV5Flv35ETop4TIN+zPbeaqA0xU3AO8gM5o3I4NpVwEcjYoYGl474LjAzIo4o928iJzxsKiJOLX+LE8i61TeVh9Yhs3ffF5XSQeVYc33gDeV9WYw8z9lvqHbqXtv/RcRhQzy+KHksW63fukCU2snKeQh2IbMUHyU/sz+LiH/UbWfjiLhqiHZ+Twbir2VwBu52kn7J0NnY1bIvQ9aUnohG8n/WpvZWJP8HNiH/LlcCB7X7WLVbf0tJD5Mjfr4J/DIi/iNpRnRgwrhKmzeU7+kDgHlKILat5RR79LpuJCcS/QawT0Tc3sr31SjaeRM5SifIeQ4uauf2u9WWA8wjpMHDYOYgD7TeEF2qDzQRSNqWvCr9evLK79XkAdVJvezXeCDpz+TVzl+S2RPXRBcmA7CxKwfh+0eZjb2cdHyvnV+6ndbsRKlnHRoljbOJMesvRIy3i5rjvf+TUcnourRB5uJ+wGYRsWtvejb+SDqHHJ5eHb3ympKNZ8NQB2c6twEaegK4N5LvP8DtEVGfcVrL6NyUDCA+Rx6jXhYRF9et93YqE15Wg6mSTgWOiSGGjpdjqQ3I499a7dz6etAzgLOBk6qvYzQaBanL8mFrw2ro+ru1QMxstYIbbKdhYB7YpO679c6IWL3JNi4ELiazM2vb2AJ4K5ll+Bzw3Uobu5CTKW4o6TZysr7ny3nIvlHqdKpJXeqom9S3LK9NYrhQWXR7VCZFrKzXysWKjcj9wprkBY8pVEpWanCmes2TwD3ldVwJbBUR/yzrrwmcWf9aKm3tTF7o+ivwk9p3o6SjgS8A/yYzol9FBuZ/VB5veCEsMhO/9piA48mRXYPWqevHIuTIu+ox+IQuMdnK/9l4JGlTchTGycoRI/NHZWLINrUxhfwf35Xct/+eHImwXHRo5Hg3ArE9el1vIJOTroyIo8oFyIOiUid9jNvfhiwD9iTwxYi4oh3b7VVbDjCPkAYmqgB4HrgbOD4G18+yIZQDpVpdrfpaXTaMctW9VvttI7Im5s3kRCknD/Vc6x1JrwFOIg+sRWbEvHe8HBwOdaLUs061oGQKPFG7EFNOlHcgawceE22cRblTJD1BZpLVvL56v5rl0o/Ge/8nI0kvI4dc/4eBORJeA8wN7BARD/Woa+NOCQp8jkqGInBERDzeu171P1XqvpaMxv3IAM+fgM9GlmyxNhkqeKVhJoir284aZDbtQcDLImKesnwKGVBcY4g+/JkMpN5Nk6Hjkq4pQc8bI+LV5bNxQ906C5AB0r3JZKCTgJ/WgollnUYT6D0J3Bo5T8DCwJ7MflH9I+X5x5LlH85k8GSDs4buS7qDJvV3S9D2S8CRNKiJGXU1Zkt/X1fuXhY5AeIMBtcc/Up1W3V9WZwsC1HbD11J7peeJMuU/DzqhuhrYIK+TwFbA4+UddeLiJC0CnBqRGxS1t+YrI0+f0QsX7KA94uID1W22UqW+rAXKyRNI//GZ5LJXnsCq9WyliVdTWbk30J+jl5JXqBaCPggOYfSJ8rrWoOsk79bRNw0RL82IwNna0XE3GXZTRGxbrlwsi1ZTu6yqIxQUYOSLg0uWAx54V05Ad17yAB37fMUUTLuJ6pW/s/a2NZqwLHAkpGTVr6KrMv8hTa3czj5mV09IlaTtDR5cWOTdrZT1+bc5OdzV3I/cnFEvLsD7XQ0ENugva68rkp78wNEmydrlvQicB8Zz2k04WfbzpO60ZYDzCNQrjCtQA7neqLH3RnX6r5s5wHmrP+ytaGVg+rXkMGa/aibvdr6k3KCGGKcZZ4PdaLUzyRdQw7l/YekdYHfkbV/XwX8NyLeN9Tz+0GzDJia+iyXfjPe+z+ZKWt81iZLapi5aNYJkm4A3hwRjynrvv6Ugbqva0aZ9NjGbrjglaS7aTBBHFlD+f0Rcb2ks8mSB3+lJJGQWcbPVto5l8yK/XuTfgw7dLxkjD5BBhQPILPl/hQRn2r03PL985PS57OAIyNiuqRfkyXnaiUzNiPLgKxE1lb+IDnC8lYqEw1GqfNZl3BUeThmzSsg6UzgIzG47nTtsU3JuqQ7kfNbNN1OM036MNJt1C4eHEL+fWv1Z3cGFqkEbDcClgIujIiny7LVyGBy7ULENWR5lfNiILt8UIazWshSr6zb8GJFeWxaRExVKfNRlt1YaffnwGeiTBAoaS3y7/oJMpi+rqQdyv0FgHdGxF8a9GF9Mnj1TrJMyk/JYOCj5fHbI+IVygnsz4qICzS4pMiwJV3KekOWzJN0J/DK8ZAU0U6t/J+1sa0/kBdoftDs89umdm4iJwe9odLOrM9xp5ULcAdFxJEdbKMjgdhh2uzY69LgyZoFzAT2jMoEpGPcftfOk7rRlif5a5FyQosvkQdOK0naNyLqDwisBdUvWzIjcllykoo3DfU8A0nbkZnLm5An/beTWQgfI6/wW5+RtHtE/EjSwXXLAYiIr/ekYyPXdKKSPjdPDIyU2J0cMvs1ZQ3Dm3rXrRH5W7MT8nFivPd/0ioBZQeVR0HSkMeI7cxImaCmVLKUdwaOi4izgbPLCbq1z07AykMEr4acII6ctOr/gBtj6PlAFgFul3Qtg7MRtyu/71GDoeN12zgU2IcM/O5HToh3QnWFki29DZnBvCLwNeDHZIbb+cBq5DnwmlFGY0hakgwgbEiOsHkuIgYdt1XFEPM3aKC27gLAn8rrHVR/N3JY8hUlUHpik+1cERGbSnqKwZlmKvffM1wmp4ap80tm9kbZJuR7OqurwGElCP2X8jN3yRqEzGh+pLqxiLi3dnxb1H8ehp3grMHFij2Ba+q284ykuYCbykWHB8hs9ZrVqsGfiPhTCVh/FFhGAxMRLlTa+bCkaob6l8j9zmNkUHmTiLiP2f1SmXn/b+CD5TP7bOXx/SklXUo/7lKOEKofGTBFOYqgOuFkdZTGbeRFkkk1Ynqo/7MOmDcirq37/Hai5MJzERGSapNddmTi5LIf3InMAL8gIm5Tlin9JDl5YscDsZLaGogtbXT9ddF4subjadNkzUMFdZWT8LVNN9pygLl1BwGviIiZJd3/x8x+xdla0/TL1ob1HjKg/Ang+sl2JXucqh04LNDTXozd4jQ5Uepdl1pSPVLcHDgMICJerDuI7Ge/IId6IunsiHhnb7szYr9gfPffbDQ2Jie0PJ083hk3O5w+MUXSnJE1Fd9EJibU+PylvYYLXm0UEe+v3YmICyV9NSL2qwQbbwb2L9nmAH8gMzWrZTQ+M1QnVBk6TgavX0JOXDfrpLd8d59K/k8FOeFwfQD1LjIz+SsRUU2+OKvSv+VicKmfh8uyxyT9F/hhSYj5FYOPeR4rfR1qOP1Xh3qddfYu55WXk8PKZ43mjIhNy++Gx48ly3+4UgG1vryDTBL4Ubm/K/BQi8dw1zM4CF0VQG1yrXuVc3WEpJcABwL1NbDf0kJ7rVys2IMMKH+YDBovR170qLldWV6hWnP6T2RiwTYMTFp5PY09S9an/mtEvFh9QJUJGiPi0BLgfjJyYslngO0rq/8nIp6rHW8qR5/WPq/172u1ZF71fYXynihLq4ynY/AxkbQsWWu7tg+4HDiwSbB/rB6RtDLl7yNpRzqTVHOGpB8AC5d9zHupu0jWJieS/xfXAt+W9A9y/3poRPyiA+1BhwOxRS9e13y11wQQEZe288JAC0Hzts1b0422XCKjRfVDV4YbymLNqYX6aTY8ucyIdVGzITXtHLbTCZK+RQ7rfADYjsxq+a+kpcjZh6f2tIMt0OBhn7Nujxfjvf9mo6HBE9G8Cvg1cHo7M3kmMrVY99XGTtJU4Fwy0Dxb8ErDTBAXOVndCWRA+NSyzh7ACzGCMlStDB1XTlD0fTLrVGRJi/0i4jeVdRaMSr3lJm19j/xcnVkWvZOsS/m/ZFD5LOCLZDmOatmQl5fnDzucXtJKwANRyoSUY/UlI+LuunVeV342It//yyPio8p6vf+tBeklrU7+T9wdWYO55XPRkik9tdmyStb3igyuOd3yKDtlnedvkRNuCbiQDAY2mqTvZcBLK+38vfLYS8gSJUNdrKiVriQiZjbY/jxk+ZRqzenvkYHjeaPFofuSTorBZU/mB86NUuKi/I0OBpaPiH2VJTBWj4hflcdHVNJliH7cTgbv6ku29PUx+FhJuogscVOdJHe3iNiiA229HDiODIY+TpZE2b36/9rGtrYAtiT/T34bERd1oI3bgFeVi3IvJcsardzo/7GNbc4qDzPUsjG20YvX1dHJmiWdwkDQfEOgY0HzbrTlDIDWLVsZTjPb/ejzia76zB8kfRKYp+xgPwT8ssd9GlfkMiPjjoaZabqflROPH8QQk/P0sYPIk+GlgE0rJyj/Q86iOx5Ek9vjxXjvv9mIley7C4ALSpbnrsClkj4XEcf0tnf9LyK+KOliBuq+1vYdc5CBGmufU4GjqAteVbybnCDuF+X+lWVZLRMKYP26IMIlkm6ubkRZx/c7wJrAXOX5T0fEgmWVVoaOfw14Y0RML+usTF68+U1lnRskPcRALegrYvZ5L/Yng8q1CxWnAWeXz9kblRPorRIRj9BYK8Ppz2Rw5t4LZdn6tQUR8TdJz5KT2T0HvJF8fyD3H/sAd5ULK1eRI2i3lbQhsIakWxr0bbayE8B8kl4eETNgVmC7+v7+kgy+zvYZkPQLsgzfleQFhYajJ8t7tVujxyrb2o78Gy5NZo2vQGY5v6Ky2rHkxYrvlft7lGXvU77hh5OZy3PkJvU88J2I+HylL/8u7XytQTf+pRwKfkRpf04G3rOX1617v6TvRcSHlCUsfk1mZNacTGYi1/7O95N/41+V+8OWdCnvyzKVvtReQ3Vy5Gci4tv1z5sElojBE9ifIumgTjRU/jfeXPY7c3QqaUvSURFxCFl6qH5ZOz1Xy76PiGclzehkELaYIekzDA7EzmhzG714Xe8lJ0X9OXkec3lZ1i5T6V7QvONtOcDcuvoZfpsNqbHhtfRla0NymZHxZ8uI+IRypum7yeGKlzEwXLFvRQ77u1PS8jHOaumWk8WfKmeEX1U5W/NfIuLG3vZsRNaR9E/yBGiechsGTogWbP7UvjDe+282KiWwvA0ZXF4R+DZwTi/7NJ5ExNUNls02EZeN2ZDBqxI4bBjUV04ACPCCpJUj4q9l+cuZvf7uMcAuZABuKpnVuVrl8UZDx4+v28ZTteByMQMYFAiKiFUkLU9mBW8DfFfSExGxbmWdILOUz2rysqcDzzR5DFobTj9nNRgbWSphruoKkv5KZun/hBz6fUAMlGRYJCLuKrf3IkdAHFC2cT2ZYfm2IfpY9VHyAtcM8rt3BQbXW142mo8kPYEMoH6R/D6/g4GA8x9joI71EsD7mT0LuhqIOZLM1P5d5CjWN5JBqKqhLlZ8lLwosH5E/K20+3LgWEkfjYhvlGX1AeRaX2oB5BPLtq5n9s8plfU/I+loSd8nJ1b/cmQt+JqVI2JnSbuW9Z9R5apDCeL8CLgsIu5s1Iakoxgo4VHrS5DnCDWXS/o/sjxndZRBtazGRPSopN3JUlOQ36UdCSYq67B/CVg6IrZSTgy5cTSpkT4GW5CTalZt1WDZWFUvQAlYudxvdAGqXTodiIUuvq4SgP0AsAoZt/pY/UiKNulm0LzjbTnA3KIoswbb2JUP9fHKGmqvAO6vZKZYa4aq6WX9qba/3YacgfpJjZ8awDDM5Dz9qgR4fkDWxLubcmJVhjt9oFkmTj+JiCm97sNYjPf+m42GpNOAtcmL6J+LiNt63CWzZhoGr8hAQdNjy/L9fy1ZY/9/gd/XBTBnm6ArIqZLmlIy/E+WdCMDcyN8tYxs/CdZh/mztaHjkt5RNjFN0vnAGaVv7wKuq7ahrNu6CRlgXoecEPuK8lj9hHn1/atd8HyanEDu9wwO6NVGrO5PDqdfQ9L9ZLC3Pnt3pqTtokwKL2l76ibFIy86bUoGzl5NjvK8rATqq/3cHPhK6cNzkl4Eno+Ie5q9lrrXdYGyfENtJNqfo9QRLn4jacuIuLDBc39FycgtI9peDWxW+rMSmYkOWWblcuB3NA/a/jciHpU0h6Q5IuL3kr5Zt85QFyv2ALaoZpZHxIwShLwQ+EZZPFwA+cmolFWpV/m8QSbzfIb8rIekd8TA5IrPKctx1C40rEzl81Iytr9CZuyvJGld4PN1x847kGU1qn+PerXSYhtVlgX5uZjI3kuOevgG+Xr/SIP9SpucQmak10Y3/gX4GflZGjNJHyRHbdcCojULkBdr2m3N4Vdpjy4GYqGLr4sc3fNfcr+2VWn7oA60082LAR1vywHmFmmYWXj7PcjSD8rV3+9ExO2SFiKHer0ALCrp4xFx+tBbsIo/yGVGxptfaeiZpvvdkJPz9LFPkUMtl68Nd5O0APBd8jWN19dlZv1tdzJIdSDwkcoFRWfuW79pFrz6XAvPFUBEXFwCmKuX5Xc2CJg9U7Jvb1KWDXuALHMw0GjERZKuoZyjSlo0cmK9aqbuQ0BtXoiZVGr5Fn8ng85fiogP1G1/gbLdI0v7PyyvYTeyHEvNLxgoCTLr6ZXb90TEcMPpPwD8WFKtJM59ZIC02p9vAd9S1vbdm8y6XZYM2t4i6atk2YVVyAAqZUQWtBCUkrR5RFxSFzCFDCpQCZReDZwjaQ4yoDJoP6Wsr/za8rMR+Z7/jjyXq5m3hWH+T5TXejn53jxMJWmhGOpixUuiQdmSiJiprN1cM2QAuWz/K2SmZaOM4PrM8BvJY8m3kZ+D2vt2OFnKZDlJPyYvbLyn8rzDyRGnl5bt36QsT1I1o2y7aYA5It44xGuZsMoFlG7FWBaPiDMk1S54PS9pqIkmR+onZCmf/yNHc9c8VfZxbdXs4lP5H98VaOniVIu6FYjt9utaKyJeWbZ/InmRqRO6GTTveFue5K9FajLBVU1M8CL77SDp9oh4Rbl9ELBZROwg6X+A34QnfmpZ2YnuQ2WCAOAEZ4L3N0mLMjDT9LzAghHxYK/71aoyfKxWO/DaiGg243zfUE4GsUFEPFO3fH7g6qhMyGNmZmb5fV8rfTDMevcBTSeCi8okccrJqR8iszk/CiwEfC8G6invRwa1nyXrADeriztcn9Yhs4JfT07kdxfwh+pQd41wMipJywG7RMRXyv0ZwNnASRFxR5PnrBRZY3n+8l78q7asss7XSl/nJ7MzryAn+ZtRMmMPJAPfJ0XEzeU5ryVLM/xQ0trAJ4C1yiZvB74WEbeUdT8XEYdLqtaxrYko5Ssk/Y0c6XVr/bmEpLuAJ8vrvZqswzzbJHmSvkCWzDi/0ftR1pmPTLSYgwzqLwT8uH6Idhl9NtvFCg0xsWH1MUlfJoP0DQPIJTO90fsxKCNY0uKNAtp16yxGBt1FHlc+Unns6ojYSIMnO66fuPJsMtP+4rq+fkTSwUO1HSOYhHE8kfTZIR6OiDiyA21eStZlvyhy4tKNgKMiYsgY0AjbmALcHl2Y00bSguRIi2XI0SkXkbXLPwbcHBHbt7GtWyuB2DnJc8SWJiAdRVvdfF2D9jdD7X86oRY0j4gfj6e2HGC2rqn7cv01WSbglPrHrHUlE6RWZqTvg32TXTkpWJHB9eBO61mHRkDSTuQwv0vJg+jXAf8bEc3qF/aF+gP5usdmHRCZmZlNZiUz9p3kBH5rkrVOG50ozhpKK+kBcgK2hjW/ImJWFrSkN5EByH83af8usubpbAE9DZ5ovVE7gyZbL0HdTcljld3LOitUHv8jOZLpp+U17grsHxGvrayzBFmCY1dyUrpzIuLj5bEFyHrSe5PB0pOAn0bEPyvPny0YIen6iHhN5f6OZEC5aTBf0msi4vq6ZduSAdSvkhmR08pDU8mSIx+PiHObbbNBG5eRiT+zTfJYMjo3IgM6fyGzlq8CbowsdVJb7yly4sDnyGxGaDBao1xoWDUifleSLaZExFMNsqwHiYifl4zSpymfwepmgZdGxEtKGy0FkJsp7+/J5XW8COwUEX9ssN7rm/T1svL4iWTg+FDyf+sjZBb2Byrb2KvJNk6VdHi5uzqZ4HFeuf82MohXX796QpD0sQaL5yOTqxaLiPk70OZ6ZDmOtYHbgCWAHWsXa9rYzrlkrfWOzmlT2nmc/F99E/Ay8v/kwIi4qc1tdS0Q2+XXVdvfUNqYh6zN39aRaF0Omne8LQeYWyTpVpofZL3Y7Iq3DShf9l8jh3r9HlgjIh4sV7pu68bVvPFOQ5QZIQ8mXWakT0n6IbAycBOVSTzqT4r6lXKClS1qFzLKidfv+n3fV/q9GY1Pfn/f7/03MzPrlJIluz0ZVH41WQ90B3KCseWGem5E3DOSQIJy7pWNgcfIodSXAVdExOPl8QuAd9SPOCqPNQzCVfpyamXdacDcZEbw5WQAd9CwaUkrAt8iSxoEWW7iIDKo/g7y/ViNzIDdOSKWHeJ1vYEc/r4wOWngj8n38WgGTxK/IHlh/hV1z18EWJVKqY9agLI8fgOwZ5Q67soJ5Q4q628fEXc3eG3n1o5vStbkIrXAfUlOeQ/w0YhYsyw7BXg5OYS/mkX79bptr0aWydiYDOA/MpIMT+XkjfsCi0bEysqyKt+PiDdVsqxfVtq4mDx2eyN5YWLbVttpoR9DTuimrEm6U0T8WdKGwNGNXqeyhGbNS8lyGNfXAtklgP4pcsQp5IjTL0TEs+XxKeSx9JAlMMoFgG1icKm3X0dEwwD3RFJe64FkcPkMMkO/bUlVqkxgXmISq5OfuzujA3WEy9/y1WS5hVrwMtoZRCztVLOKp5AlgZavffba3FZXArGlra69rm7pctC84225BnPrGn2piTz4OqzLfRmv9iMns/gf4KAYKA3wJuDXPevV+PK6ylXvvYG/RKXMCAOz7Fr/mUrWchqvV/XmqDuge5S62ol9aiFykpdGAebx+rcwMzMbE0k/ITN8LyQz9y4BpkfEpWWVeyrrNiuR1fJsxRGxV9nW0sCOZAbx0gycjx4G/FFZg3lQqYAY2WTrW0XEzGH6cjcZWB9E0r/JwM+nyeB3SHp7g/WmkJM2702OTPsaGVh+HZn5eiEZcK7W8n0KeH/ddt5HBs+WJRMQNiJP/KuZtjsCZ0l6d9n+nmTA8o/1weXaa1OpRyxpF3Ki46dLhvgXyWzr6xg8KeHfys9c5Wc2ysn2NgA2LP18WXlOdZ3tyNIkAJdGThBYtX/ZxjWlr3dJelm5vXfZxoXk8fID5f5S5ARstTaGLTNQsvH3ZPZRg7WkjlMYekK35yPiz+U515Qg52wiYlCtZmUplW9W+vnrEjz+1OzPhsiSeS9KWiginmz2eoAlyczwmufKsglLWVbwYPJzeiqwXu1iVJv9gpyoFOBnEfHODrRRVZ37pTYidJcOtDMrOF4+Z/d1Kggb3Z3Mu2uvq4teXgman0Bng+Ydb8sB5hZVr3xLejV5Zftd5Bfr2b3q13gSEX8B3tpg+W/JK7o2vOrBxRbAmQAlE7w3PbJW3UZeXHmg1x0ZpQsk/ZaBixg7A03r7PWLiFix130wMzPrQ2uRmUx3AHeUk/XZLrw2KJH1HUm1EllblkBQQ1GZvErS7mQw5ZXAI8AxZIZxzQ/IIPetZFmCah++GREHqcmk61GZbD1ywrdtyBJy1azgz0v6REQcLek7jbZDBrl3Ab4HnC7pZ01e2l3kaMyv1JVOOEvS6yPr524cEVc1eX7NgWTg/uqIeKOkNcjM2uprm1ECxb8gJzDcMiL+Len5avZlTSlB8Xy5+2ngNRExvZQAuIoc9j9oYvColDKpJ+kcMqj8TzIr/I/At2oB2Mp6Xy6vpVbD80BJm0RENRHrPxHxXO2cpWSM1v8dlqsFl4uHyFratb6+IOnORq+94nyyXvRsn6ViuAndXqbB9Y8H3a/P7K64jzKJ1giCx/8CbpV0EZUJD+tGOJ4GXFv+FpCjDEZy0WVcUU7A+A7gOOCV0aDmdzubq9weUb330YiIPzSIJX2/A02tI6lWskfAPOX+eJ9oeCK+rm4GzTvelgPMLSpDgnYtP4+QVzk13JAWm52kZclMiU3Jg4rLybT8+3rasfHhCWVdsPvJYX37wKwDtHl62TEb1uLAnyRdy+DMnG7NjjwqklYBloyI/1XWx9u0PHQVAycRfaucUDUVAzOGm5mZTRoRsW4JaO4K/E7SI8ACmn2Cv08B60ddiSyyHMS15LG8yCDg4+X2wmQwdKXKdr4J/JUMpvy+QfbtSyKi2aRmPyy/v1p9CeX3oAwLZTm5ecnSCieQGcDXlodrE/JNo4GSKf3Nkq1bC+ouLekQsgbzX8qq60al3nKd2vnMu0s5i/o2qoHDZyPiWUlImruUZFi9vI768oyLknWXrykB2s+Sf7cvkSO1IEfLHQocUu4/F2USxYi4QdJd1eCypGMi4sPDBO5vJM/TamUE9gKOknQPcETlIsLW5X15sax3anluNcD8B0mfJINCWwAfAgYFu4GLGyQ0/K5unUWA28sxdTUoWzumfukQnyXIjO7Faq9ZOaFbNQh8PFnmpNl9yvOqFyrmANYFqseVrQSPf15+oMlnOiK+qCwhUzsG3zsibhzi9Y13HyPPlT4NfKqSRNWJIGI0ud1W3Y4ldTmruGsm6OvqZtC84225BnOLJL1IBkL3iYHZjmfECGc2Nihfsj9h4GBxd2C3iNiid70aH8qXU63MyDdjYJLEt5AZDY0mRbA+oKzRN5uI+EO3+zISkn4FHBYRt9YtfyXwpfrhgf1GjSd6qYloccIXMzOziUzSaxjIqrsvyoR3qpsQVznb/M11y44nA7Dnl/tbATtExH51bbyCLKGwKVl3+M6I2KM89iXgbjLgWL0Q/5ik7YFlI+K7Zd1ryUm4AjgkIs6stHFL5ASEtd/zA7+JiNeVx6cAR0WZsK+F92VtMii0c0SsUpZNJzNrLy8/V9SyVCW9LSJ+qSEmb6ts+xyyzMZBZFmMx8lA+9YlE7mpyBrY65DBuFpd5z8BX42Im8v27wOq2bYH190/IiIWHOoYVVkD+s3l7/B6cmLEA8hg6poRsWNp6xZyosDHyv1FyTIZsyZaLp+dfcgSHyJHsJ4QdQGJktDwunL3sog4p+7xIY+pJX2UDO7+irrPUnm8LRO61f2Nnwfujogrmzw+K3gcOYFfy5/p8vgUsixGteRHRyeKmww0eOLIWu1gaHNwz7EkmywcYG6RpB3IK9mbABeQX64nRMRKQz3PZifppohYd7hlZtZ7kq6LiPWbPDbopNPMzMzGN2W64OuiTDRXhqu/isEZpbdExCGV58x2PNAgML0geR71BjJ4uDhZGqJWm3lQPd8iIuLlkq4EdomIe8u6N5FzuMwHnBwRb6q0c01EbCjpanKY/WPkZOKrVNa5KiI2bvDaHyXrA19JloK4JhpMOljWXb68jk3I7N0nxnIuU4KmCwEXRMRzZdmw9YaH2ebhw6yyQ0S8ephtzDpHk/RdYGZEHNHgsV2BL5OlQ0ReSDgsIn46mr63StLiwKPVILWk/cl6008wENiNajBPQ0zoJumzQzQZEXHkMH0aNnjc5DO9OTA/s3+mDwAOJy9qvMBA8PNV2LjgWJJNFi6R0aKI+AXwC0nzkZNCHETWYzqWvGJ/YQ+7N948qqzDVjtQ3ZWcMMxaJJcZGTckPUXjIVfjpVbUwkM8Nm7Kskjas9HyiDit230xMzPrtWGCaEj6B62XyPqHpE8DPyr3dwP+UbfOFZWfY+qPWYcJtMxVC8TVthURj5LnFPPVrfsr5SRvRzNQOuKEunVuknQeOZfJ05XlK5ET2L2WLO3wmhL4vhK4MiLOgFnH4ZuQAeZ1gNvL66Jst6laGYf64HGjEW0xTL3hkiH7EaAWgL4D+Hbt2CaGqK1cnv9+Da41XN/+14E5Jc0ZEc+TQf19K6tUs2lPl3QpA5NBHhJlQnfNXu6jvp1qlvNG5DnOmuSEg1OAp0um9UZkEPsx4EhyNOziwByS9oyIC8pmPgasEhGPNHnd85LZ3CtExPslrSpp9RiYlPDpBk+bj8y+XkxZl7zpsT05oWN14ra5gNdQgsfk567RZ/ox4LEGn+kDgdXLZ97GIceSbLJwgHmEIuJpsrzDTyQtQg4jO4ScLdha817ywOEb5JfwH8nhYda6k8nP4bvK/d3LMpcZ6TMR0XDm6XFkmqT3R8Tx1YXKmc+vb/KcflTNwn4peZJ0AzlxipmZ2WQzZBAN2IBSPzciZtWJLSWyvglUS2TtSmZY1koZXFaWzTJctqWklwAfJDNfIScV/EHJLF2kblsfrtxdojx/feDeWnZpKY1xK/Bn8pyj6qVkcku1TFaU13lh+aEEg2olLD4MnFHW/TtwHVkq7AN1294YuJdMpLmGunq6lcZamawOmtQbJieZP4gMlN5Q2lkP+IqkiIhaKcJqYsomZdHlZNByChn0HGqm8NPJ2smPAP8uz63N0TGrbrGki0vW7XkNlr2DLO9QDagCLAc8WLfsGDI4eyZZU3pPYLXKY58kM70vAbaKiKuVtcRPJzNDAaYzUOqgkZPJY9haFvv9pb1fAUTE1yqvYQHyvdqbzDr9GsMnWJzVQvB42M90xb0MrhFt45RjSTbRuUSG2TjkMiPWLZKWJE8Yn2PwJDJzAW+vZaeMNyW76acR8dZe98XMzKyXKkG0fcgg6teAX7ejRJaaTCBXU8noPQF4CVCrUbwH8EJEvE/Sj8l6vvUXu/cj6/7u2mqt4GH6ujSZvfxaBi5MXw9cDVwVEfeU9dYhM7pfT05ueBfwh4g4sWQmb0EG2F8F/Bo4PSJub9DeZcCryUkIG01W17TeMHAUWWLh7rptrkge32xUWdZw/htgsYgYcjLk8vyNgKWAC0uArDYvzPxk3ed5ydIYmzEQrF6QLPexhkYwn4ekaRExVaWGdll2Y0S8uq4kxx0RsWbleTfWyn0oa1u/ovSpWoP5I3VtVJ9zc0SsU9neomTwfjfyM/mtiHh8iPdoVqkOSdOrJVnq1vtrRKzcyme6suxEspzHr+teT7WetplZzzmD2bpmrPWsbBCXGbGuiJxJ/rWS3khOhgJ50nlJD7vVDk8DnljDzMwmrQZBtPVqQbRyIbaZeco6rQSPv1ruvoOcpLpWRmNXsqZszfrVAB9wiaSby+2PksPL301m60KWHJgb2KHcn1KyRCHrRB8XEWcDZ5f6tsOeiwCfK9v/BnBolFrIDV7XzZL+CvyVLJOxO1lb+sSIeIHMpL1A0tzldV4q6XMRcUzpxypkRu9n6jb9OuCBurZmlc6oC2IuWB9cLuvfrax3XbVERJxcuX+KpIMY4m9Xt82rGyz7S+nTgWQm9dIMHtn2FJlxDFlqZVBwuWzj1hIQr3pG0lxkGZOjyfdjjvLYi5X1/l2/ucrtX5SfZp6TNE/tOZJWphK4VdYdfwdwHPDKiPhX9cnDleoArmky+m8/8mICtPaZrvl7+Zmr/JiZ9SVnMFvXSPpYg8WzhuJFxPxd7tK4pZxZ+jvk0K5amZGPDDPEzmzSqjsJngNYCzgjIg7tXa/MzMx6oy6I9t0GQbTTgUualMjaIiJ2rmTXzgusQn7PTqcE/+qCo9MiYmrdtmYtKxnI74qIv5b7LydLDaxXWX9zMjMVsn7xJZXHbgPWjYjnJf0Z2DcGJiq8LSLWHu5chMw83pjMYF4JuJusOX0VMC0i/lPrNxkI/CNZMuLyWnZzeXxuYBsyuLwiWTbipIi4vzw+bEbvUEFMsmzEFyPiNQ1eD5Kurz4m6WKyLEQ1MWXv8n4/1mATLSulSe4DdoyI7yjrQr+TfO+OKBnld0XEqk2ePyjbt5zjPEQGUj9KlsP4XkRMl/QCmSAg8iJHrQyGgJdGxEuG6et3yfdgXuBT5LHghWTpkPdExKVlvRfJgPPzDA5c12os/4WBUh3HMXupjreQAe7/0CB4XJI3an1q+pk2MxtvHGC2nmg0FC8iHu5tr8xsoqlkCVVH7DxPniQ8UDuRNTMzm0xaCKKtyjAlskrd5C+S86vUkhyWA04BPlnqJ9fauwPYJiJmlPsrAefXyhxIehMZBJ1RnrIisHdE/L7F1/MpYGvgEbJsxXol03cV4NSI2KRu/WHPRUp27dvKestGxEvL8iUiYmaTfpxGjvg6nyxVcVuDda4brvxICWIPFcRcnQzmz7YJ4OURMV9lmx1LTGmlNEkrFyvqls8DLB8Rd46wL0NOJgicSNZ3Xgq4iPzM3gBcE00mBGzSTqulOtoSPJa0BPCJsq2X1pZHxOZNn2Rm1gMOMFtXjbSelQ3mMiNmIzOSun9mZmY2WF2JrPqs4W+QdXgPjoinyrIFybIYz0TEQZV130oGSmeQQdAVgP3IDN17S8B67rJsBzJ4euhIMmyHqhUcETeU+0Oei5QAbq0O8ybAwmQN5isj4quV9bZh9oDf50vgvlZPebbAfUQs2EpG73BBTGYvozBINaO6k6q1i0uG8MyIOKLcvyki1tUI5vOQ9Dby8zNXRKwkaV3g81GpSz1EX1YY6vEYqKG9Ahlo3oXMhP4JeTHgLy2+5htqmfXV243ut4OkC4GfAR8HPgDsRb7Ph7SzHTOzsXKA2bpmuKF4NjyXGTEbmVayhLrdJzMzs4lA0l3AalF3Qqmc6O7P9UHUEkBeo9z9c0T8p5UM2Db2d7iyII8A/yBLYlwJ/DEiZssSlvR9sszCG4ETgB2BayNinxb70Ur5kTEHMbuRmNJKaZLKuk0vVlTWuR7YnJwAr5YJPOrjNVXqVjd5/NXAScCrImJKi9scU6mOkaqVPNHgiQ+bHt+amfWKA8zWNcMNxYuI+gkpbAguM2I2vJHU/TMzM7PWSfpLRKw21GOSPhERR5dl74qIMyvrfIksmzFkBmwb+ztcWZDlIuLJFrZzS0S8qvJ7fuA3EfG6FvsxbEbvcEFM4Fkal4OoZkp3PDFlpKVJWtje1RGxUV2piVmB1WGeO2Td6oi4oKw3J7AVmcH8JuBS4PSIOHckfe2WynvyW+Db5EWQsyJi5R53zcxskDmHX8WsPSJijuHXsuE0GNo3a8ZvM5vNNDWeyft9DJ7t3MzMzEbmT5L2jIjTqgsl7Q78udzdBTi63D4MOLOy6luBKZLmjIjnyWDfvpXH23quOty5iKTPShri6bMyfv9dfj8jaWkyoLnUCPrxEPDauozeX1czelvNph2mna/VblcSU/Yms8S/1ux5I2zji8pJBGulSaoTKh8wik3eLund5OdiVeAjZM3oVhzDQN3qS6irW12C9ruSAfFryfdh31o5lT72BUkLAR8ja2kvCBzU0x6ZmTXgDGazccRlRsxGZiR1/8zMzKx1kpYBfk4GXKvfsfOQ37H312Wizrpduw+cRRszYMf4ehpl/M4LvI9Kxq+kz5CBvs2B75b1ToiIz3SloyMw3ua/kTQv8ClgSzIb+7fAkRHxbAvPHa5u9eNkveWz+/k9aIWkgyLim73uh5lZlQPMZuOIy4yYjU4rdf/MzMxs5CRtTk54B/CniLi48tiwtYRbmZyv2xqVoiMnJry3dnFa0p5ALVv7iBjBhITdMNkSU7o9+V4vSfp7RCzf636YmVU5wGxmZmZmZmZt1+0J0cZqqIzfbk5I2A7jKTFF0nlDPR4R27WwjXH1WRsLSfdGxHK97oeZWZVrMJuZmZmZmVnbtaOWcLfUZfy+skHG75RKlvLOwHERcTZwtqSbutfT1oyz+W82Bu4FTgeuIYPCIzKePmtt4CxBM+s7zmA2MzMzMzOzSW24jF/g78C6EfG8pD+TE8RdVp57W0SsXb9Na42kKcAW5CR8rwJ+DZweEbf3tGM9JOkpGgeSBcwTEU4WNLO+4p2SmZmZmZmZTWrDZfxK+hTwB0mPkBMbXl6WrwI82fkeTlwR8QJwAXCBpLnJQPOlkj4XEcf0tne9EREL9LoPZmYj4QxmMzMzMzMzs2H044SEE0UJLG9DBpdXBM4DToqI+3vZLzMza40DzGZmZmZmZmbWE5JOA9YGzgd+GhG39bhLZmY2Qg4wm5mZmZmZmVlPlPrXT5e7s9W/jogFu98rMzMbCQeYzczMzMzMzMzMzGxUhpzIwMzMzMzMzMzMzMysGQeYzczMzMzMzMzMzGxUHGA2MzMzMzMzMzMzs1FxgNnMzMzMzMzMzMzMRsUBZjMzMzMzMzMzMzMbFQeYzczMzMzMzMzMzGxUHGA2MzMzMzMzMzMzs1FxgNnMzMzMzMzMzMzMRsUBZjMzMzMzMzMzMzMbFQeYu0jS9yV9pk3bWl7SvyRNKfcvlfS+dmy7bO83kvZq1/ZG0O4XJD0i6cFut92gL7PeU0m7SbpwiHVfJ+nO7vXObPS8L2qp3THtiySFpFWaPPYeSVeMrYdm/cn7l5ba7ZtjnX7gfaJ1ivdHLbXbk/2RpE0k3VXe0x063NYRkn7UyTbM6nn/01K7E37/U9fuhD/ecYC5TSTdLenfkp6S9ISkP0r6gKRZ73FEfCAijmxxW28eap2I+HtEzB8RL7Sh77N96UbEVhFx6li3PcJ+LA98DFgrIv6nyToLSvqmpL+XHcJfy/3FO9m3iPhxRGxZ6ceg4FFEXB4Rq7e7XUmrSTpX0kxJj0n6raS2t2MTh/dFYzfcvkjSZpJeLPugf0m6X9LnutCv71fafE7Sfyv3f9Pp9s28fxm7Fvcv9zVY3taTybGS9ApJF5ZjkyckXS9p6/JYw9dg1k7eH43dCI93npJ0p6S929T854Fjynv6iwZtb1r+pk+W/cyVktYvj034II31N+9/xq7P9z93l3OtxeuW31jiQCsO14CkFcu6c7apz+OCA8zt9baIWABYAfgycAhwYrsbmcAf0uWBRyPi4UYPSpoLuBh4BfBWYEFgY+BRYINudbLLFgbOA1YHlgSuBc7tZYdsXPC+aGyG3BcV/ygHJfMDmwL7qMNXwMuBaq3NLwE/q92PiK062bZZhfcvY9PK/mU8+CVwEfA/wMuAjwD/7GmPbDLy/mhsWj7eIc+7Pgoc36ZklxWA2xs9IGlB4FfAd4BFgWWAzwH/aUO7Zu3i/c/Y9OX+p+JvwK61O5JeCczbhrYntojwTxt+gLuBN9ct2wB4EVi73D8F+EK5vTj5xfkE8BhwORnw/2F5zr+BfwGfAFYEAtgH+DtwWWXZnGV7lwL/RwYg/0kGIRctj20G3Neov2Sg9jngv6W9myvbe1+5PQfwaeAe4GHgNGCh8litH3uVvj0CfGqI92mh8vyZZXufLtt/c3nNL5Z+nNLgue8DHgLmH2L7a5a+P0HuNLarPHYK8F3g18BTwDXAypXHtwD+DDwJHAP8ofIevAe4oty+rLzmp0tfd65/j8fSj2E+Z4uWthfr9WfeP/35g/dF3dgXNXodZwCfrNwPYJVyezHyQtE/y/tyJGV/Uh7fEriT3Pd8j8q+Z4j+HwH8qNz+LvC1usfPAz5aeY8PA/4EPA6cDLy0su62wE3lM/BH4FW9/hz7pz9/8P6lJ/uX+r6W++8Hppf39Txg6bq+ztnoucAq5D7myfI6flZZbw0yaPwYuU/aqcnrW7y0sXCDx+are43/ApYGnqFy7AKsV96fl1A5xhpJP/wzuX/w/qhXxzsPA+8qt+cGvgn8o/x8E5i7sm6z/dRf697zuevamAo80eT1rAk8C7xQnvsEsD55jjilst47Ku/tEZRjpnJ/I/J45wngZmCzXn+e/TO+fvD+Z8Lufyrv16eB6yrLvgp8qrz+FcuybYAby9/gXuCIyvp/L+vWjoU2pu54ZyL+OIO5gyLiWuA+4HUNHv5YeWwJMjP1k/mU2IP8ML4tMivt6Mpz3kB+qb6lSZN7Au8FlgKeB77dQh8vYHAm3DoNVntP+Xkj8HJgfjIAW7UpmWX7JuCzktZs0uR3yB3Ny8vr2RPYOyJ+B2zFQFbgexo8983ABRHxr0YblvQSMqPmQjKb5gDgx3VXuXYhr4AvQu5wvlieuzjwc3JHsji549mkUTsR8fpyc53S15+1qx8teD3wYEQ82uL6Zt4XNTaWfdEgklYl9xdXN1nlu+TJ0FLk+/LeynMXB84iA8CLkcGU1w7XZp1TgV1rw/LKNt8M/KSyzm7k32tlYDVyX4ekVwMnAfuV9n8AnCdp7hH2wSYp718aatv+pRFJm5MnljuR78M9wE9bfPqR5PHJIsCypa9Imo8M6v6EPHbZBfiepLUabONR8tjlR5J2kLRk7YGIeJrBr3H+iPgHefK6U2UbewA/jYj/1r22kfTDbBDvjxpqy/5I0hyStiPPk6aXxZ8ig7XrAuuQAbba8UXT/VRErMzg97w+M/kvwAuSTpW0laRFag9ExB3AB4CrynMXjojryP3SlpVt7EEGtupfxzJkks8XyMSdjwNnS1piqNdvNhzvfxoaj/ufmquBBSWtqax9vQtQX8v96fKaFiaDzR+sjGitxYwWLu1cNdRrnCgcYO68f5BfXvX+S37YV4iI/0bW8I1htnVERDwdEf9u8vgPI+K2cnD/GWCn8s8wVrsBX4+IGSW4exiwS91wjc9FxL8j4mbySvBsO6vKP+ZhEfFURNwNfI08AGjFYsADQzy+EbkD/HJEPBcRl5BXCnetrHNORFwbEc8DPyZ3SABbA7dHxFnlZOebwGiLzY+lH01JWpYMVB08yn7Z5OZ9UdGGfRHA0qXm2j/JE6FrgNnqAZa23gl8trxnt5EB4ZravufnZX/wbUa47ykHtE+SB3mU13ZpRDxUWe2YiLg3Ih4jL2jV9kf7Aj+IiGsi4oXI+mv/IfdjZq3y/qVo8/5l1g95Mlft60kRcUM5MToM2LiVmoDk32QFMpPn2Yio7be2Be6OiJMj4vmIuBE4G3hX/QbK3/CNZIbP14AHJF1WLrY1cyqwO8x6j3YlM7fqtdwPsya8PyrauT8is/3OAQ4u/5e1fn4+Ih6OiJlk8swelcdGtZ+KiH+S+7wAjgdmSjqvejGrgeo+ZlEyKPeTBuvtDpwfEedHxIsRcREwjTweMxsr73+K8br/qfNDMoC8BXAHcH/1wYi4NCJuLfuSW4DTyUD6pOUAc+ctQ6bl1/sKefXlQkkzJB3awrbuHcHj95DDDtsx+d3SZXvVbc9JXn2rqQZEniEDrPUWL32q39YyLfbjUXLHPFQ/742IF4fYfrN+Lk3l/Ss7/OHe7070o6FyVf1C4HsRcfoo+2WTm/dFA8a6L4K84r5wRCxIXrX+N4MDxzVLlD7Wvyc1jfY9o5kca9aJVfldH7ipb3/pcnsF4GN1gazlKo+btcL7lwHt3L/M+mHwBaxBfS0ngI+22MYnAAHXSrpdUm1ExQrAhnX7gt3IGsuziYj7IuLDkZlAK5BZPLNlC1acC6wlaSXyRO3JcnGs3oj6YdaA90cD2rY/ImugfhvYfJh+Lt3osRHup4iIOyLiPRGxLLB22d43h3jKj4C3lVEQOwGXR0SjxKQVgHc1uIA31DmmWau8/xkwbvc/FT8E3k1mdDcaEbGhpN9LminpSXJ0RTv+BuOWA8wdpJzpdhkaZLWVqzgfi4iXA9sBB0uqZZ81u5o13FWu5Sq3lyevlD1CHvTPKkheriZVhwENt91/kF/G1W0/T9a6GolHGMicqW7r/sarz+Z3wFvKgUOzfi6nyuytI9j+A1TeP0li8Ps5EmPpx2zKsLALgfMiotVSGmazeF80m7HuiwaJiCfJLJm3NXh4Zulj/XtS8wA5TB2Yte9ZlpH7EbC9pHXI4XS/qHu8vv1/lNv3Al+sC2bN6wtZ1irvX2bT1v1LE4P6Wo6LFittPF0WVyeimRWcjYgHI+L9EbE0WRrne5JWIfcFf6jbF8wfER8crjMRcS85wmrt2qIG6zxL1qrfncwwapS9zFj6Yeb90Wzatj8qWYCHAK+sDAFv1M9/NHqsbj810rb/TNazHWofcz9wFVl7ebh9zA/r9jHzRcSXR9ovsyrvf2Yz7vc/EXEPOdnf1mQ51Xo/Ies7LxcRCwHfJy/iw/Dv84TkAHMHSFpQ0rZknZcfRcStDdbZVtIqJZjwJDlRQS3j9SGyTs1I7S5pLUnzAp8HzoqIF8jh2y+VtI2yPvCnyaLoNQ8BK9YFRKtOBz4qaSVJ8zNQt+f5kXSu9OUM4IuSFpC0Alnuob6WTTM/JA8Kzpa0RqnFs5ikT0ramhyi/gzwCUkvkbQZGfBppS7hr4FXSHpHGf7xEYbOlhnqbzSWfgyinEX5t8CVEdHKlU6zWbwvaqwN+6JBSl92ocFsxKWtnwNHSJpXWUd0r8oqv6YcLJV9z/6MIlMvIu4DriP3k2c3GE63v6Rly7DRTwG12vHHAx8oV+Alab7y91lgpH2wycX7l8bavX8Zoq97S1pXWS/9S8A1EXF3GSZ6P/k+TVFmKK9ce6KkdylLbkFO+hnk3+RXwGqS9ijHLi+RtL4a1FWUtIikz5W/7RzKuu/vZaAO/UPAYpIWqnvqaWQW0HY0D/603A+zGu+PGmv3/iginiOHuH+20s9PS1qi7Ac+W9l20/3UcO2U87yP1fZVkpYjy+pU9zHLSpqr7qmnkaM0XknjYBAMZDq/pewjXypps8p+0WxEvP9pbLzufxrYB9i8lCKptwDwWEQ8K2kDMtu5Zib5Nx7N33bccoC5vX4p6SkyCPop4OvA3k3WXZXMyP0XebX1exHx+/LY/5H/LE9I+vgI2v8heXX3QeClZJC0ll33IeAEBrJbqkOwzyy/H5V0Q4PtnlS2fRl5BedZcuK60TigtD+DvLr3k7L9YZUrV28G/kxOAPNPcubUxckdxnNkIHcr8orZ94A9y1Xv4bb9CFnf78vk8IlVgSuHeMoRwKnlb1SdtIax9KOBt5MzI+8t6V+Vn+WHe6JNat4XDW/U+6Ji6dr/IzkEa1FyGHcjHyaHjj1Ivi8n1x6o7HuOJvc9a5G1AJtNODGUU8mTqkaBm5+QIyFmkJOYfqG0P42cZfkYMtg0nQwAmTXj/cvwxrp/GVLk5DifIWsTP0AGkHeprPJ+4H/JfcorgD9WHlsfuKbsu84DDoyss/gUOUHWLmTmz4PAUQw+Ka15jpxJ/nfksdht5D7rPaV/fyZP7maUv+/SZfmV5MnWDSUrqNFrG0k/zLw/Gl6790cnActLeht5LDENuAW4FbiBgeOL4fZTQ3kK2JDcVz1NBpZvIydKA7iEvKj/oKRHKs87h8xaPCcinmm04TLiYntykrWZ5Gfnf3FcxEbO+5/hjcf9zyAR8ddyvtTIh4DPl8/BZ8mAeu15z5Dz3lxZ/raTYn4bxbC1xc3MzKwbSjbBfcBulQPPVp/7evLK/QpR+XKXdDfwvnKwZWbWM5IuAX4SESf0ui9mNvFI+iuwn495zMy6z1fqzMzMeqgM01y4DOH6JFm76+phnla/jZcABwInhK8cm1kfUtanXI+BEj1mZm0j6Z1k2Z9Let0XM7PJaM5ed8DMzGyS25gcMjYX8CdghwY1lJsqtUmnATfTfGiemVnPSDoV2IEsyfFUj7tjZhOMpEvJMmN7RMSLw6xuZmYd4BIZZmZmZmZmZmZmZjYqLpFhZmZmZmZmZmZmZqPiALOZmZmZmZmZmZmZjUpf12BefPHFY8UVV+x1N8xsDK6//vpHImKJXvdjJLzvMRvfvN8xs27zfsfMus37HTPrhWb7nr4OMK+44opMmzat190wszGQdE+v+zBS3veYjW/e75hZt3m/Y2bd5v2OmfVCs32PS2SYmZmZmZmZmZmZ2ag4wGxmZmZmZmZmZmZmo+IAs5mZmZmZmZmZmZmNigPMZmZmZmZmZmZmZjYqDjCbmZmZmZmZmZmZ2ajM2esOjMWKh/561M+9+8vbtLEnZjaZjWVf1Arvr8wmNx/vmFkvtfs4x/slMxtKO/Y53s+YdZ8zmM3MzMzMzMzMzMxsVBxgNjMzMzMzMzMzM7NRcYDZzMzMzMzMzMzMzEbFAWYzMzMzMzMzMzMzGxUHmM3MzMzMzMzMzMxsVBxgNjMzMzMzMzMzM7NRcYDZzMzMzMzMzMzMzEbFAWYzMzMzMzMzs0lA0nKSfi/pT5Jul3RgWb6opIsk3VV+L1KWS9K3JU2XdIuk9Srb2qusf5ekvXr1msys94YNMHvnY2ZmZmZmZmY2ITwPfCwi1gI2AvaXtBZwKHBxRKwKXFzuA2wFrFp+9gWOhYwJAYcDGwIbAIfX4kJmNvm0ksHsnY+ZmZmZmZmZ2TgXEQ9ExA3l9lPAHcAywPbAqWW1U4Edyu3tgdMiXQ0sLGkp4C3ARRHxWEQ8DlwEvLV7r8TM+smwAWbvfMzMzMzMzMzMJhZJKwKvBq4BloyIB8pDDwJLltvLAPdWnnZfWdZseX0b+0qaJmnazJkz2/sCzKxvjKgGs3c+ZmZmNlFJOknSw5JuqyxzSTAzMzObcCTND5wNHBQR/6w+FhEBRDvaiYjjImJqRExdYokl2rFJM+tDLQeYvfMxMzOzCe4UZh9d5ZJgZmZmNqFIegkZ3/lxRPy8LH6ojD6n/H64LL8fWK7y9GXLsmbLzWwSainA7J2PmZmZTXQRcRnwWN1ilwQzMzOzCUOSgBOBOyLi65WHzgNqI6/2As6tLN+zjN7aCHiyjGb/LbClpEXKxfQtyzIzm4SGDTB752NmZmaTWEdKgpmZmZn1yCbAHsDmkm4qP1sDXwa2kHQX8OZyH+B8YAYwHTge+BBARDwGHAlcV34+X5aZ2SQ0Zwvr1HY+t0q6qSz7JLmzOUPSPsA9wE7lsfOBrcmdzzPA3pA7H0m1nQ9452NmZmbjSESEpLaUBIOcd4Isr8Hyyy/frs2amZmZNRURVwBq8vCbGqwfwP5NtnUScFL7emdm49WwAWbvfMzMzGwSe0jSUhHxwAhKgm1Wt/zSRhuOiOOA4wCmTp3atsC1mZmZmZlZN7U8yZ+ZmZnZJOSSYGbWMZJOkvSwpNsqy46QdH/d0PXaY4dJmi7pTklvqSx/a1k2XdKh9e2YmZmZdVIrJTLMzMzMJjxJp5PZx4tLug84HJcEM7POOgU4Bjitbvk3IuKr1QWS1gJ2AV4BLA38TtJq5eHvAluQdd+vk3ReRPypkx03MzMzq3GA2czMzAyIiF2bPOSSYGbWERFxmaQVW1x9e+CnEfEf4G+SpgMblMemR8QMAEk/Les6wGxmZmZd4RIZZmZmZmZm/eXDkm4pJTQWKcuWAe6trHNfWdZs+Wwk7StpmqRpM2fO7ES/zczMbBJygNnMzMzMzKx/HAusDKwLPAB8rV0bjojjImJqRExdYokl2rVZMzMzm+QcYDazvuMJb8zMzGyyioiHIuKFiHgROJ6BMhj3A8tVVl22LGu23MzMzKwrHGA2s350CvDWBsu/ERHrlp/zYbYJb94KfE/SFElTyAlvtgLWAnYt65qZmZn1LUlLVe6+HahdcD8P2EXS3JJWAlYFriUnFV1V0kqS5iKPi87rZp/NzMxscvMkf2bWdzzhjZmZmU0Gkk4HNgMWl3QfcDiwmaR1gQDuBvYDiIjbJZ1BHss8D+wfES+U7XwY+C0wBTgpIm7v7isxMzOzycwBZjMbTz4saU9gGvCxiHicnMTm6so61Ylt6ie82bDZhiXtC+wLsPzyy7ezz2ZmZmYNRcSuDRafOMT6XwS+2GD5+cD5beyamZmZWctcIsPMxouOTXgDnvTGzMzMzMzMzGw0nMFsZuNCRDxUuy3peOBX5e5QE9t4whszMzMzMzMzsw5yBrOZjQue8MbMzMzMzMzMrP84g9nM+o4nvDEzMzMzMzMzGx8cYDazvuMJb8zMzMzMzMzMxgeXyDAzMzMzMzMzMzOzUXGA2czMzMzMzMzMzMxGxQFmMzMzMzMzMzMzMxsVB5jNzMzMzMzMzMzMbFQcYDYzMzMzMzMzMzOzUXGA2czMzMzMzMzMzMxGxQFmMzMzMzMzMzMzMxsVB5jNzMzMhiHpo5Jul3SbpNMlvVTSSpKukTRd0s8kzVXWnbvcn14eX7HH3TczMzMzM+sYB5jNzMzMhiBpGeAjwNSIWBuYAuwCHAV8IyJWAR4H9ilP2Qd4vCz/RlnPzMzMzMxsQnKA2czMzGx4cwLzSJoTmBd4ANgcOKs8fiqwQ7m9fblPefxNktS9rpqZmZmZmXWPA8xmZmZmQ4iI+4GvAn8nA8tPAtcDT0TE82W1+4Blyu1lgHvLc58v6y9Wv11J+0qaJmnazJkzO/sizMzMzMzMOmTYALOkkyQ9LOm2yrIjJN0v6abys3XlscNKzcE7Jb2lsvytZdl0SYe2/6WYmZmZtZ+kRcis5JWApYH5gLeOdbsRcVxETI2IqUssscRYN2dmZmY2LMd4zKwTWslgPoXGJ1HfiIh1y8/5AJLWImsSvqI853uSpkiaAnwX2ApYC9i1rGtmZmbW794M/C0iZkbEf4GfA5sAC5eSGQDLAveX2/cDywGUxxcCHu1ul83MzMwaOgXHeMyszYYNMEfEZcBjLW5ve+CnEfGfiPgbMB3YoPxMj4gZEfEc8NOyrpmZmVm/+zuwkaR5Sy3lNwF/An4P7FjW2Qs4t9w+r9ynPH5JREQX+2tmZmbWkGM8ZtYJY6nB/GFJt5ThFYuUZbNqDha1eoTNls/G9QjNzMysn0TENeRkfTcAt5LHT8cBhwAHS5pO1lg+sTzlRGCxsvxgwMNGzczMrN85xmNmozbaAPOxwMrAuuRkN19rV4dcj9DMzMz6TUQcHhFrRMTaEbFHyeSZEREbRMQqEfGuiPhPWffZcn+V8viMXvffzMzMbAiO8ZjZmMw5/Cqzi4iHarclHQ/8qtydVXOwqNYjbLbczMzMzMzMzMx6wDEeMxurUWUwS1qqcvftQG320fOAXSTNLWklYFXgWuA6YFVJK0maiywSf97ou21mZmZmZmZmZmPlGI+ZjdWwGcySTgc2AxaXdB9wOLCZpHWBAO4G9gOIiNslnUFOfPM8sH9EvFC282Hgt8AU4KSIuL3dL8bMzMzMzMzMzBpzjMfMOmHYAHNE7Npg8YkNltXW/yLwxQbLzwfOH1HvzMzMzMzMzMysLRzjMbNOGO0kf2ZmZmZmZmZmZmY2yTnAbGZmZmZmZmZmZmaj4gCzmZmZmZmZmZmZmY2KA8xmZmZmZmZmZmZmNioOMJuZmZmZmZmZmZnZqDjAbGZmZmZmZmZmZmaj4gCzmZmZmZmZmZmZmY2KA8xmZmZmZmZmZmZmNioOMJuZmZmZmfWApJMkPSzptsqyRSVdJOmu8nuRslySvi1puqRbJK1Xec5eZf27JO3Vi9diZmZmk5cDzGZmZmZmZr1xCvDWumWHAhdHxKrAxeU+wFbAquVnX+BYyIA0cDiwIbABcHgtKG1mZmbWDXP2ugNmZmZm1n9WPPTXY3r+3V/epk09MZu4IuIySSvWLd4e2KzcPhW4FDikLD8tIgK4WtLCkpYq614UEY8BSLqIDFqf3un+m5mZmYEzmM3MzMzMzPrJkhHxQLn9ILBkub0McG9lvfvKsmbLzczMzLrCAWYz60uuSWhmZmaTXclWjnZtT9K+kqZJmjZz5sx2bdbMzMwmOQeYzaxfnYJrEpqZmdnk81ApfUH5/XBZfj+wXGW9ZcuyZstnExHHRcTUiJi6xBJLtL3jZmZmNjk5wGxmfSkiLgMeq1u8PVmLkPJ7h8ry0yJdDdRqEr6FUpMwIh4HajUJzcxGpNQ6PUvSnyXdIWnj0YyqMDNrwXlAbdTVXsC5leV7ln3MRsCTpZTGb4EtJS1S9kNblmVmZmZmXeEAs5mNJx2rSegho2Y2jG8BF0TEGsA6wB2McFSFmVk9SacDVwGrS7pP0j7Al4EtJN0FvLncBzgfmAFMB44HPgRQJvc7Eriu/Hy+NuGfmZmZWTfM2esOmJmNRkSEpLbVJIyI44DjAKZOndq27ZrZ+CdpIeD1wHsAIuI54DlJ2wObldVOBS4FDqEyqgK4umQ/L1W5QGZmBkBE7NrkoTc1WDeA/Zts5yTgpDZ2zczMzKxlzmA2s/GkYzUJzcyGsBIwEzhZ0o2STpA0HyMfVTGIR06YmZmZmdlE4ACzmY0nrkloZr0wJ7AecGxEvBp4moFyGMCszMIRjX7wZFtmZmZmZjYROMBsZn3JNQnNrI/cB9wXEdeU+2eRAeeRjqowMzMzMzObcFyD2cz6kmsSmlm/iIgHJd0rafWIuJPcD/2p/OxFXuyqH1XxYUk/BTZkYFSFmZmZmZnZhOMAs5mZmdnwDgB+LGkucsTE3uRIsDPKCIt7gJ3KuucDW5OjKp4p65qZmZmZmU1IDjCbmZmZDSMibgKmNnhoRKMqzMzMzMzMJhrXYDYzMzMzMzMzMzOzUXGA2czMzMzMzMzMzMxGxQFmMzMzMzMzM7NJQNJJkh6WdFtl2aKSLpJ0V/m9SFkuSd+WNF3SLZLWqzxnr7L+XZL26sVrMbP+MWyA2TsfMzMzMzMzM7MJ4RTgrXXLDgUujohVgYvLfYCtgFXLz77AsZAxIeBwYENgA+DwWlzIzCanVjKYT8E7HzMzMzMzMzOzcS0iLgMeq1u8PXBquX0qsENl+WmRrgYWlrQU8Bbgooh4LCIeBy5i9riRmU0iwwaYvfMxMzMzMzMzM5uwloyIB8rtB4Ely+1lgHsr691XljVbPhtJ+0qaJmnazJkz29trM+sbo63B7J2PmZmZmZmZmdkEEhEBRBu3d1xETI2IqUsssUS7NmtmfWbMk/x552NmZmZmZmZmNm49VEafU34/XJbfDyxXWW/ZsqzZcjObpEYbYPbOx8zMzMzMzMxs/DsP2Kvc3gs4t7J8T6WNgCfLaPbfAltKWqTMr7VlWWZmk9RoA8ze+ZiZmZmZmZmZjSOSTgeuAlaXdJ+kfYAvA1tIugt4c7kPcD4wA5gOHA98CCAiHgOOBK4rP58vy8xskppzuBXKzmczYHFJ9wGHkzubM8qO6B5gp7L6+cDW5M7nGWBvyJ2PpNrOB7zzMTMzMzMzMzPrqojYtclDb2qwbgD7N9nOScBJbeyamY1jwwaYvfMxMzMzMzMzMzMzs0bGPMmfmZmZmZmZmZmZmU1ODjCbmZmZmZmZmZmZ2ag4wGxmZmZmZmZmZmZmo+IAs5mZmZmZmZmZmZmNigPMZmZmZmZmZmZmZjYqDjCbmZmZmZmZmZmZ2ag4wGxmZmY2DElTJN0o6Vfl/kqSrpE0XdLPJM1Vls9d7k8vj6/Y046bmZmZmZl1mAPMZmZmZsM7ELijcv8o4BsRsQrwOLBPWb4P8HhZ/o2ynpmZmZmZ2YTlALOZmZnZECQtC2wDnFDuC9gcOKusciqwQ7m9fblPefxNZX0zMzMzM7MJyQFmMzMzs6F9E/gE8GK5vxjwREQ8X+7fByxTbi8D3AtQHn+yrD8bSftKmiZp2syZMzvUdTMzMzMzs85ygNnMzMysCUnbAg9HxPXt3nZEHBcRUyNi6hJLLNHuzZuZmZmZmXXFnL3ugJmZmVkf2wTYTtLWwEuBBYFvAQtLmrNkKS8L3F/Wvx9YDrhP0pzAQsCj3e+2mZmZmZlZdziD2czMzKyJiDgsIpaNiBWBXYBLImI34PfAjmW1vYBzy+3zyn3K45dERHSxy2ZmZmZmZl3lALOZmZnZyB0CHCxpOllj+cSy/ERgsbL8YODQHvXPzMzMzMysK1wiw8zMzKwFEXEpcGm5PQPYoME6zwLv6mrHzMzMzMzMesgZzGZmZmZmZmZmZmY2Kg4wm5mZmZmZ9RlJd0u6VdJNkqaVZYtKukjSXeX3ImW5JH1b0nRJt0har7e9NzMzs8nEAWYzMzMzM7P+9MaIWDcippb7hwIXR8SqwMUM1HnfCli1/OwLHNv1npqZmdmk5QCzmY07zugxMzOzSWp74NRy+1Rgh8ry0yJdDSwsaake9M/MzMwmIQeYzWy8ckaPmZmZTWQBXCjpekn7lmVLRsQD5faDwJLl9jLAvZXn3leWmZmZmXXcnL3ugJlZm2wPbFZunwpcChxCJaMHuFrSwpKWqpycmZmZmfWjTSPifkkvAy6S9OfqgxERkmIkGyyB6n0Bll9++fb11MzMzCY1ZzCb2XjU9oweSftKmiZp2syZMzvVbzMzM7OWRMT95ffDwDnABsBDtdIX5ffDZfX7geUqT1+2LKvf5nERMTUipi6xxBKd7L6ZmZlNIg4wm9l4tGlErEeWv9hf0uurD5Zs5RFl9PiEy8zMzPqFpPkkLVC7DWwJ3AacB+xVVtsLOLfcPg/Ys8w9sRHwpEdrmZmZWbe4RIaZjTvVjB5JgzJ6IuKB0WT0mJmZmfWRJYFzJEGes/0kIi6QdB1whqR9gHuAncr65wNbA9OBZ4C9u99lMzMzm6wcYDazcaVk8cwREU9VMno+z0BGz5eZPaPnw5J+CmyIM3rMzMysz0XEDGCdBssfBd7UYHkA+3eha2ZmZmazGVOAWdLdwFPAC8DzETFV0qLAz4AVgbuBnSLiceXl92+RV9afAd4TETeMpX0zm5Sc0WNmZmZmZtZmjvGY2Wi1I4P5jRHxSOX+ocDFEfFlSYeW+4eQtVJXLT8bAseW32ZmLXNGj5mZmZmZWcc4xmNmI9aJEhnbA5uV26cCl5I7n+2B00qw52pJC9fqpXagD2ZmZmZmZjbBrXjor9u6vbu/vE1bt2c2ATjGY2bDmmOMzw/gQknXS9q3LFuyskN5kBzODrAMcG/lufeVZYNI2lfSNEnTZs6cOcbumZmZmZmZmZlZCxzjMbNRGWsG86YRcb+klwEXSfpz9cGICEkxkg1GxHHAcQBTp04d0XPNzMzMzMzMzGxUHOMxs1EZUwZzRNxffj8MnANsADwkaSmA8vvhsvr9wHKVpy9blpmZmZmZmZmZWQ85xmNmozXqALOk+SQtULsNbAncBpwH7FVW2ws4t9w+D9hTaSPgSdfmMTMzMzMzMzPrLcd4zGwsxlIiY0ngHEm17fwkIi6QdB1whqR9gHuAncr65wNbA9OBZ4C9x9C2mZmZWVdIWg44jTz2CeC4iPiWpEWBnwErAncDO0XE48qDo2+Rxz3PAO+JiBt60ffxaiyTdnmCLjMzs1FxjMfMRm3UAeaImAGs02D5o8CbGiwPYP/RtmdmZmbWI88DH4uIG0pmz/WSLgLeA1wcEV+WdChwKDmr+lbAquVnQ+DY8tvMzMysLznGY2ZjMaYazGZmZmYTXUQ8UMtAjoingDvIWdK3B04tq50K7FBubw+cFulqYOFa7UIzMzMzM7OJxgFmMzMzsxZJWhF4NXANsGSl1uCD5NBSyODzvZWn3VeWmZmZmZmZTTgOMJuZmZm1QNL8wNnAQRHxz+pjZZhojHB7+0qaJmnazJkz29hTMzMzMzOz7nGA2czMzGwYkl5CBpd/HBE/L4sfqpW+KL8fLsvvB5arPH3ZsmyQiDguIqZGxNQllliic503MzMzMzPrIAeYzczMzIagnE79ROCOiPh65aHzgL3K7b2AcyvL91TaCHiyUkrDzMzMzMxsQpmz1x0wMzMz63ObAHsAt0q6qSz7JPBl4AxJ+wD3ADuVx84HtgamA88Ae3e1t2ZmZmZmZl3kALOZmZnZECLiCkBNHn5Tg/UD2L+jnTIzMzMzM+sTLpFhZmZmZmZmZmZmZqPiALOZmZmZmZmZmZmZjYoDzGZmZmZmZmZmZmY2Kg4wm5mZmZmZmZmZmdmoOMBsZmZmZmZmZmZmZqPiALOZmZmZmZmZmZmZjYoDzGZmZmZmZmZmZmY2KnP2ugNmZtZbKx76645u/+4vb9PR7ZuZmZmZmZlZ7ziD2czMzMzMzMzMzMxGxRnMZmZmZmaMbUSHR2uYmZmZ2WTlDGYzMzMzMzMzMzMzGxUHmM3MzMzMzMzMzMxsVBxgNjMzMzMzMzMzM7NRcQ1mMzMzM7Mecu1nMzMzMxvPnMFsZmZmZmZmZmZmZqPiDGYzMxvXxpL51wpnB5qZmZmZmZk15wCzmZlZjzlIbmZmZmZmZuOVA8xmZmY2Jg6Qm5mZmZmZTV5dr8Es6a2S7pQ0XdKh3W7fzCYf73fMrNu83zGzbvN+x8y6zfsdM6vpagazpCnAd4EtgPuA6ySdFxF/6mY/zGzy8H7HzLrN+x0bL8Yy+mAsIwvGOurBoxpm5/2OmXWb9ztmVtXtEhkbANMjYgaApJ8C2wPeAZlZp3i/Y2bd5v2OWZ/qVVC9C7zf6VOdKCPV7s9iu/vY5/8r1j4Ter/Tjv8L/y/YZKKI6F5j0o7AWyPifeX+HsCGEfHhyjr7AvuWu6sDd46hycWBR8bwfLfrdvut7fHY7goRsUQ7OzMSrex3yvJ27nuG08vPbju4/7033l9Dp/s/2fY74/G7we2Oj7bdbusm236nkX7/bur3/kH/99H9G5t292+y7nf66e/cL33pl35A//SlX/oB/dOXdvWj4b6n7yb5i4jjgOPasS1J0yJiaju25Xbdbj+0Pdna7aZ27nuGM97fT/e/98b7axjv/W+Xdu13Jtt3w2Rrt5dtu92Jp5PHO/3+/vV7/6D/++j+jU2/969T2r3f6af3sV/60i/9gP7pS7/0A/qnL53uR7cn+bsfWK5yf9myzMysU7zfMbNu837HzLrN+x0z6zbvd8xslm4HmK8DVpW0kqS5gF2A87rcBzObXLzfMbNu837HzLrN+x0z6zbvd8xslq6WyIiI5yV9GPgtMAU4KSJu72CTXRnu7nYnXbu9bHuytTtmPdjvtGLcvp+F+9974/01jPf+D8nHO253ArXtdseJPjne6ff3r9/7B/3fR/dvbPq9fyPSw/1OP72P/dKXfukH9E9f+qUf0D996Wg/ujrJn5mZmZmZmZmZmZlNHN0ukWFmZmZmZmZmZmZmE4QDzGZmZmZmZmZmZmY2Kg4wm5mZmZmZmZmZmdmoOMBsZmYNSVpwiMeW72ZfzMzMzMzMeknSLZI+KWnlXvfFrN9MyACzpFdJ2k7SO2o/HW5viqQ/d7KNJu1+TdIrut1uI5KWk/S/ve7HRCRpXkmfkXR8ub+qpG173S+bFC6t3ZB0cd1jv+hqT8ZI0j5196dIOrxX/RkpSUdLWlDSSyRdLGmmpN173S+bfCQt1us+THRl//TjHrR7YPm9Sbfb7jVJr5X0bkl71n563afxQml3SZ8t95eXtEGv+1WvfIcu0Ot+jEeS3tXKMhtM0npD/fS6fzZqbwOeB86QdJ2kjzvxpn/0W+xksh1fKCJ63Ye2knQS8CrgduDFsjgi4r0dbvdc4ICI+Hsn26lr833A3sCcwMnA6RHxZBfbXwJ4F7ArsDRwTkR8vENtDfmPGBGndaLduj6sBvwvsAL5ntfa3rzD7f4MuB7YMyLWljQv8MeIWLfD7fbk9U5kkhYBlmPw+3lD73o0NEk3RsSr6283ut/vJP0EWBjYB1gUOAX4Q6f2We0m6aaIWFfS24FtgYOByyJinR53rWXlYu9RwMsAlZ+IiKaZ8tacpMUi4tEetHsXcBN53PGb6OKBpKTXAisyeB/ake9/Sd8Bmr62iPhIJ9qttH8FsHlEPNfJdurarO1nboiIrgU/JB0YEd+StElEXNmtdivt/xBYmfxcv1AWR6f/xhOFpGPJc67NI2LNcqxzYUSs3+OuASBpfeAkYAHye+cJ4L0RcX2P+/VLht7HbNfF7gyp0T6h2/uJRiQ9xdDvYU+PLyT9vtx8KTAVuJn8DL4KmBYRG/eqb+ORpFuZ/e/9JDAN+EKPjolWBT4D7BYRU3rQ/mrAscCSJU7wKmC7iPhCl9rv6bFSI72KnTTpS0+PL3rxPTPn8KuMOxtFxFo9aHcR4HZJ1wJP1xZ28uAgIk4ATpC0OhlovkXSlcDxEfH7oZ89OuXK/zuAdwOrAT8HVoqIZTvRXkWzg9TtgGWAjgeYgTOB7wPHM7CD6IaVI2JnSbsCRMQzktSFdnv1eickSUcC7wH+ysCOPoB+DthHk9uN7ve1iHi3pJ2BW8l99Lt7EcgYg9r39TbAmRHxZHd2A211NPC2iLij1x2ZIK6WdBPdD/SuBrwZeC/wbUlnAKdExF862Wizg3Q69/0/rUPbbdUM4EpJ5zH4uPLrHWzzjnIBYWlJt1SW1y4GvapD7e4NfAv4DtCLgNVUYK1uXiyZYDaMiPUk3QgQEY9LmqvXnao4EfhQRFwOIGlTcr/Zqc9zq77a4/aHJWkrYGtgGUnfrjy0IJnB2VMRsQDMOsZ+APghub/aDViqh10DICLeCCDp58B6EXFrub82cEQPuzZe/Yb8/v9Jub8LMC/wIJk48rZudUTSCsDO5ecF4BPdarvO8WRC2A8AIuKWklTTlQAzvT9WaqRXsZNGen180fXvmYkYYL5K0loR8acut/uZLrcH5DBKYI3y8wh5ZfRgSftFxC4daPJh4Frg08AVERElo66jIuKA2u2yg9gNOAS4Gvhip9svno+IY7vUVtVzkuahBPSU9Z7+04V2e/V6J6qdyC+8rmWjtcHLJB1MHqzXblPuL9G7bo1cyTA4EDgbWBPYo2RhP9PbnrXsV8pSTP8GPlhGkDzb4z6N1EMOLrdVTwK95SD5IuAiSW8EfgR8SNLNwKERcVWHmu7qQXpEnAo5xLlHI03+Wn7mIDMvOy4idpX0P8BvyQv43dKrwHbNbcD/kAEqG7n/lvOR2nHqEgyMIu0HL9SCywARcYWkfgiO/qF2uxznLx8Rd/awS438gwwgbUdmBNY8BXy0Jz1qbLu6EV3Hlu+kz/aqQ3VWrwWXASLiNklr9rJD49Sb67Lmb61l0quLZeMkXQO8BDgDeFdEzOhW2w3MGxHX1sVPu7Z/qx0r9ZlexU4a6enxRfV7plsmYoD5NDLI/CD5QerKwWkv/niSvkEOlb4E+FJEXFseOkpSpw5QDiOvFn4POL0MQegKSXOSGaAfJwPLO3b5QOyXkj4EnENlJxURj3W43cOBC4DllDUZNyGzfTqtV693orqNLNHwcI/7MRLHMxDYqN4GOKH73RmTXwIfjojflYtUBwPXAX1Rx344EXGopKOBJyPiBUlPA9v3ul8jNK18Z/yCwfuUn/esR+NYrwK9yhrMuwN7AA8BBwDnAeuSI19W6kS79O4g/Wsl6HoW8LOIuK0bjUbE5yBrCXbzQlhEPAh0tfRODwPbNYsDfyqjEKv7pr4pUdDnvk0eK75M0heBHclElH7xB0k/AE4nAw47A5eq1MDtdakySW8js8zmAlaStC7w+X74/EXEzcDNkn4SEf/tdX+G8LSk3YCfkn/jXamM/OgDt0g6gfyehkyUumWI9a2xKZI2qMU8SvmbWlmKrgRVJc0B/DwijupGey14pARQa8HUHelBMLNJKYZa+ZIfREQ3k2IaxU7e08X2q/ri+KIkWv0fsBZZsqfWj5e3va2JNhpM0nQycHArlavnEXFPh9rrSe2nEiD5NPD1iJjtC1TSQtHBesySXk4GmncFViX/kc/pVOaUpP3J7MOLgaMi4u5OtDNMH/7WYHF04h+zQduLARuRF0yuJoNMHT3Q6+XrnYgkTQXOJYMkPoHtMkkLRsQ/65at1ulsz3ZSF+vPdoKkkxssjujwHAkTVYNA74lUAr0R0ZFAr6S/kMOQT46I++oeO6RTJ13KWpbrkqOouroPLcHPncjA1IJkoLmjw08lbUz+TeePiOUlrQPsFxEf6mS7pe1NyOHbtTkYaskaE/L7X9IbGi3vRfLIeCVpDeBN5Gfl4n4araKBOriNRPR4bhFJ15Pl0i6NgXkvbo2IV/ayX1XdDE6MhqQVyTI7m5Dn5VcCB/XifLERSS8FPgi8viy6DDi2y0G3cU8D9dTnJ/c1/wTeR869tU1EnNGlfkyLiKndaGs4JSZzHPBa4HHgb2Q96I7Evobox7fI0a2nl0U7k3+fABaMiD263J9BsZOIeKSb7Vf60RfHF8p5PQ4HvkGWktkbmCMi2j7KYyIGmK+KHhTMb1b7qRN/tEqbfXHwUepI7QrsHBGrdKiNF8nMz5kMDuh3a/hkz5WLCpuT9a+3jYgle9CHucZZiYe+Iel2sj5W/cWvvj+BLZmzXyDLM1xA1i38aET8aMgn9hFJSwJfApaJiLdKWgvYOCJO7HHXWiJPQmV1ehHoLcPgj46Ij7V72y203fODdEmvJOss7hwRHa0xW4bg7gicVwk63RYRa3ey3dLOn8nh79dTmYMhOjyB0mQLbI93khYd6nGPeGuNpKsjYiMNnlj5ln46t+lmcGKkyvfSUdHnkzb3cRmUcUfSQgCdTKYbpv0vk6VJf8bgORK6vs+T9JqIuF7SfOT/5FOSto2IX3W5H9dF3cSutWWSbo+Ijo8YrY1KaabXo1V6SdL1EfGaavywtqzdbU3EEhk3Kgub/5LuDsHtRe2nGyStHxHXdbCNhspO7N8R8SLwHHAN8LkONtmpIbfDkvT6IR6OqNR161D7G5FB5R2ARYH9yTIhXVEf2Aa6HtieIJ6JiG8Pv1pf2jIiPqGst343OdHnZQwM9RsPTiEn9flUuf8X8sBwXASY6f0kEWMmaVlyEq9NyqLLgQPrg6M2vHJC/cuIOLLR453KIi7lWV7biW230HZPLsYp62TuDLwTeJTcb3QlwB4R92pwXcVuTbj7ZET8pkttVZ1Ig8B2p0i6IiI2bTAasRbY7sgoxAnkevJ9azR5UgA9vTAgafeI+JEG5o8YJDo7YeZI3C7p3eTw/1WBjwB/7HGf6s0TERdLUsmMPKJkXvc8wFy+lzbtdT+GImk74Cv0YRmU8UTS3OR38YrAnLXvx4j4fJe7snP5vX9lWa/2ecdL2jNK+S5Ju5Dfo10NMAPzS1o+Iv5e+rE8mWkOGSvqhq8N8ViQ8YyuKnGc75Dz/8xFlnR5ugfHF/8p5V3ukvRh4H4G/j5tNREDzPOQgeUtK8sC6HSAuRe1nzYEdpN0T2mrm9m8lwGvk7QIcCFZy3Qncrhu29WGeVQD25JWIyc37PRJ0P826hKZxbkcA7Wf2krSl4B3AX8nh5t8DpgWXSqm3+vA9gR0uaT/I4ewVy9+jYerqbXvim3IofdPqmeT8Y7a4hFxhqTDACLieUndCta0w0SYhOpkcubvd5X7u5dlW/SsR+NULwO9wE2SziPrLVczdzpynNUHQcCTyGO7t0TEPzrcVtW95W8ckl5ClgnrVtmB30v6Cnns3M3vq24HtncDiIiuTKI40XSqDE8bzVd+9/vf9wDy4vd/yO/I35KjxvpJ14ITo3RjN7+XRuFwYAPgUoCIuElSv///9KNzybq+19O7Sdv6bd+3I3BWuUj1OmBPBsfBuuVjwBWS/koen61EzgsyH9CV2EVEvLEb7YzQMWRZ2TPJZKE9yUm6u+1AYF7yAuaRwBtLX9puQpXI6OUQmV7UfpK0QqPl3ai5o4EZWw8gr2ofLenmuizuTrR7PbnzXIR8j68DnouI3TrZbl0fNiHrXy8CfDEiftmhdh4msyy/SWaq/UfSjE4PFW0Q2D6HDGz305fpuNOkBmDPa/+1ogwF24EskbEBOVnhryJiwx52a0QkXUpmPVxU9l0bkd8XDYfd9wsNTJqxAD2qP9sukm6KiHWHW2atkXQssAxdPqFWl2tpS1qhG8c1IyHpZxGx8/BrjqmNxcnjyjeTJ2sXkhn/HS1TUdruyfdV+a6ZQpcC27Vj2XL77Ih4ZyfamQwkvQPYlPy+ujwiftHbHo0P5dz1d30aGJlFWfv2DvL470hgIbJc0tW97FdNt7+XRmo8lEEZD7pVJmqI9hcEloyIu8r9d5HJjQC/jYiHetSv1cgJtP8OvD0i/t2jfsxNJv8B3BldrjEuafOIuKR8H82mFxecVOp1V//fq/uBLvbjXRFx5nDL2mFCZTCXjJ5Nhl+zI23fDWzf5TbvKUOCVo2IkyUtQfeuJks5Ac1uwD5l2RzdaDcinpG0D/C9Eti+qQvtIulNwGfIg+cvRcRFHW5yKTKzb1fgm+WEbx5Jc0ZEJ2fKfR8Z2D6WgcD2xLkS1SP9fvIwlIg4VFmH+cmyn32aLu/v2uBgMnt8ZUlXkhNR7NjbLrXkq73uQBs9Kml3BiYA2ZUsOWCj81Ly/asG/To+Yisi9u7k9hs4B+i3IGA35vqIbl48r2u4V99XtYuW1cmTOjmstToUx3WeR0nS94BVGNi3f0DSFhGx/xBP6zhJQ5Yliz6Yw6AcU72oDk/OPlYxUI7xX2T95b7Sg++lkRoPZVDGgz9KemVE3Nqj9r9K/t3uKvf/jxxJPQ85yd4HutURSbcyeFTXouQF2msk0aOLF69hYDLydUo/ujkZ+euBS8g68fW6UdGgkWckzUWO/juaHInajZhZvcPIhJThlo3ZhAowF10dullTrhwdS17VWlvSq8i6zB0b4iTpcPIgfHVymPFLyJqo3QiyH0R+KM+JiNuVM5gONUtzuzQKbHekREWlwW3IoWtPAp+OiCs62V5NRLxATqh2QbkiuC35BXa/pIsj4t0darpXge0Jr3yWXsHgGbi7XTdstNYAVpRU/d7o5kHDmETEDcpJwlYngwp3RsR/e9ytYcU4mARyBN5L1iH7Bnmg90f68ER1vOjVCbW6X0t7sgYBry4X0E8CLoguDDnU7LVqg5zI6IqI+Fun2+9BYDua3LaR2RxYs/YZlXQqcHtvuwTkMPqaz5FlCvrRv4BbJV3E4HPXngfAK6OoGuqXUVSSXkqeF9YfY/dFBjODy6CcTpZBaTiHgs2uEkydE9hb0gzyvexmeVCA9YH9KvefiogDSh+7Eh+o2LbL7Q1JTSYjp7vninNB311w2oMMKH+YrI29HDmitiskbQVsDSxTd9F1QaAjcZ0JVSIDejdERtIfyFq9P4guzfZdTjxeDdzQq+E2kuYHiIh/dam9N5A1fq6MiKNKYPugTh6ESXoRuA+4mQYHWd0+uJK0APmaO35gUgls70qWJulkYHtCk/R9svbRG4ETyOzZayNinyGf2AeaHTT0w8nPcJoNk6rpxXCp0Siv4yjgZeQBtSehmuR6EOittXsRWSf0h2XR7sBuEdGRWtp1ZQxm3e40NZ+NXGSJoKU63L7I8hjvJU9qzwBOiYi/dLDNRgG4RYG3AEdExE871G5PAtvKOvy1OUzmAZ6pPYT3ry2T9Ctg/xiYL2UF4JiIaJRF1hO9GJLcKkl7NVoeXZpzZSjlvKupfrkILulM4M/k3DGfJxOR7oiIA3vaMWsLNSkLWtOtMlqSbo2IV1burx0Dk+v1unzHyxh8ceXvXW7/Dno8GXk3jxFbUUogndar0WilD+uQJRY/z+BJWZ8Cfh8Rj7e9zYkWYO4VSddFxPp1tZU6WltS0rURsYEG6iHPB1zVjQCzpFeSV6QWJQ/EZwJ7RkRXMha6Gdju1cFV2SntRNbYvCAibpO0LfBJsu51t2v3dC2wPRHVLv5Ufs8P/CYiXtfrvg2nHw4aRqvJRceajl98bBdJ04G3RUS3JvlqG+VkYdMj4gd1y/cDVoqIQ3vTs/Gt24HeSrtdraXdqyBgGb0TDGRQD5pgsJvZtpLeSI5Qm4+82H1oRFzVxfYXJevEduTErVeBbRubSnbrQuRFkGvL/Q3JC+ib9a53g/Vb4KFeGUK9Bvn+3RkRz/W4SwBIWr7bgarRqJ1/V46xX0LWAt+o132DWSOdP85A+QAAYhzMw9IPJM0L/Lc28lDS6mRW5j3dTBSRdDM54e+DdcuXIc/pul6WQtJ2wNeApYGHgRXIiyuv6HI/zgQ+EhE9m4y8/H02Y/DIt1ki4rGudohZme2b93qfXvaJcwLLR8SdnWxrwpXI6FVGD/CIpJUpJyCSdiRrrHTSGZJ+ACws6f1klssJHW6z5gfAwRHxewBJmwHHk/WHOqY+sC2p44HtoQLI6mzN7xPJYRTXAt+W9A+yJMqh0cHJU4YLbOMhXaNVm3DhGUlLk7VTO5oB10a3Af9D5/dpbddnw6TG4qHxGFwuNgc+0WD58cAtgAPMo7NERFQvoJwi6aAutNvVWtoR0dEyWEM4BLi3drJUsgzfCdwNHNHpxiUtRl402AN4iBxifR6ZiXImOUN7V0TEYyWjulPb/1yj5bXANtC1ALOkRXtxEjpOTaQ5AnpG0tbkedVfycDISpL2i4jf9LZnQE4c1m818BuplTx7QtLawIPkiK9+cSbwffI8/YVh1rXZXUCWQLlL0irAVcCPgW0lrR8Rh3WpH18BfinpY8CNZdl65L7wK13qQ70jgY3Ii8CvLhekd+9BPxYH/iSpl5ORr0GWRmp0vBL0pszaDOBKZQnfagmkr3e5H28lP6dzkd8x6wKf78TfZ8IFmMlaxD8B3lXu716WdTSjB9gfOA5YQ9L9wN/o8D93RHxV0hbAP8m6op+Nzk88VzNfLbhc+nJpyaDutK4HtlsIuHYqk3gq8KqIeFFZW+xBYOXo/AzyPQlsTwK/krQweQByA/lFd3xPezSMSnbSAvT+oGFMSrDmcAZmub+C/GIdL5PMTZP0M/Jkr/o3GA8lPuZulP1e9m0dC1pNAr2aNLFRLe33dKHdWboUBPw+WaICSa8nJ/M5gAzwHkfnJwm9isxO36EuSWKasuRS15QT1rYPoxxOpwPbkj4dZa4USWuR+9eXlDZ3iYirO9X2RNAv5RGakfQUAyMP5pX0z9pD9FcJlK8Db4yI6QAlYenX5ORhvTZeauAfJ2kR4NPkhbj5GTwcvNeej4hje92JcWyRiKhNrLcXcHpEHFAy/68n54XquIj4kaRHgC+Q9b4hk3A+28MLQv+NiEclzSFpjoj4vaRv9qAfR/SgzXp/6sNSSH8tP3OQ59O9cgSwAXApQETcJKkjiQoTMcDck4yeiJgBvLkEWeeIiKc63aakoyLiEOCiBss6bYakzzB4aO6MLrTbi8B2rwKuz0XEiwAR8aykGV0KhvUqsD0hSfpwRBwTEUdKekVEnK2sV/jS6OMZw4uJlJ30U+AyBiZW2A34GSWANA4sSJYG2LKyrFczIo/UvyWtWjk5AEA5k/q/mzzHhterQO+y9ReXymieezvRWA+DgFMqQeydgeMi4mzgbOUcGJ22ekSEpPklzV8tCRYRR3WiQc0+Kz3kiLF/AHt2os1h+tPpwPY7yEAB5MXfAyPiN5I2AL5Jh0flTRSSNiL3RWuS2VFTgKd7HcCNiF6ezI/EU7XgcjGDrI/ZD8bFRJgRURvBexl9FAgvozAgs14/BJzD4CQBj5ZoTfWztzklWzginlPOldS9jkRcQGZU94snlGUXLwN+LOlhKpmy3dLvFxx7pTZCS9KCebfzMcIm/hsRT9Zds+/IPn0iBph7ktEjaUngS8DSEbFVOQnaOCJO7GCzW5BDOKu2arCsE95Lzsj8c/LDeXlZ1mm9CGz3KuC6hqRbym0BK5f7nZ4xt1eB7YnqvcAx5fYPgfUi4j9UDjD71QQ7WFgqBtcP/4KknXvWm5H7YEQ82+tOjNJngd9I+gKZaQK5Xz0MOKhXnZoAuhrorfgOZcj0MMvapVdBwCmS5oyI54E3AftWHuvG8fMrlBOsVkuC7RVlQqEOqZ+VPoBHI6KjJ6t9EtheupaBFhHXSpqnS+1OBMcAu5BlAKaSf7PVetqjcUADkxBPk3Q+OZFnkKNwr+tZxwZbp2R+C5inX7PAJR1Ijlh+ihwduB6ZCHRhTzuWxzzVWv4fr3u8b4Lhfe4WSV8F7gdWAS4EKCNDe0bSGWTM6XzgJz0qIbM98CzwUTJ5ZiFyQreuUn9MRv6t0pdXRsStXWy3KUlTyX3TAuX+k8B7I+L6IZ/YfrdLejd5bLsq8BEyMaXtJmKAuVFGTzdqcJ5Cfng+Ve7/hcyOa3uAWdIHgQ8xEHCsWQC4st3t1bX9UuAD5M79VuBjUQrud0kvAtu9Criu2YU2GulVYHsyGJflAPrkoGGsLpS0C3kCBzm8/bc97M9I3SbpIXKfdzlwxTjIgAegBAN3AP6XLDEAcDvwzn45ABynuhrolbQxGcxdQtLBlYcWJDMWu6GbQcDTgT+U4bD/Jv/vKPUfu/G/dxyzlwQ7jg5m1UbEPfXLSgZep7OhehLYBl5e6iIKWFbSvBFRm0TyJR1ue0KJiOmSpkTEC8DJkm6kS8PWx7G3VW4/BNQmFZ9JluDruehdDfyRem9EfEvSW4DFyNr1P6QEIntoZ3pYy38CeT9wIDlJ4paV/fRa9Ha05dFkyY7jyTKeXVf3PXlqL/pQHE2PJyOPiFPKze9JmpuMz/24x+dLJwEfiojaMeSmZMyw2/GUA8g45X/I49vf0qF5tdSgLKKNgqTrImJ9lVlsy7KOzKouaSFgEbIeYHVypKc6PdSm1AD9L3mitRVwd0Qc1Mk2S7v1ge2TuhXYlvQMUBu6JmDlcr8nAVdJcwC7RsSPO7T9FYZ6vNEJqDUnaQbwMbL20tFkkG2WGAc1dCVNp8cHDWNVajHOB9SG0s3BQNBkXATLJS0PvI6cxHZr4IlOfMdYf6sEeg8iL6bXLAi8PSLW6VC7byBn5/4AWZ+45ingl/UlUNrY7hPk0E+RE9msUDu5lHRbRKzdiXbL9jciJ2O9sHYSJ2k1YP6IuKFT7ZZ2bq7/WzZa1uY2G5YjId/7nSPimk613aAvHa+zXT7TVddHxL/KqMQdI+K7nWx/opB0GVlu6kRyMuAHgPd08rNqViXploh4laRvAZdGxDnVc/Ie9usG4M2R9eRfT5Zrq9XyXzMiOl3Lf8JR1l1eg7wQeWdEPNfFto8ETqidCyvndzkfuAt4MCLqM9S70ae+SAKSdGVEbNLNNodSsnTfS44IuRY4Obo3V1m1H7PthyTdEBGdGvXXcxMmwCxpqEL+UTc0uhPtX0pekbwoItYrJyVHRUT9wWu72psC3B4Ra3Ri+0O0e2tEvLLcnhO4thv/IL0KbJe2exJwLbV69icnFzyPrLX9YTJYeXNEbN+JdofoT0cD2xOVpJOHeDgiohulZcak3w4aJiNJy5LB5TcA6wCPkVnM/9fTjo1AGSb2STIDZU48KmJUehXorbS/QuXkahHyQkfHDiYnaxBQ0jnkhLDVkmCviYi3d7DNWSc9kn4NHFMtRxIRHcme7qfAto1cOU5+iKy//FHyYtexMbiusDWhnGjpAAa+G4HxNZFyr5Vj7WWAlchjpClkoPk1Pe7XrIuCkr4LzIyII8r9jiSiTWSStiYzhf9Kfj+sBOwXXZpgr3Yho9xeAfglOWH4WbVkw270o65PPU0CqpT6eQPwP/TRZOQlXrYD8G2gVurnk93ok6RafGxPckTK6eRFkZ2BZyPi4GbPbXM/zhvq8U58z0ykAPPHGiyeD9gHWCwi5u9w++uRQ1PXJmcTXYI88bllyCeOrc1zgQMi4u+daqNBm4OuuHTrCkyvAtvD9KnTmcTnkpPbXEXWf6xdmTwwIm7qRJul3b4KbE9kkvaOwZOS9qWSEdJXBw0jVTJHZhMRl3W7L6OhnMTkOuBLEXFur/szGpLuJDP4b2Ugk9yjIkapB4HezwJnRMSfy9DD35BZWM8D746I33Wq7cmo/E0/B2zKQEmwz0VExya9qwswD8q66WQ2YK8C28P0ad+IOK7b7Y4nkrYna8F/t9y/hjxWDeATEXFWL/s3Xki6mcz+rv9unEjzYHRUOSdbF5jx/+zdd7hcVbnH8e+PhCYtlIi0GJCAIApCRBQLinQQ9CpNJSKKKAqoVwVRwYJiRUBF6UUFEUQQkCJFVGrohHKJoQUChF6lvvePtSbZZzLnnOn193meec7svqbs9+x59yoR8USuWbpCK3+HV1muW4B1IuJlSbcDu5euO1vdAqcf5fdw69LNK0lvAM5pV4U7SdNIFd0mkM7Zz0XExZIE3BIRb2pHOcrK1NFKQN1YkUrSW0hd5G5FymMcExHXSVoeuCIiRqw82KQyXDLC4oiI97e6DLkcs0ljs5wMXAVDu+tsxf+ZvumDOSJ+VnouaTFSPz27kpqi/Gy47RolaUJE3Ju/tO8FVid9cHdE67twWJLUYffVDG3q3coEYGmwB2DIgA+tbo4x573M/6RbdJh5jZZwBVpVo3eVQlL9aFKTwwnR+oG+TmJuYvvTpBqHArZrZWJ7QH2H1A9Tt1sceA7YtDAvSH2h94pi1yQLAeuTBl9pyz/4emnuIGNvJSWadpa0L6k53j+itQPJNtvsiBjxTrqNbqREr6RWJnp3YG5/bVNI3cyMJw3mdQLQ9gRzPyYBJX04Iv4cEY9LOqCVCeUKuqFP4m4ZbK8nx0xos6+RBvcrWRBYD1iUdG3jBHN1/hsRh3W6EL0s0kDsDwFr5opI3aLTffn3m6fLWkbMILXeapd9gYuBF0k3hN4p6WVSC6Mr2liOYs3hqbml91/oQCWgiGjHWGe1Opx0A+AbEfF8aWZEPCDpm+0oQES8rx3HqcLrgE2AnYCdgXOAkyNiWqsO2Dc1mIHSQCRfJo2geQJwaKsvzMtqXZwebRw9tKzZqEjNp3fsxN2zVpP0CnOT6CI1NXiONvQz1MGaxN1QW3wM7Uts9yUNHYhzyCJgtYhYsJ3lqYekhfrt85e0EqlmXCdGfK5a2f+YRUlJ5neTLmZpx134ZpG0MekC5yJ6tCZ8N8g1aNaKiJC0O+mCcWNyojci1m/RcefUYJV0Oqlf4t/m6Y70Jyfps6Uy9Iuyc76t72unuiNRZ/vZfiOpAsFVEfFMYf7mEXFeq47bD8qbhEv6ZUR8IT+/MiI26FzpeoeknYFJpAHpiv8bW9rPez+R9CPSTdBbgVfy7Igu6GZEHezLv99IOgJ4PWnA7iD1r3sv+QZ3O68nc63lLwKbAdcDBxWTmW04flfUHJb0GVJ3NHfm9+QYUrex9wBTIuL6dpSjW0kaR+omYyJDu0DaqwNlWZD0O+wnpBZxv2zFcbrpDl9DJP0E+DBphO03Fy8SW33owvNV2nRMIFVpl/RW0o/LjwJ3MbQ/xr4RnR3FuFM1ibuhtvgrkmb2W3KxzZYlXXyU3+wScHn7i1OXW3LNkH/mx7+isyPyNsNMYI1OF6JakqaSaoddTkrEvCd6r2uJXUkDs8zP3GbAvVYTvhu8GHNrB2xGqonwCnBbi2tuvSBpLVJfq+8DioPZLNLC446kbYP7tJGGed5ywzWVjIiHgFb2dV3e8m4+gJzYPqJVB5W0F6mF2m3AMZL2jrldEP0AcIJ5ZEsWJ0rJ5Wx8m8vSy94MfILUoqr4v7GrW1h1me2A1SPihdFWbLeIuLLCvP/rRFn6wEKka5DSzdDZpEpn29Cm68lc+epHkQb0Oyw/2q6Lag7vDRyfn+9E6gN9FVLLy8NIlWLaQtLNpO9BRdGZMV/OBa6krAukdsqJ5a1In89E0udyRquO1zcJeHgpRgABAABJREFUZlJ3BS8A3wT2L3Sh0OpkXAzzvGXyXc+d8uMR4I+k2ujdUhW/33Qk4drBpHqnEtv96mxSLYUbyhcoDQ7a9SJiVUkTSBcJWwG/kvRE9NDgJJIOZ26MLvXV1ws1R14r6cukOF+6MFkW+B9JRMTPO1e0mr0tIlbvdCH6QKcSvfuQmryPBw6JiLuA0qA7nTqXeqWboVosnCsPzAcspLkDxQCdq9XYyu5IOpjY/gxp4MRnJE0ETpM0MSIOxV1kVOMqSZ+JiKOKMyV9Fri6Q2XqRR8lVWbpxxtm7TKDdPO66xLM1jzdkFTNuYB3SVLhZn/bdVHN4ZdjbrewWwMnRsSjwN8l/bhNZSj5MOk30n1l81cCHmxzWUoWijYN6FeJpBNJY8SdS6q1fEurj9k3CeaImK9Dh167kHxbuCwx16pk3O2kWoTFTu6/1ILjWDJQCdcO1xbvOxGx2wjLdm5nWeolaUVgQ1KCeW1gGvCvjhaqdlMLz18m1fr8d6cKU4MxpP4s+yHZcbmkNSPi1k4XpMftTQcSvRFxpaQPkboTuLIw/1ylQShbYpRuhpZt1XE7aBZp7BCRfhD9tGx5p2o1diQGtbif7flKLR4j4m5JG5GSzK+nP2Juq30J+Evu4qEUe9YjtbbZrlOF6kG3AOOAhztcjl72HHCDpPIuuNreDN1aR9LKpG4pJjK0u4F2d4VyPXCmpD8xtwvPdnf51i01h1+VtByppe7GwEGFZe0eQ+EQYL/yFp5K42kdQqrp3m4n5ZsBZzM0Nj3WpuN/nPQd3RvYqx2VcPsmwdwpHUrGfZg0qMYlks4jDWToC+EWccLVjHuBa4AfRMQenS5MPSLiBEnj8/PZnS5PDWZFxHc7XYgm2YD0A/Au0kVW6eKmE03WelZEXEXqaqR8/rm5S4GWyN0JfJ50k/voNnYn0A/dDNXi68B9ETELQNIUUq2ku4EDW33w4fokJtWK6oRWXt8+JGmdUgujXJN5a+BYUrcFNoKIeJg0yNX7gdL4L+dExMUdLFYvGgfcLukahiYgOt5/cA85Kz+sv/2FVFP3r3Sou4FsIeBRht7wbXeXb91Sc/jbpEo8Y4CzIg8el8d0mNHGcgAsGxE3l8+MiJtzK6VOeJHU5/H+zG1JG7Spa91OVMLtq0H+Bo2kRUj91u1ECnAnAmdExAUdLZiZ9QVJYyPiZUlrkwaXew8wAbgT+EdEHNPRAlYhNxs7APgCqcm5SDWYD++FxG1xYLVeJWnliLgr1wqcRw/2Jd21JN0bERNatO+bgXcUuxMAToqIQ1v5PZV0DHBcRMzTakLSH3qlJUi1JF0HfCAiHpP0HlIlgi+SuvVZIyI+0sJjF/skXoc0mPGZpXJFZwZy3DUiWtINSm6d83JEzNN0VtKGPdLKxXpchcE1geG7jjEbVJKuioi3d7oc3SBfK2xFuvl+D/D+QnL3toho2zgzefyPxSLi8cK8RUi5xnaNi4akOyNi0jDLpkfEqu0qS+G4M4D1I+KRdh+7U5xg7hOSliT14bVDRGzc6fKYWe8rJhQkLUpKMr+b1NyGiKiYMOwmuf/iLYDdC10JrEIaOOq8iDikk+UbjaSl2tiMqiUkXRsR60m6yP+fGjdKlxGrRcSCLTrutIh4U2F6UVKS+VbSD5t1WnHcQSPpxohYOz//FTA7Ig7M0ze08n3u1E2EUcrUspsmZtYfJE0CfgisSapdCkBEtKWWoLVH7o5nEnABQ2v7t3VsAkkLAbuRWm4Uv2+famMZtgZ+S6o5/NeI+Eye/17gaxGxVZvK8eGRlrez2xBJJwMXVxgX4NPAJhGxQ7vKUjj2BcB2EfFcu4/dKe4io0/kO0ZH5oeZWdNImkrqU/Fy4DLgPT1U6/QTpIuKOXeOI2KGpI+TLlC7OsHc68nlbD5J3wBWywn/IaK3BirsBp3qMsLdCbTHmFLrEVJ/hrsXlrX6ur0jfRIPYD/bZnNI2gA4HFgDWICUMHq238Z4abHjSK3VDiENfrsrqdWa9Zc3k67r38/cLjKC9o9NcBKpu7DNgO8CHyO1/GmbiDg7/28eUnOY1F1FOxOppX6NXwu8Eyh1kfQ+0jVpO7sN2Qc4Q9LHgGvzvMmkuPqhNpaj6FlS94CXMCD9wzvBbGZmw3ltTgj+kbkXcssC/yOpVxKD81dqlhQRsyXN34kCDaAdSQM+jQUWK1vmZlS1OxtYtJToLZJ0aQuPuwupe5k5chJ0F0m/beFxB83JwD8kPQI8TxrUGUmrAk+2+NiduokwaP1smxX9kvR/8k+kZMguwGodLVHvWTgiLpKkXAHiQEnXkvqHtf7xUWCViHixEwcv3PxdNSI+KmnbPMbLH8j/q9tYlg8XnldapS2J3YjYNZfhAmDNwvgRyzF3EMK2iIiHSOMCvA9YK8/u9LgAf8mPgeEEs5mZDWcMsCi9PYjoSBehHblAHTQRcYekM0ldKVxS7I9N0uadK1lviojdRljWsv6II2LmCMvcV22TRMRBki4ClgMuiLl92c1H6ou5lTp1E6FTN03MukJETJc0JiJeAY6TdD2wX6fL1UNekDQfcKekLwD3k65frb/cQhoU8+EOHf9qYF2gNLjeE5LWAh4k1eBtp26qOQywUim5nD1EGren7SLiEuCSThy7XL4BsTAwISLu6HR52sF9MJuZWUWdGtSpmSS9QmqeNM8iYKGIcC3mFuvGgcPMzMy6gaTLgA8AxwCz8uOTpb7YbXSS3ka6xhgHfA9YAvhxRFzZyXJZc+Ubjm8BrmFodwMfbNPxr4uIdXOfvqeTWvYcT7qZ8a2IaHtrrlxzeEp5zeGI2KzN5fglqX/sk/OsHYDpEdHqG+NdTdI2wE+BBSJiZUnrAN9t13e2E5xgNjOzijo1qJP1l24cOMzMzKwb5H5UHyL1E/olYHHgiIiY3tGCmXWZPIDdPCLiH206/kygvHvAUivP6ETXgZJui4g1CtPzAdOK81p8/H1INaavB7YG3pMXXRYRZ7SjDN0sd9XzfuDS0u8dSbdExFojb9m73EWGmZkNZ+NOF8D6QkcGDjMzM+tWkrYFVoyIX+Xpf5CauwdwBeAE8ygknTXS8n6uJTiIIuIfkpYF3pZnXR0R7ewuY6SuAztVa/MiSecztObw39t4/BWBXwBvBG4G/k1KOHv8hOSliHiyrJ/sV4dbuR+4BrOZmZm1jKSLgS8X+1eVNJY0cNjHImJMp8pmZmbWCZL+DewYEffl6RtINd0WBY6LCN/kH4Wk2cB9pOTaVZQl/tpVs9XaQ9L2wE+AS0mf9buBr0bEaW06ftd069ZtNYclLUAapPSdwDvy44mIWLPdZekmko4BLgL2Bf4H2Is0AP0eHS1YC7kGs5mZmbVSpwYOMzMz61YLlJLL2b8i4jHgMUmLdKpQPeZ1wCbATsDOwDnAyRExraOlslbZH3hbqdaypPGk2rptSTDTXa3uuq3m8MKk7n2WyI8HcrkG3RdJ39sXSDfCzif1E9+3XIPZzMzMzMzMrE0kTY+IVYdZ9p+IeEO7y9TLJC1ISjT/BPhORPyyw0WyJpN0c0S8uTA9H3BjcV6Lj79UvgnUNTpdc1jSkcCbgKdJrQiuBK6MiMfbcXzrPq7BbGZmZmZmZtY+V0n6TEQcVZwp6bPA1R0qU8/JieWtSMnlicBhwMAPLtanzqvQ3/C57Tp4tyWXs07XHJ4ALAjcCdwPzASeaOPxu9Ig9w/vGsxmZmZmZmZmbSLptcBfSE2nr8uz1yMla7aLiIc6VLSeIelEYC1SkvGUiLilw0WyFpC0KrBsRPxb0oeBd+VFTwC/j4j/dKxwHdJNNYeVRrB7E6kW9TtJ5+RjwBURcUC7y9MNBrl/eCeYzczMzMzMzNpM0vtJyRmAaRFxcSfL00skvQo8myeLSQ0BERGLt79U1mySzgb2i4iby+a/GfhBRGzTmZJ1jqTzgGWAW0j9Ll8B3BIdTO5JWhHYkJRk3hpYOiLGdao8nSRpDHP7h38LA9Q/vBPMZmZmZmZmZmbWVSRdExFvG2bZze3qg7nbdEPNYUl7FY7/EnMHGrwcuDkiXm1HObrZoPUP7z6YzczMzMzMzMys24wbYdnC7SpEt8m1lW+R9ATwZH5sDawPtKtrionAn4AvRcSsNh2zJwxq//CuwWxmZmZmZmZmZl1F0snAxRUGxPw0sElE7NCZknWOaw53t0HuH94JZjMzMzMzMzMz6yqSliXV/HwRuDbPngwsAHwoIh7sVNk6RdLPgX8Dl7vmcPcZ5P7hnWA2MzMzMzMzM7OuJOl9pFqh4AExzbqSE8xmZmZmZmZmZmZmVpf5Ol0AMzMzMzMzMzMzM+tNTjCbmZmZmZmZmZmZWV2cYDYzMzMzMzMzMzOzujjBbGZmZmZmZmZmZmZ1cYLZzMzMzMzMzMzMzOriBLOZmZmZmZmZmZmZ1cUJZjMzMzMzMzMzMzOrixPMZmZmZmZmZmZmZlYXJ5jNzMzMzMzMzMzMrC5OMJuZmZmZmZmZmZlZXZxgbhNJv5H0rSbta4KkZySNydOXSvp0M/ad9/c3SVOatb8ajvt9SY9IerDdxx6NpG9IOrrT5TCrhuNNVcd1vKmDpAMl/a7T5bDu4XhT1XG7Nt6Y9SPHpaqO67iUSZooKSSN7XRZrDc55lR1XMecCvot/jjB3ASS7pb0vKSnJT0h6XJJe0ia8/5GxB4R8b0q9/WBkdaJiHsjYtGIeKUJZZ8nWRARW0TECY3uu8ZyTAC+AqwZEa+rsHwjSa/mYFt8vKOKfR8v6fuNlC8ifhARzQzs35N0s6SXJR1Yw3YhadVmlcN6j+NN4wYp3kh6raSTJT0g6UlJ/5b09mbs2/qf403jqow3IemMsvlr5/mXNrEsK+TrjjdUWHaGpJ824Ri/KcTMFyW9VJj+W6P7N3Ncaly3XwcNs993Sro4f+5PSjpL0hubfRyzco45jevRmLO+pHPzZ/6YpKsl7drs4/QbJ5ibZ5uIWAx4PXAw8HXgmGYfRH1yZ6OCCcCjEfHwCOs8kINt8XFFqwvWyHs+wrbTga8B59S7bxtojjeNGaR4syhwDbAesBRwAnCOpEXrPY4NHMebxlQTb2YD75C0dGHeFOD/mlmQiLgfuAj4RHG+pKWALUnxoSbln1v+kb1oRCwK/AD4YyGGblF/6c2GcFxqTE9dB+Uk0wXAmcDywMrATcC/JU1sdZnMcMxpVC/GnIuBfwCrAksDnwN8HTOaiPCjwQdwN/CBsnnrA68Ca+Xp44Hv5+fLAGcDTwCPAf8kJftPyts8DzxDSkBOBALYDbgXuKwwb2ze36XAD4GrgadI/3yXyss2AmZWKi+wOfAi8FI+3o2F/X06P58P+CZwD/AwcCKwRF5WKseUXLZHgP1HeJ+WyNvPzvv7Zt7/B/JrfjWX4/gK287zOgrLlgJmkgI/pITKdGAXYPf8+l7M+/5rXmd54PRclruAvQr7OxA4Dfhdfj8/nef9rrDOB4Fp+TO8FFij7P39OunC54XS5zRM2X8HHFg2b1VSMHsyv6d/zPMvy+/3s/m17NDp774f7X/geON4U2e8KWzzFLBefv5J4F/AT4HHc/m2KKy7MikePQ1cCPyyWDY/+vuB403b4g3wG2DPPG8McD/wbeDSwrqHAvfl9+Ja4N1ln8vUvOwh4OfDlHVn4D9l8z4PXF+YDmAP4M78Wf4KUF72SeDfwCHAo6XPfphjHUiOF3kfPytbfhbwpcJntx9wKykWHQcsVFh3a+CGXJ7Lgbd0+vzwozMPHJf6/jqowjH/Cfy6wvy/Acfl558E/lW2PIBV8/OtgOvzMe6j8Pur/DP2w4/iA8ecQYw5/wJ+Ncr34jO5HI+RrmeWLywb6TpqDOl31yPADGBP+ij+dLwA/fCgQtDJ8+8FPpefH8/coPND0g+J+fPj3YUv3JB9FU7sE4FFgIWpHHTuB9bK65zO3Av6eU7W4jEoS2QU9lcKOp/KJ84q+WT+M3BSWdmOyuVam5TgWGOY9+lEUkBcLG/7f8Buw5WzbNvRlm8KPAi8NpfntMKyOe99np6P9MPs28AC+bXNADYrvCcvAdvldRdm6I+k1UhJ3k3y5/e1/B4tUHh/bwBWAhYe5btTKcF8MrB/PvZCwLsKy+ZcKPkxmI/yGFGY73gzdL+ON5XLvg7wX+ZePH4yH/8zpAuezwEPMPc7cgXwc2BB4D2kRLMTzAPywPGmbfEGeCdwVZ63JXA+6YbTpYV1P06qRTOW1NT0QXISNp+rn8jPFwU2GOZ4C5NuYBevLa4A9ilMB+nH8ThSraPZwOZ52SeBl4Ev5nIMG3cYGsvWJ8WW+fL0MsBzwLKFz+4WUixbipTELn2v3kr64ft2UpyaktdfsNPniB/tf+C41PfXQWXHeg3wCvC+CuXYFbg/P/8kIyeYNwLenI/xFtKNuO3K3tu+SPD40dxHeZwozHfMGbrfvo85hXXeT0oQr0v6jXQ4cFlh+UjXUXsAtzP3eucS+ij+uIuM1nqA9KUp9xKwHPD6iHgpIv4Z+ds2ggMj4tmIeH6Y5SdFxC0R8SzwLWB75Y7hG/QxUi2YGRHxDKl2yY5lTQm+ExHPR8SNwI2k4DNELsuOwH4R8XRE3A38jLJmmqNYPveBU3wsAhARFwB/IjX93BL47Aj7eRswPiK+GxEvRsQMUqDasbDOFRHxl4h4tcJ7vgNwTkRcGBEvke5ALUz6cVhyWETcN8LnNZKXSM1vlo+I/0bEv+rYhw0ex5vM8aYySYuTak98JyKeLCy6JyKOitTX2wmk78uyub+0twHfiogXIuIy4K8jHcMGhuNN1qR4Q0RcDiwlaXVSrZwTK6zzu4h4NCJejoifkX7UrJ4XvwSsKmmZiHgmIq4c5jjPk+LXLrn8k0hd6PyhbNWDI+KJiLiX9ONnncKyByLi8FyOqq5zIuJqUmJ74zxrR1Ly/KHCar/Msewx4CBgpzx/d+C3EXFVRLwSqe/IF4ANqjm2DQzHpazProOWIiWBZlXY9yxgfDUvJiIujYib8zFuIlXoeW8125oNwzEn67OYsyTDx5ySjwHHRsR1EfEC6X17R1mXPcNdR20P/KJwvfPDEY7Tc5xgbq0VSFXmy/2EdKfoAkkzJO1bxb7uq2H5PaS7ZctUVcqRLZ/3V9z3WGDZwrziSKDPke5+lVsml6l8XyvUUJYHImJc2ePZwvIjSXf2jo+IR0fYz+spC2DANxj6mkZ6v4e8JxHxal6/+FpG+7xG8jVAwNWSpkn6VAP7ssHheDOX400ZSQuTksNXRkT5hcyc9zQinstPF83HfrzsdRffUxtcjjdzNSPelJwEfAF4H3BG+UJJ/yvptjzA1ROk5qil92I3UouH2yVdI2nrEY5zAvBRSQuRfvydH/P2izjSa6/3GucEUi1s8t+TypaXf9bL5+evB75SFkdXKiw3A8elon66Dnqc1LR+uQrLliPVIhyVpLdLukTSbElPkmoRNuMzs8HlmDPXoMSckvLfZ8+Qug0rvt7h3rflmffz7BtOMLeIpLeRvmDz1D7Nd3W+EhGrkPrW/LKkUo2O4e5ujXbXa6XC8wmkO2ePkJpWv6ZQrjEMvdM72n4fIJ2kxX2/TGpWVItHmFszt7iv+2vcT0X5dR1JqvHzeUmrFhaXv8b7gLvKgtdiEbHlCNsUDXlPJIn0/hdfy2jv67Ai4sGI+ExELE+6O/frstdjNoTjzTwcb4aWd0HgL6Rm+CPd8S83C1iyVHsgm1DD9taHHG/m0cx4cxKpP+RzCzd7AJD0btIN6O2BJSNiHKlGsAAi4s6I2InUfPRHwGll527Rv0g/irclJXprHdyv3muc3wHbSlobWIMUl4rKP+sH8vP7gIPK4uhrIuLkOsthfcZxaR59cx2UE0xXAB+tsHh7UnN/mPe9f13Zun8g9ZO6UkQsQerCQMMd12wkjjnz6KeY8xwp5vzPCEUq/322CKkLs2pe7yzm/Tz7hhPMTSZp8Vxr5BRSfzc3V1hna0mr5kTBk6Q+Xl7Nix8i9RNTq49LWlPSa4DvkvqleYXU981CkraSND+ps/UFC9s9BEyUNNx34WTgS5JWllQcEfzlWgqXy3IqcJCkxSS9Hvgy6cdGM3yDFCg+RbpreGKh2Uj5e3o18LSkr0taWNIYSWvlfxTVOBXYStLG+T39Cqmp5uXVFlbS/Lnm0HzAWEkLlcor6aOSVsyrPp5fV6PfD+tDjjeVOd7Mlbc5jTS4xpRcA7oqEXEPadCw70haQNK7gG2q3d76i+NNZc2MNxFxF6nJ9v4VFi9G+tE3m3Td8G1g8dJCSR+XND6f40/k2RXP99xU90RSInocber6JiJmAteQEumnV2iWuqekFSUtRXoP/pjnHwXskWsgStIi+XNfrB3ltu7luFRZn10HAewLTJG0V349S0r6Pqlv2x/kdW4E3iRpnfwb68CyfSwGPBYR/5W0PmnAU7OaOOZU1ocx52vAJyV9VdLSAJLWlnRKXn4ysGuONwuS3rerInUNMppTgb3y9c6SpPjWN5xgbp6/SnqadMdkf9KgSLsOs+4k4O+kkS6vII2Ke0le9kPgm0rV+f+3huOfROrg/EHSwHB7AUTqZ/PzwNGkOyrPkmqxlfwp/31U0nUV9nts3vdlpBE4/0sa2KUeX8zHn0G62/eHvP9qLS/pmbLH/0hajxTAdsnB7UekAFQ6WY8B1szv6V/yOluT+sG5i3TH7WhSU9NRRcQdpBo/h+dttyGNavpiDa/lKFLCZyfS9+V55vZR9DbgKknPkO607x2p7yBIF0sn5NeyfQ3Hs/7ieDM6x5vknfn4mwJPFF7Lu6vcfmfSwFqPAQdQoV9Y63uON6NrNN7MERH/iogHKiw6HziP9GPyHlJ5i00sNwem5WuHQ4EdKyRwi04k1Zr5Y6T+A9vlBNJAW+XdY0B63y4gvY//Ab4PEBFTSQOR/pJ04306aUAvG1yOS6Pri+sgSHER2Az4MKn232OkwT43johb8jr/R0q8/R24k3lrln4e+G7+3nyblOQxq5Zjzuj6KeZcThrI7/3ADEmPkWpQn5uX/53UF/bppJj0Bob28TySo0jXdDcC15EGVuwbpdEszczMzMzMWkbSe0g1ml4fhR8hku4mjWr/906Vzcx6g6S3kAbN2jkizu90eczMLHENZjMzMzMza6ncfHdv4OhwDRczq1NE3ARsB7xZ0tgOF8fMzDIHZDMzMzMzaxlJa5D6dL+R4ZsVm5lVJSL+Cfyz0+UwM7O53EWGmZmZmZmZmZmZmdXFXWSYmZmZmZmZmZmZWV26uouMZZZZJiZOnNjpYphZA6699tpHImJ8p8tRC8ces97muGNm7ea4Y2bt5rhjZp0wXOzp6gTzxIkTmTp1aqeLYWYNkHRPp8tQK8ces97muGNm7ea4Y2bt5rhjZp0wXOxxFxlmZmZmZmZmZmZmVhcnmM3MzMzMzMzMzMysLk4wm5mZmZmZmZmZmVldnGA2MzMzMzMzMzMzs7o4wWxmZmZmZmZmZmZmdXGC2czMzMzMzMzMzMzqMrbTBajFxH3PGXWduw/eqg0lMbNBMlrscdwxs3ar5pqoEY5rZjaSVseg4Tg2mQ0WX++Y9Q7XYDYzMzMzMzMzMzOzujjBbGZmZmZmZmZmZmZ1cYLZzMzMzMzMzMzMzOriBLOZmZmZmZmZmZmZ1cUJZjMzMzMzMzMzMzOrixPMZmZmZmZmZmZmZlYXJ5jNzMzMzMzMzMzMrC5OMJuZmZmZmZmZmZlZXZxgNjMzMwMkHSvpYUm3FOb9RNLtkm6SdIakcYVl+0maLukOSZsV5m+e502XtG+bX4aZ9ZBa4o6kiZKel3RDfvymsM16km7OcecwSerAyzEzM7MB5QSzmZmZWXI8sHnZvAuBtSLiLcD/AfsBSFoT2BF4U97m15LGSBoD/ArYAlgT2Cmva2ZWyfFUGXey/0TEOvmxR2H+EcBngEn5Ub5PMzMzs5ZxgtnMzMwMiIjLgMfK5l0QES/nySuBFfPzbYFTIuKFiLgLmA6snx/TI2JGRLwInJLXNTObR41xpyJJywGLR8SVERHAicB2LSiumZmZWUVOMJuZmZlV51PA3/LzFYD7Cstm5nnDzTczq0cx7gCsLOl6Sf+Q9O48bwVSrClx3DEzM7O2GtvpApiZmZl1O0n7Ay8Dv2/iPncHdgeYMGFCs3ZrZn2iQtyZBUyIiEclrQf8RdKbatyn446ZmZk1nWswm5mZmY1A0ieBrYGP5ebnAPcDKxVWWzHPG27+PCLiyIiYHBGTx48f3/Rym1nvqhR3cpc8j+bn1wL/AVYjxZhiNxqOO2ZmZtZWTjCbmZmZDUPS5sDXgA9GxHOFRWcBO0paUNLKpEG1rgauASZJWlnSAqSBAM9qd7nNrHcNF3ckjc8DiSJpFVLcmRERs4CnJG0gScAuwJkdKLqZmZkNKHeRYWZmZgZIOhnYCFhG0kzgAGA/YEHgwpS34cqI2CMipkk6FbiV1IR9z4h4Je/nC8D5wBjg2IiY1vYXY2Y9oZa4A7wH+K6kl4BXgT0iojRA4OeB44GFSX02F/ttNjMzM2spJ5jNzMzMgIjYqcLsY0ZY/yDgoArzzwXObWLRzKxP1RJ3IuJ04PRhlk0F1mpi0czMzMyq5i4yzMzMzMzMzMzMzKwuTjCbmZmZmZmZmZmZWV2cYDYzMzMzMzMzMzOzujjBbGZmZmZmZmZmZmZ1cYLZzMzMzMzMzMzMzOriBLOZmZmZmZmZmZmZ1cUJZjMzMzMzMzMzMzOrixPMZmZmZmZmZmZmZlYXJ5jNrKdIGifpNEm3S7pN0jskLSXpQkl35r9L5nUl6TBJ0yXdJGndTpffzMzMzMzMzKyfNJRgdqLHzDrgUOC8iHgjsDZwG7AvcFFETAIuytMAWwCT8mN34Ij2F9fMzMzMzMzMrH81WoPZiR4zaxtJSwDvAY4BiIgXI+IJYFvghLzaCcB2+fm2wImRXAmMk7RcWwttZmZmZmbWJSQdK+lhSbcU5h0o6X5JN+THloVl++WKgndI2qwwf/M8b7qkfcuPY2aDpe4EsxM9ZtYBKwOzgeMkXS/paEmLAMtGxKy8zoPAsvn5CsB9he1n5nlmZmZmZmaD6Hhg8wrzD4mIdfLjXABJawI7Am/K2/xa0hhJY4BfkSoSrgnslNc1swHVSA1mJ3rMrN3GAusCR0TEW4FnmdtKAoCICCBq3bGk3SVNlTR19uzZTSmsmZmZmZlZN4mIy4DHqlx9W+CUiHghIu4CpgPr58f0iJgRES8Cp+R1zWxANZJgbkmix0keMxvBTGBmRFyVp08jxaGHSi0i8t+H8/L7gZUK26+Y580jIo6MiMkRMXn8+PEtKbyZmZmZmVmX+kIeL+vY0lhaDF9RsOoKhM7xmA2GRhLMLUn0OMljZsOJiAeB+yStnmdtDNwKnAVMyfOmAGfm52cBu+RBRjcAniy0sDAzG2KYPglrHrxY0pS8/p2SplQ6lpmZmVkXOQJ4A7AOMAv4WbN27ByP2WCoO8HsRI+ZdcgXgd9Luol0AfQD4GBgE0l3Ah/I0wDnAjNITbmOAj7f9tKaWS85nnn7JKxp8GJJSwEHAG8nNR89oFALyMzMzKzrRMRDEfFKRLxK+t20fl40XEXBqluKmtlgGNvg9qVEzwKkJM6upKT1qZJ2A+4Bts/rngtsSUr0PJfXNTOrSUTcAEyusGjjCusGsGery2Rm/SEiLpM0sWz2tsBG+fkJwKXA1ykMXgxcKak0ePFGwIUR8RiApAtJSeuTW11+MzMzs3pIWq5QAfBDQKk111nAHyT9HFiedGP9akDAJEkrkxLLOwI7t7fUZtZNGkowO9FjZmZmfa7WwYtr6pOQVPuZCRMmNLHIZmZmZpVJOpl0Q3wZSTNJLa82krQOaQytu4HPAkTENEmnklqrvwzsGRGv5P18ATgfGAMcGxHT2vtKzKybNFqD2czMzGwgRERIqmnw4lH2dyRwJMDkyZObtl8zMzOz4UTEThVmHzPC+gcBB1WYfy6ppbqZWUOD/JmZmZn1u1oHL3afhGZWNQ8uamZmZv3ACWYzMzOz4dU6ePH5wKaSlsxJoU3zPDOzSo7Hg4uamZlZj3OC2czMzIw5fRJeAawuaWYesPhgYBNJdwIfyNOQmoTOIA1efBTweYA8uN/3gGvy47ulAf/MzMpFxGVAeYzYljSoKPnvdoX5J0ZyJVAaXHQz8uCiEfE4UBpc1MzMzKwt3AezmZmZGcP2SQg1Dl4cEccCxzaxaGY2WDy4qJmZmfUU12A2MzMzMzPrQvlmVlMHF42IyRExefz48c3arZmZmQ04J5jNzMzMzMy6hwcXNTMzs57iBLOZmZmZmVn38OCiZmZm1lPcB7OZmZmZmVkH5MFFNwKWkTQTOIA0mOipeaDRe4Dt8+rnAluSBhd9DtgV0uCikkqDi4IHFzUzM7M2c4LZzMzMzMysAzy4qJmZmfUDd5FhZmZmZmZmZmZmZnVxgtnMzMzMzMzMzMzM6uIEs5mZmZmZmZmZmZnVxQlmMzMzMzMzMzMzM6uLE8xmZmZmZmZmZmZmVhcnmM3MzMzMzMzMzMysLk4wm5mZmZmZmZmZmVldnGA2MzMzMzMzMzMzs7o4wWxmZmZmZmZmZmZmdXGC2czMzGwUkr4kaZqkWySdLGkhSStLukrSdEl/lLRAXnfBPD09L5/Y4eKbmZmZmZm1jBPMZmZmZiOQtAKwFzA5ItYCxgA7Aj8CDomIVYHHgd3yJrsBj+f5h+T1zMzMzMzM+pITzGZmZmajGwssLGks8BpgFvB+4LS8/ARgu/x82zxNXr6xJLWvqGZmZmZmZu3jBLOZmZnZCCLifuCnwL2kxPKTwLXAExHxcl5tJrBCfr4CcF/e9uW8/tLl+5W0u6SpkqbOnj27tS/CzMzMzMysRZxgNjMzMxuBpCVJtZJXBpYHFgE2b3S/EXFkREyOiMnjx49vdHdmZmZmZmYd4QSzmZmZ2cg+ANwVEbMj4iXgz8CGwLjcZQbAisD9+fn9wEoAefkSwKPtLbKZmZmZmVl7OMFsZmZmNrJ7gQ0kvSb3pbwxcCtwCfCRvM4U4Mz8/Kw8TV5+cUREG8trZmZmZmbWNk4wm5mZmY0gIq4iDdZ3HXAz6frpSODrwJclTSf1sXxM3uQYYOk8/8vAvm0vtJmZmZmZWZuMHX0VMzMzs8EWEQcAB5TNngGsX2Hd/wIfbUe5zMzMzMzMOs01mM3MzMzMzLqIpNUl3VB4PCVpH0kHSrq/MH/Lwjb7SZou6Q5Jm3Wy/GZmZjZYXIPZzMzMzMysi0TEHcA6AJLGkAYPPQPYFTgkIn5aXF/SmsCOwJuA5YG/S1otIl5pZ7nNzMxsMLkGs5n1HEljJF0v6ew8vbKkq3KtnT9KWiDPXzBPT8/LJ3a04GZmZma12xj4T0TcM8I62wKnRMQLEXEXMJ0KXfiYmZmZtULDCWYnesysA/YGbitM/4hUm2dV4HFgtzx/N+DxPP+QvJ6ZmZlZL9kROLkw/QVJN0k6VtKSed4KwH2FdWbmeUNI2l3SVElTZ8+e3boSm1nXyrHjYUm3FOYtJelCSXfmv0vm+ZJ0WM7j3CRp3cI2U/L6d0qa0onXYmbdoxk1mJ3oMbO2kbQisBVwdJ4W8H7gtLzKCcB2+fm2eZq8fOO8vpmZmVnXy5V1Pgj8Kc86AngDqfuMWcDPatlfRBwZEZMjYvL48eObWVQz6x3HA5uXzdsXuCgiJgEX5WmALYBJ+bE7KQYhaSnS4MdvJ7WWOKBww8vMBlBDCWYnesysA34BfA14NU8vDTwRES/n6WKNnTm1efLyJ/P683CNHjMzM+tCWwDXRcRDABHxUES8EhGvAkcxtxuM+4GVCtutmOeZmQ0REZcBj5XNLuZryvM4J0ZyJTBO0nLAZsCFEfFYRDwOXMi8SWszGyCNDvL3C1KiZ7E8XXWiR1Ip0fNIcYeSdifdGWPChAkNFs/M+omkrYGHI+JaSRs1c98RcSRwJMDkyZOjmfs2MzMzq9NOFLrHkLRcRMzKkx8CSk3czwL+IOnnpEH+JgFXt7Og/Wzivud07Nh3H7xVx45tA2XZQmx5EFg2Px+u+52quuUB53jMBkXdNZiLiZ4mlsfNtsxsJBsCH5R0N3AKqcXEoaQ76aUbZsUaO3Nq8+TlSwCPtrPAZmZmZvWQtAiwCfDnwuwfS7pZ0k3A+4AvAUTENOBU4FbgPGDPiHilzUU2sz4QEQE0rcKNczxmg6GRGsylRM+WwELA4hQSPbkWc6VEz0wnesysHhGxH7AfQK7B/L8R8TFJfwI+Qko6TwHOzJuclaevyMsvzhdMZmbWQa2uDegaf9YPIuJZyrr2iohPjLD+QcBBrS6XmfWlh0otJHIXGA/n+cN1v3M/sFHZ/EvbUE4z61J112COiP0iYsWImEga2fjiiPgYcAkpkQOVEz3gRI+ZNdfXgS9Lmk76IXZMnn8MsHSe/2XmDlZhZmZmZmZmSTFfU57H2UXJBsCTuSuN84FNJS2ZB/fbNM8zswHVaB/MlXwdOEXS94HrGZroOSkneh4jJaXNzOoSEZeS75JHxAzmDnJTXOe/wEfbWjAzMzMzM7MuJelkUu3jZSTNBA4ADgZOlbQbcA+wfV79XGBLYDrwHLArQEQ8Jul7wDV5ve9GRPnAgWY2QJqSYHaix8zMzMzMzMysu0XETsMs2rjCugHsOcx+jgWObWLRzKyH1d1FhpmZmZmZmZmZmZkNNieYzczMzMzMzMzMzKwuTjCbmZmZjULSOEmnSbpd0m2S3iFpKUkXSroz/10yrytJh0maLukmSet2uvxmZmZmZmat4gSzmZmZ2egOBc6LiDcCawO3AfsCF0XEJOCiPA2wBTApP3YHjmh/cc3MzMzMzNrDCWYzMzOzEUhaAngPcAxARLwYEU8A2wIn5NVOALbLz7cFTozkSmCcpOXaWmgzMzMzM7M2cYLZzMzMbGQrA7OB4yRdL+loSYsAy0bErLzOg8Cy+fkKwH2F7WfmeUNI2l3SVElTZ8+e3cLim5mZmZmZtc7YTheg3Sbue86Iy+8+eKs2lcTMzMx6xFhgXeCLEXGVpEOZ2x0GABERkqKWnUbEkcCRAJMnT65pWzMzMzMzs24xcAnmRjlBbWa1ctww63kzgZkRcVWePo2UYH5I0nIRMSt3gfFwXn4/sFJh+xXzPDMzMzMzs77jBHObOdFkZmbWWyLiQUn3SVo9Iu4ANgZuzY8pwMH575l5k7OAL0g6BXg78GShKw0zMzMzM7O+4gSzmZmZ2ei+CPxe0gLADGBX0lgWp0raDbgH2D6vey6wJTAdeC6va2ZmZmZm1pecYDYzMzMbRUTcAEyusGjjCusGsGery2RmZmZmZtYNnGA2M+tyjXat4655zMzMzMzMzKxV5ut0AczMzMzMzMzMzMysNznBbGZmZmZmZmZmZmZ1cYLZzMzMzMzMzMzMzOriBLOZmZmZmVmXkXS3pJsl3SBpap63lKQLJd2Z/y6Z50vSYZKmS7pJ0rqdLb2ZmZkNEieYzczMzMzMutP7ImKdiJicp/cFLoqIScBFeRpgC2BSfuwOHNH2kpqZmdnAcoLZzMzMzMysN2wLnJCfnwBsV5h/YiRXAuMkLdeB8pmZmdkAcoLZzMzMzMys+wRwgaRrJe2e5y0bEbPy8weBZfPzFYD7CtvOzPOGkLS7pKmSps6ePbtV5TYzM7MBM7bTBTAzMzMzM7N5vCsi7pf0WuBCSbcXF0ZESIpadhgRRwJHAkyePLmmbc3MzMyG4xrMZmZmZmZmXSYi7s9/HwbOANYHHip1fZH/PpxXvx9YqbD5inmemZmZWcs5wWxmZmZmZtZFJC0iabHSc2BT4BbgLGBKXm0KcGZ+fhawi5INgCcLXWmYmZmZtZS7yDAzMzMzM+suywJnSIL0m+0PEXGepGuAUyXtBtwDbJ/XPxfYEpgOPAfs2v4im5mZ2aBygtnMzMzMzKyLRMQMYO0K8x8FNq4wP4A921A0MzMzs3m4iwwzMzOzUUgaI+l6SWfn6ZUlXSVpuqQ/Slogz18wT0/Pyyd2tOBmZmZmZmYt5gSzmZmZ2ej2Bm4rTP8IOCQiVgUeB3bL83cDHs/zD8nrmZmZmZmZ9S0nmM3MzMxGIGlFYCvg6Dwt4P3AaXmVE4Dt8vNt8zR5+cZ5fTMzMzMzs77kBLOZmZnZyH4BfA14NU8vDTwRES/n6ZnACvn5CsB9AHn5k3l9MzMzMzOzvuQEs5mZmdkwJG0NPBwR17Zg37tLmipp6uzZs5u9ezMzMzMzs7ZwgtnMzMxseBsCH5R0N3AKqWuMQ4FxksbmdVYE7s/P7wdWAsjLlwAerbTjiDgyIiZHxOTx48e37hWYmZmZmZm10NjRV6lM0krAicCyQABHRsShkpYC/ghMBO4Gto+Ix3P/g4cCWwLPAZ+MiOsaK76ZDRLHnc6YuO85Iy6/++Ct2lQSs/aLiP2A/QAkbQT8b0R8TNKfgI+Qks5TgDPzJmfl6Svy8osjItpcbDMzMzMzs7ZppAbzy8BXImJNYANgT0lrAvsCF0XEJOCiPA2wBTApP3YHjmjg2GY2mBx3zKxbfB34sqTppD6Wj8nzjwGWzvO/zNx4ZGZmZtbVJN0t6WZJN0iamuctJelCSXfmv0vm+ZJ0mKTpkm6StG5nS29mnVR3gjkiZpVqAkbE08BtpIFtiqOnl4+qfmIkV5Kali5X7/HNbPA47phZJ0XEpRGxdX4+IyLWj4hVI+KjEfFCnv/fPL1qXj6js6U2MzMzq8n7ImKdiJicp12Zx8xG1ZQ+mCVNBN4KXAUsGxGz8qIHSU3ZoTCqelYccd3MrCbNjjsebMvMzMzMzGwersxjZqNqOMEsaVHgdGCfiHiquCz3OVhTv4NO8pjZaJodd/J2HmzLzMzMzMwGWQAXSLpW0u55XkOVeZzjMRsMDSWYJc1PSvL8PiL+nGc/VLprlf8+nOfPGVU9K464PoeTPGY2klbEHTMzMzMzM+NdEbEuqfuLPSW9p7iwnso8zvGYDYa6E8ySRBrI5raI+HlhUWn0dJh3VPVdckfwGwBPFu6CmZmNynHHzMzMzMysNSLi/vz3YeAMYH1cmcfMqtBIDeYNgU8A788jjN4gaUvgYGATSXcCH8jTAOcCM4DpwFHA5xs4tpkNJscdMzMzMzOzJpO0iKTFSs+BTYFbcGUeM6vC2Ho3jIh/ARpm8cYV1g9gz3qPZ2bmuGNmZmZmZtYSywJnpEajjAX+EBHnSboGOFXSbsA9wPZ5/XOBLUmVeZ4Ddm1/kc2sW9SdYLbOmLjvOSMuv/vgrdpUEjMzMzMzMzPrBxExA1i7wvxHcWUeMxtFQ4P8mZmZmZmZmZmZmdngcoLZzMzMzMzMzMzMzOriBLOZmZmZmZmZmZmZ1cUJZjMzMzMzsy4iaSVJl0i6VdI0SXvn+QdKul/SDfmxZWGb/SRNl3SHpM06V3ozMzMbNB7kz8zMzMzMrLu8DHwlIq6TtBhwraQL87JDIuKnxZUlrQnsCLwJWB74u6TVIuKVtpbazMzMBpJrMJuZmZmZmXWRiJgVEdfl508DtwErjLDJtsApEfFCRNwFTAfWb31JzczMzJxgNjMzMzMz61qSJgJvBa7Ks74g6SZJx0paMs9bAbivsNlMKiSkJe0uaaqkqbNnz25lsc3MzGyAOMFsZmZmNoIR+kJdStKFku7Mf5fM8yXpsNwX6k2S1u3sKzCzXiVpUeB0YJ+IeAo4AngDsA4wC/hZLfuLiCMjYnJETB4/fnyzi2tmZmYDyglmMzMzs5GV+kJdE9gA2DP3d7ovcFFETAIuytMAWwCT8mN3UkLIzKwmkuYnJZd/HxF/BoiIhyLilYh4FTiKud1g3A+sVNh8xTzPzMzMrOWcYDYzMzMbwQh9oW4LnJBXOwHYLj/fFjgxkiuBcZKWa2+pzayXSRJwDHBbRPy8ML8YSz4E3JKfnwXsKGlBSSuTbnBd3a7ympmZ2WAb2+kCmJmZmfWKsr5Ql42IWXnRg8Cy+flwfaHOKsxD0u6kGs5MmDChdYU2s160IfAJ4GZJN+R53wB2krQOEMDdwGcBImKapFOBW0mtLvaMiFfaXGYzMzMbUE4wm5mZmVWhvC/UVMEwiYiQFLXsLyKOBI4EmDx5ck3bmll/i4h/Aaqw6NwRtjkIOKhlhTIzMzMbhrvIMDMzMxtFpb5QgYdKzdXz34fzfPeFamZmZmZmA8MJZjMzM7MRDNcXKqnP0yn5+RTgzML8XZRsADxZ6ErDzMzMzMysr7iLDDMzM7ORDdcX6sHAqZJ2A+4Bts/LzgW2BKYDzwG7trW01nIT9z2n5ce4++CtWn4MMzMzM7NmcILZzMzMbAQj9IUKsHGF9QPYs6WFMjMzM7Ou5hvSNkicYB4wowU4ByczazbHHTMzMzMzM7P+5T6YzczMzMzMzMzMzKwuTjCbmZmZmZmZmZmZWV2cYDYzMzMzMzMzMzOzurgPZquJ+1I1MzMzMzMzMzOzEieYzcysq/nGlpmZmZmZmVn3chcZZmZmZmZmZmZmZlYXJ5jNzMzMzMzMzMzMrC7uIsPMzMzMzMzM5hiti7JWcddnZma9yQlmayv3pWpmZmZmZmZmZtY/nGA2M7O+1uiNrWpq8PjmmJmZmZmZmQ0qJ5itp7Q6UeQkkZmZmZmZmZmZWfWcYDYzM2sx39wyMzMzMzOzfuUEs5mZmZmZmZmZmQ3R6gE/XdGmf7Q9wSxpc+BQYAxwdEQc3O4ymNlgcdyxXuca0L3HccfM2s1xx6x+rU6iDafXr+Ecd8yspK0JZkljgF8BmwAzgWsknRURt7azHGY2OBx3zJygbjfHHesFrpHUXxx3zKzdHHfMrKjdNZjXB6ZHxAwASacA2wIOQNYznKjpOY47Zg3yAKs1c9wxs3Zz3DGzdnPcsa7nG+rto4ho38GkjwCbR8Sn8/QngLdHxBcK6+wO7J4nVwfuGGW3ywCPNFAsb+/tG9m+G8rQ7du/PiLGN7D/hlQTd/L8WmJPt7/n3r67t++GMvT79v0YdxrVjO9tJ/V6+aH3X4PLPzLHner1+nepVoP2emHwXnOnXq/jzrz64bvX66/B5e+sdpS/YuzpukH+IuJI4Mhq15c0NSIm13s8b+/tG9m+G8rQ69t3i1piT6ffM2/f29t3QxkGfftuUes1TyN6/T3r9fJD778Gl78/tDPuDGfQPotBe70weK950F5vrXy9U5tefw0uf2d1svzztfl49wMrFaZXzPPMzFrFccfM2s1xx8zazXHHzNrNccfM5mh3gvkaYJKklSUtAOwInNXmMpjZYHHcMbN2c9wxs3Zz3DGzdnPcMbM52tpFRkS8LOkLwPnAGODYiJjW4G4bbWrh7b19ozpdhl7fvqUcd7x9F27fDWUY9O1bqkVxp1Fd/Z5VodfLD73/Glz+LtalcWc4ff1ZVDBorxcG7zUP2usFujbu9MNn0euvweXvrI6Vv62D/JmZmZmZmZmZmZlZ/2h3FxlmZmZmZmZmZmZm1iecYDYzMzMzMzMzMzOzujjBbGZmZmZmZmZmZmZ1cYLZbEBJek2ny2BmVivHLus1/s6azSXpDZK+JanTA4GZWZ9xfLFBJ2lRSYt26vhjO3XgWkn68EjLI+LPrd5Hk8pwM1A+suKTwFTg+xHxaKuOL2ndUba/bqTlhf0sC/wAWD4itpC0JvCOiDimyu0PqzD7SWBqRJxZzT4aIWlF4HDgXaTP4p/A3hExs459LU7hPIqIx5pVzhGOuUVE/K1s3h4R8Zsqt38ncDSwKDBB0trAZyPi8zWUYQNgWkQ8nacXB9aIiKuq3UcvcNzpjrjTSPkL+2g0bjUtbtSrkfNO0obAgcDrSTFLQETEKlUeu6G40wzNiF2DSNK7gEkRcZyk8cCiEXFXp8tVjUbP207rh++spNWArzI3dgAQEe/vWKFq0A2xy0DS8sAOwM7Am4EfAjt2tFAt0qzfW71I0m7F+CxpDPDNiPhOB4vVcpJeCyxUmo6IeztYnIHTy/GlH+NFr54PvR6/JL0ZOBFYKk1qNjAlIm5pazkiyn+zdydJx+WnrwXeCVycp98HXB4RW7d6H00qw4+BV4A/5Fk7Aq8BHgTeFRHbtLD8l+SnCwGTgRtJSYa3kJK77xit/Hk/fwOOA/aPiLUljQWuj4g3V7n9kcAbgT/lWf8D3AUsDcyIiH1G2LYZiaYLSe//SXnWx4GPRcQm1ZQ/7+OzwHeA/xbKU1WypgmJnstJwe7iPP014H0RsUWV218FfAQ4KyLemufdEhFrVbN9Xv96YN3IAUTSfKTv0Ij/JHuN4053xJ1Gyl/YR6Nxq6G40aTYVfd5J+l24EvAtaT3EoBqjpu3bzTuNBT38j4ajl2DRtIBpPNu9YhYLf8I+1NEbNjholWl0fO20/rhOyvpRuA3zBs7ru1YoWrQaOyyxkjaHdgJWAE4NT/OjIiVO1qwFmrW761eJOkPwDhgN1KS43jgHxHxvx0sVstI+iDwM2B54GHSNc5tEfGmjhZsQPRDfOmneNHr50Ovx698vbN/RFySpzcCfhAR72xrQSKipx7ABcByhenlgPPbuY9GtgeuG24ecHObyv9n4M2F6bWA02rY/pr89/rCvBtq2P5KYExheixwBTAGuHWUbX9Muiv55vw4CDgE+Drw1yqPP09Zayl/Xv9OYJlatilsezuwBSlht3TpUcP2y+T38N359Z8OLFDD9ldV+PxurPE1VHoPb6rn/eiFh+NOZ+NOk8rfaNyaZ90at29V7KrqvCud9/U+mhB3Gop7xdfQSOwatAdwA+mHSvE965lY3eh52+lHP3xngWs7XYYGy99Q7PKj4ff/ReAfwOTCvBmdLlebXntDv7d69UGqSfoIcA+wYafL0+LXemO+nrk+T78POKbT5RqURz/Fl36IF/1wPvRy/Kp0fdmJa86e6SKjYKWImFWYfgiY0OZ9NLL9GEnrR8TVAJLeRkqsArzchuNDqsl0c2kiIm6RtEYN2z8raWlybbzcbPvJGrZfktRctLTNIsBSEfGKpBdG2fYDMbS23s2SrouIdSV9vMrjP5rXPTlP7wRUVYuv4D/AczVuU/JklDXXrEVEPJLvEP6dVKPoI5EjSJXuy812Q9L8wN7AbTUWY4akvYAj8vTngRk17qOXOO50Nu40o/yNxq1G40YzYlcj590lkn5CuoCdE2ejyqZ3TYg7DcW9rBmxa9C8GBEhqfS9X6TTBapRo+dtp/XDd/avkj4PnMHQ2NHyLsGaoQmxyxqzAqml4s8kvY5Uw3D+zhapbRr9vdVzJE0ixbnTgTWAT0i6PiLq/c3U7V6KiEclzSdpvoi4RNIvOl2oAdJP8aUf4kVPnw99EL9mSPoWQ1vbtj0/04sJ5osknc/cH/k7ki4aG9nHDjXuo5EyfBo4VqnjbQFPAZ/OP/p+WOfxay3/TZKOBn6Xpz8G3FTD9l8GzgLeIOnfwHhSE9Bq/Ri4QdKlpPfgPcAP8nsw2utoRqLpU6S+VA8h/Wi9HNi1hvID7Adcnpu/Fn9w7VXFtnUleiQ9ncur/HcBYBXgI5IiIhavsux7AIeS/infT6qZumeV2xb3cRjwzVyWi4Dda9xHL2lF3Kl1H42c970ed5pR/kbjVqNxoxmxq5Hz7u357+TCvABG7Ee1iXGnoQR31ozYNWhOlfRbYJykz5C+x0d1uEy1aPS87bR++M5OyX+/WpgXpDjQtZoYu6wx5+ebq79RGstgB+AhSbcBZ0TENzpbvJZq9PdWL/orsGdEXCRJpBh+DdATTeTr8ES+Nr0M+L2kh4FnO1ymQdJP8aUf4kWvnw+9Hr8+RerC9c/MHS/oU+0uRM/0wVwk6UOkpCTAZRFxRrv30YTtlwCIiLpq4jRyfEkLAZ8rbg8cERH/rWEfY4HVSRfud0TES9Vum7dfDlg/T14TEQ9Uud3bgGNJNaDnJJqAacBWEXFqLeWol6SrgX8BNwOvluZHxAlVbHtJhdkRPTJgzqBy3OmKuNNo+RuKW43oltjVKY57nSNpE2BT0vfu/Ii4sMNFqkknz1sza0yu/fXWCvMnATtFxHc7UKy2KFz3vDvPKl33jNZas2dJWjwiniqbt1pE/F+nytQKkiZExL25osPzwHykhOASwO+jyvEtrDH9FF96OV70y/nQq/Erf3f2AFYl5aaO7eS1ck8mmAEkLUM6Ae+NGgYaURoNclpEvLETZZC0IKkpx0SGjsZdUwBUGll9fdLdiasj4uFatm+EpD1JweKJPL0kKYj/uoZ9rMC8I5JfVsP2dSeaJJ0A7F1W/p9FRNV3eIb7h9YOOcl3cem1SxoHbBQRf6ly+/HAZ5j3O1jL62/4PexF9cadRvfRaNzq9bjTjPI3Grea9Z3vVOzKcWIX5n0Pq2l10XDcaYZmxC7rLc243uikfvjO5v8/WzHva/h5p8pUi26IXYNM0kxg2O9Kr3yPaiFpW2DFiPhVnr6a1PoigK9FxGmdLF8rSPpaRPw4P/9oRPypsOwHPVaTdFTKXZzl56dHxP90ukyDqB/iSz/Ei14/H3o9fkn6I/ASqcbyFsDdEbFPp8ozX6cOXCtJZ0taKz9fjpSd/xRwoqR9qt1PRLwC3CGp1v5Tm1WGM4FtSU2iny08ainH9sDVpGai2wNXSRq1yaikSZKOl/RzSStK+pukZyTdmGvXVeszpR97ABHxOOkHVLXl/xHwb2B/UpPLrwJVjc4paUFJO5OamO4t6duSvl1D2QHeUqH8tSaL/yZpd0nLSVqq9Khmw9JrkPSNUvlrfA0HFJNT+bUcUMP2Z5LuKP4dOKfwqEUz3sOu14xzvhn7aCRuZb0edxouPw3GLRr8zndB7DqXlCC6mdQPaelRrYbiThPiHjQndg0USR+WdKekJyU9JelpSU+NvmXXaPS87bR++M7+FfgkaeCexQqPXtHoNZM1Zgyp5c5iFR6LdrBcrfQ1Utc+JQsA6wEbkWoo9qMdC8/3K1u2eTsL0iYqPO/q7oL6XD/El36IF71+PvR6/FozIj4eEb8l/U5/z2gbtFIv9cG8ckTckp/vClwYEbtIWoyUrPxFDftaEpiW7xDNSVJExAfbUIYVI6LRL+r+wNtKtQdzDZm/A6Pd4ToOOBFYHLgK2Af4EKk25S+Z20fnaMZIqQO7fPwxpGBYre1IHdnX0+TjTNIAP9dS6MezRvNJWjL/UCUnhms9F3bKf4tBqNo+CRt9DZVuDNVS/tdExNfrOO6QMjThPewFzTjnmxW76o1b0PtxpxnlbzRuNfqd73TsWigivlzncaHxuNOM19+M2DVofgxsExG9NrBcSaPnbaf1w3d2xYh4S6cL0YBGY5c1ZlatraX6wAIRcV9h+l+RBsV8TL030Gq1NMzzStP9IIZ5bu3VD/GlH+JFr58PvR6/5nSHEREvS50tci9dYBX7EdmYPEhNRDwt6dXKmwzrWx0sw+WS3hyFUULrMF9Z0/RHqa42+qIRcSSApD0K1f8vVBp8qVrnAX9UGjgI4LN5XrVmkEZ4rSfJ0IxE08+AKySVXv9HgYNq2UFErNzA8Rt9DVMl/Rz4VZ7ek9pqIp4tacuIOLeBMhTfQ5HultX0HvaIZpzzzYpd9cYt6P2404zyNxq3Go0bzY5dtZ53JykN8nY2QwfZe6zK7RuNO814/c2IXYPmoR5OLkPj522n9cN39m+SNo2ICzpdkDo1GrusMb3w47zZlixORMQXCpPj21yWdhkpwdSLCafRrJ1bAwlYuNAySKTxJTyIaHv0Q3zph3jR6+dDr8evtcve84ULn0fb3/+e6YNZ0l9Jo2/PJA2UtHJEPCFpYWBqRLR8dMdmlEHSraQOuO8i/cgvffBV1w7JSZm3ACfnWTsAN41WS0ZD+8eZ87zS9Cj7mY/0I2/jPOtC4OjcjL+a7U8H1gYuYmiiY9S+QCUdCRzeYKIJSWsCpcGlLo6IW2vcvu4+CRt9Dflu5reAD+RZFwLfj4iqugxQGll9EeBF5iY/aw4+jb6HvaBJ53w3xK6ejjtNKn9DcSvvo+7vfKdjl1JftgcBTzD3YikioqqmbE2IOw2//mbFrkEi6VDgdcBfGPr/9s+dKlMtmnHedlI/fGeV+jD+HemG4kv0zg9GoPHYZY2RtFQNNzL7gqTfA5dGxFFl8z9L6v97p8pb9i5Jr5Ba1wlYGHiutIjUgmr+TpXN+lc/xJdBjBfdxvGruXopwfxa4LvAcsCvSjUpJL0PWC8iflrDvjYADgfWIDW1HAM8O9rFcjPKIOn1leZHxD3Vlj/v58PAu/LkPyPijCq2eQ6YTjpZ3pCfk6dXiYi2NMOQNKXS/Ig4oYptm5Fo2oA0YNrTeXpxYI2IuKqGfZwL/JfUn+mcWqgR8Z0RtrmZlNgZC0wi1eSu6zXk/S2Wt3umlu2aQcP0BRwR97a7LK3UpHO+KbGr3riVt+3puNOs8jei0bjRpNhV93knaQawfkQ8Uu3xhtlPTXGn2XHPaiPpuAqzI3pokDnrLEl3kfrAvzl65UdDBZ28ZrLBkq/7/kL6X3ddnr0esCCwXUQ81KGimVmXcbywftMzCeZmkjSV1Jn3n4DJwC7AahFR3ql3M4854gBwtd59k7QssD7ph/vVZU3Xh9umYpKmUIaqkjWSJgE/BNYEFips3/JO3ZuRaJJ0PbBu6YdSriE1tdoa3Hmbm+pICDfr/X8zqU/b0nfqEWBKzO3nt5p9fJC5HcBfGhFnV7tt3r6UNIJ0p29l4I521MYdVPXErT6LO2OAZRnaYqDqGxqNxq1G40aTYlfd552kC0gXqs+Ntu4w29cVd5r1+Rf211Dsst7SyeuNZun176yky0i1qGrtjq4rNOOayawekt4PlP4/T4uIiztZHjPrXo4X1i96pg/m3Mx82Gx4VDfQVXH96ZLG5GaWx+XkwYgJ5gbLcG3eVsAE4PH8fBxwLylRUBVJ2wM/AS7N+zhc0lcjYsTBtko/5CX9qLxZu6QfAdUORHMcaQTuQ4D3kQYuG7UvVkmnRsT2ZUmSYvlGTdhGxD2VEk01mjNgUN7nq5Jq3Vc9fRLOBl6KiJcAJK0ObAncU2Nz5d8CX46IS/J+NgKOBN5ZzcaSDgbeBvw+z9pb0oa13GCJiDeX7XNd4PPVbt8rmhF3mhm76ohbfRF3JH2RFHMeYm6LgSB12VGtuuJWsRiNxI1mxK4Gz7tngRskXUKNXRNl9cadZsW9psSuQSNpRVLLhw3zrH8Ce0fEzM6VqiaNnrcd1Sff2RnApZL+xtDYMWqXYF2ioWsms3rlBJGTRGY2KscL6xc9U4NZ0ntHWh4R/6hhX5eR+mI7GngQmAV8MiLWbnUZJB0FnBF5wBdJW5BqlX22yuIj6UZgk1LtQUnjgb+PVv7C9vP0e1pLjVxJ10bEepJuLiU8SvNG2W65iJjVSE2+4RJNNTYz/zMpSXZEnvV54H0RsV0N+6i5T8L8vdstIu6UtCpwNelH55qk2qBV/eCUdGP5Z11p3gjb3wSsU6qNlJNe1zfaVL34fegXTTrnmxK76o1beduejjuSpgNvj4hHqy1vhX3UFbcK2zcUN5oRu4bZb1XnnRromihvX1fcaVbcy/tqSezqZ5IuBP4AnJRnfRz4WERs0rlSVa/R87bT+uE7K+mASvNjhC7Bukmj10xmZmZmVp2eqcFcSsJI2gY4p8Gmep8gJQa/AHwJWAn4n2rL0KANIuIzhX3+TdKPa9zHfDG0afqjVFeD+HOkpMgq+UdPyWLAv2s4/gu5efidkr4A3A8sOtpGETEr/22k39S9gdUbSTQBewCHAd8k1YK8CNi9xn38HHgHtfVJuGRE3JmfTwFOjogvSlqAVNO02kTLDEnfYmjCYEaV25aMA0rdIyxR47ZI+nJhcj5gXeCBWvfT7ZoRd5oUN6DOuJX1ety5D3iy2oIOo664VdBo3Gg4dtVz3uUbAePLE8mS3gSM2sVJQb1xp1lxr2QcDcSuATQ+Ior9MB8vaZ9OFaYOjZ633WAcPfidlbQQsFh5Ilmpv8inKm/VlZpxzWRmZmZmo+iZBHPBDsAvJJ0OHBsRt9e6g9xUeQFSk/HTSX1YvjTKZnOosT4BH5D0TVLtV4CPUXti7jxJ5wMn5+kdgHOr2O4PwN9IZd+3MP/pqK0v1r2B1wB7Ad8jNVutWDuuEqWBwn4EvJZU87eWEckbTjTlJNmOjewjl+OWGpLLMLSbhPeTuhsgIl6UVEvi8lPAd4BS8/J/5nnV+iFwfW4qL1LfkLUmeRYrPH8ZOId0LvWrhuNOg3Gj0bjVk3GnkFAtNdE+h/qbaDcUt5oQN5qRJK/nvDsc+HWF+UsB+wM7V3nseuNOs+IeNCd2DZpHJX2cueftTqSbQ72iofO2C/Tyd/Yw4DzmnvMlGwKbAp9re4nq0+g1k5mZmZlVoWe6yCiStDjpR9KupB+vx5FqRT1d5fYbAScAd5Mu+FciDfhxWZXb/4u5fQJuk8sxX0R8u4ptl8rblgZ8uQz4To0J3lKS9l158p8RcUaN29c8YJakCyJi0/x8v4j4YS3HLOxnOrBNRNxWwzalRNObgNVJiZW6Ek2SjqNyH9BV/+CQdDywCilxVlU5JP2O1LXB/aRE28oR8ZykccA/2tlcU9JypH4hITVTf7DG7T8aEX8abV4/aULcqTtu5O03os641atxZ7im2YVtR22i3cS4VVfcaHLsqvm8kzQ1IiYPs+yWiFir2uPXo9lxr9HYNWhyl1SHk1rcBHA5sNdo/+87rVnnbTfo1e/sSF2RSJoWHtTXzMzMzAp6MsEMIGlpUpPxfYDbgFWBwyLi8Cq2vRbYOSLuyNOrkRJF1fbF2ZQ+ASUtCTxRYy1YJO0GXFZodlyT3Mz0QGrsC1TS9RHx1vx8nv5Uazj+vyNiw9HXHLJNw4mmwr6K3QosBHwIeCCqH+yqrj4JJS1Mqo21HKkW7I15/juBN0TEScNtm9drymBxki6KiI1HmzfKPir1p1v3d6JXNBp3Gokbjcatwn56Ku5U2E9N5W9i3KorbjQ5dtV83km6IyJWr3VZYZ2G4k6jca9sXw3HLusNzTpvO62Xv7OSbouINWpd1i2adc1kZmZmZtXpuS4yJH2QVPNvVeBEYP2IeFjSa4BbSTV1RjN/KUkDEBH/J2n+GopRc5+Akr4NnBoRt0takFTzdW3gFUk7R8Tfazj+BOC3kiaS+rC8jFSb8IYqt9+H+voCbehuRK79CDBV0h+BvzC0Jl95M0wKy+ZJwtSbKIuIIU3KJZ0M/KvGfXwnb7tonn6mim2eBw6uMP9yUq2y0fy0ljKWU+pP8TXAMvm9U160OLBClfvYAtgSWEHSYYVFi5Oa7PelJsWdRvsSrTlu9XrcGab86wAv11D+ptxFrTduNCN2NXjeTZe0ZeQBHsv2WU0/pA3FnSbEvabErkGTz53hRER8r22FqU9v1n7I+uQ7+7Ck9SPi6uJMSW8DZneoTLVoKHaZmZmZWW16LsFMGtTqkPJm4bnJ7W5V7mOqpKMZ2h/p1BrKUKlPwF1G2WaHvC6k/gPnI/VBvBqp2XvViZ6IOADm1Az7DPBV4BfAmCp3UW9foKtIOov0Q6n0vFiu0WqDbFN4/hypD785mzNvP39zNCnRNJxJpM+iapLWIg0Ys1SefgTYJSKmVbHthqSanK8nnYOlPqhH7Is3Gh8s7rOkJN/ypARhydPAL6vcxwOkc+WDFfbxpQbL182aEXfqiRtF9cStXo87lco/ntrK32jcGk5VcaNJsauR824f4BxJ2xe2nUzqMmHr0Q7chLgD1B/3smbErkHzbIV5iwC7AUsz97zqVq06b9ulH76zXwVOVeoSrBg7dqHxcSxarlmxy8zMzMyq07NdZDQi/8jfk0JfosCvI+KF4bcasn09/WAWm3ueDlwQEb/N0zU1/1QarGtDUu3H60m16P4ZEbOq3P4Y6ugLVNJ7R1reyot5SdOAtSIiJO1OGphqY3KiKSLWr2FfTzO0dtSDwH7lNRRH2cflwP4RcUme3gj4QUS8s4ptbyclha4FXinNH61mp9Igcd8AHgd+DhwFvBv4D7BbRIyYbMy1jmYCH4mIwyVNISVO7wYOjBr645U0f0S8lGvQrgXcH2kQNBtGPXGjbN2a41avx51mlL9ZcaveuNHk2FXXeZe/OzvnbQCmAX+IiP9WsW1Dcaewn7riXt62abFrEElajHSDazfgVOBn3R6vO3m90Qz98p2V9FrS/51i7Phlt39/oHmxy8zMzMyq03MJ5tzNwo9INcfE3FpQi7exDPX0g3kl8GlS/6N3AOtFxF152e0R8cZajk9qFn0O8A/gimqT43n7mvsPLtt+vYi4tmze1hFx9ijbfQa4NCLulCTgGNIPrntIg5VdP8K2TUuUNYOkG6NscKpK84bZ9qqIeHsdx/wXqXuGxUmJmn2Av5J+MH1/tH3m780HIuIxSe8BTgG+SKpNuUZEfKSKMvwGODwipklaAriClCxaCvjfiDi51tfVC5oRd+qJG43q9bjT5PLXFbca1aQkecfOu0bjTmE/dcW9vG3DsWsQKQ3u+WVSa4cTgEMj4vHOlqo2nTpvG9VP39ke/gyaErvMzMzMrDq9mGCeDmwTEbfVse0kYH/gMeatzfDpiLhmlO1L/WBuD/yxsGhxYM2RaqJJejvpB9544BeR+z+UtCXwiYjYqcbXsjipNuG7gI8CD0fEu0beqjnyD6ddIuKWPL0TsE8VCc5bgLfmGng7A18hdZPxVuCAiHj3CNs2M9HUjEHuzgCuI3WTAfDxXKYPjbBNKZG0PalbgT8ztCbndaMc84aIWCc/nx4Rq1ZaNsL2cxLgkn4FzI6IA6vdPq83Z+R4SfsAG0XEdpJeB/ytlEjrNw3GnbrjRt6+7rjVjXFH0msi4rkq121a+euNW4Xt64obzYhdnTzvmhB3Gop7eR8Nx65BI+knwIeBI4FfRRXjBHSjRs/bTumn72wPfwYNxS4zMzMzq00v9sH8UD1Jnuw45tZmuIpUm+FDpGTNL4HRLpbr7gczIq4C5kkkRBp46dx5txieUv+/7wbeS+oP7z5Sc/lqt59MSliV+sIsleUtVe7iI8BpOUn8blJ/fJuOvAkAL0fES/n51sCJkZpH/13Sj0fZdm/gNFKi6ZBCgmZLUnP9Uam5g+58CvgOKVkSpPf/U6Ns87Oy6cmF5wG8f5TtXy08f2qEZcMZI2lsRLxMaqK/e2FZtbHgxcLzTYA/AUTEg6lSet9qJO402m913XGry+LOO0itFhYFJkhaG/hsRHy+HeWnzrjVhLjRcOyis+ddo3Gn0bgHzYldg+YrpET+N4H9C9+Ttrf6alC91xud1k/f2V79DBqNXWZmZmZWg16swXwo8DrgLwytBTXsAHGFbZtSm0Gp/8uxwISIuKOW8jeDpLNJiZ1/AtcUkrbVbn8HafCWmylcZEfEPTXsYzXSZ3Av8KGIeL6Kba4DtiL1h3cP8P7Ig+JJui0i1qjhZdRM0t7MHXTn/sKip4GjImLUgXdysmmxiJhdNv+1wFNRRZ+m9ZL0HDCdlCB4Q35Onl4lIhYZZfv9STVpHwEmAOtGREhaldQX7IZVlOESUsLofuAS4I05yTUWuKWWmuS9pJG4U9hHXXGjW2phNSHuXEVKVJwVc7uMuCUi1hp5y+apM241HDca1Yzzrt5m7o3GnWZoRuyy3lXPedtp/fad7dHPoOOxy8zMzGyQ9FotCki1xp5jaO2JINUkHU2zajNsDvwUWABYWdI6wHejfaOaHwmcHRH11sCYHRFnjb7aUJJuZuggV0uRmjxfJamaGtDfJtXkHENKMpWSy+8FZlRZhqWBA0hN9IM00Nh3o4qBooDLSQMcVRp05w/VHB84DDiPeb9vG5K+k59r4WtYG1iWVHO0aCXSgGMjioiDJF0ELEfqB7b0Wc5H6huyGp8lvQevIzWRLR13Y1LfvP2qkbhTUm/c6JZaWI3GHSLivrIat68Mt26zNCFuNSNuNBq7mnHeHSVpnmbuwGj9qDYUd0oaef1Nil3WQ5pw3nZUP3xne/0zoEmxy8zMzMyq03M1mBvRrNoMkq4lNeu9tFAT7+aIeHPzS13x+L8D3gGcDhwbEbfXuP3GwE7ARdRQG1PS60daXk0N6FzjbrEoDDQkaRHSd3HUPiIlXQhcBvwuz/oYqT/SD1SxbTMGubs2ItYbZtmcflJb8RpyDdL9IuLmsvlvBn4QEduMdmzrnHrjRrfUwmpC3DmN1Id0qVuPvYHJEbFjs8tadtyG4lYz4kbeT92xqxkkrULqqqPYzH3riHhylO2aEnc6/fqttzTjesMa0+ufga+ZzMzMzNqrZxLMkr4WET+WdDhDa1QAEBF7VbGPplwsS7oyIjaQdH0hUXTTSLU5JH14lGPXUhOyNNjWTsCupPfjOODkiHi6im1/R+rXdBpza0BGRIzWhzCSxgDT6ukKoRnvQaUm9dUm99WcQe6G7cqj2m4+6n0Nkq6JiLcNs6xtNzjy8VYmJdkmMrQf73bV4m+LZsSdwr5qjht5nbrjVpfFnWWAQ4EPkJLjFwB7j1SDtVnlbzBuNWWwrkZiV2H9hs67OrsIaUrcacbrt8HSyHlrzdHLn0E3XTOZmZmZDYJe6iJjD0mXkwbJqisr3sTaFtOUBjsZI2kSsBepGfVISjUlXgu8E7g4T78vb1tToicinso1Ahdm7qBfX5V0WEQcPsrmb4uI1Ws5XuG4r0i6Q9KEiLi3xs2b8R5cIGlHUpN1SH26nl/l8Zsx6M7DktaPiKuLMyW9DZg9zDbl6n0N40ZYtnCVx26Wv5AGbPsr/T1YTsNxp6CeuNFo3OqauBMRj5BqrdaiKeVvMG41a7CuRmJXyV+o8bxrQjP3cSMsqyXuNOP12wBp8Ly1Jujxz2DcCMvafc1kZmZm1vd6qQbzPsAOpP7sTiXVmru+xn08zQhJoqhyVHVJrwH2J/XHKtKP5O9FFQO8SboAmBIRs/L0csDxEbFZNcfO23yQVINwVeBE0oAxD+dy3RoRE0fZ/jjgJxFxa7XHLNv+MuCtwNXAs6X5NdSiq/k9KHx2AhYh9d0qUn+Gz1Tz2ak5g9ytT/r+HU9KOgJMJjU33zEirqpiH09XeA2l9zGGey2STgYujoijyuZ/GtgkInYY7djNIumqiHh7u47XKc2IO4V91RU3mhG3uiTu1F37tknlrytuNRo3mhG7Cvuq+bxrQhchTYk79cY9G2yNXm9Y43r1M+imayYzMzOzQdAzCeaS/GN5x/xYmDTI0skRcWcN+/geMAs4ifRD92PAchHx7eaXeJ5jD+lGQdJ8pOaHo3atUNjmBOCYiLiswrKNI+Ki0cpA6sv1LlIfzCL9wK9qwBalQfnmERH/qHL7ht+DeknagLmD7jyb560GLBoR11W5j9cCewKl5t7TgF9GxMMtKHLxuMsCZwAvMjS5vQCpuXvbBq3JNXEnkbo5KPbjXdV72GuaEXeaUIa641aXxJ0bSbVvb6ZQ+7aauNGk8tcdt5oRN5qh3vOuwS5Cuibu2OBp9HrDGtern4Fjl5mZmVl79VyCuUjSW4FjgbdExJgatpvTp+ZI8ypsd9ZIy6usifdLUoLg5DxrB2B6RLRtVPHharTV0xQ/96v6aNTwRWrkPZC0IXBDRDwr6ePAusAv2t10U9J6EXFt2bytI+LsKrZt6DVIeh+F5HZEXDzS+q0g6YfAJ4D/MLQf7/e3uyztVmvcaUbcyPupK27l9boh7tRd673Z5a8nbjWqGbGrkfNO0pnAF+uNlY3GnW6J3da7OnHe2lC9+Bl0wzWTmZmZ2SDouQSzpLHAFqSahBsDl5JqEp5Zwz4uB34FnEJqurwTsGdEvHOU7WYD95GSHFeRahHOUUMN3g8D786Tl0XEGVVuN1xT+VIN5FqaWr8LmBQRx0kaT6qJd9co22wAHAw8BnyPVJNyGVJT510i4rxRtt+H1G/q9cDWwHvyolreg5uAtYG3kLqpOBrYPiIq1rBpFUnXkV7zLXl6J2CfahJo3fIaGiFpOrBmRLzY6bK0QyNxp4lxo664Vdi+o3Gn0VrvDZS/objVLM047xs57zrdzL0f4p61T7ect4PMn4GZmZmZ1aJnEsySNiElVLYk/UA+BTiz1Fy5xn1NBA4FNiQlTv5NSg7ePcp2Y4BSOd4CnENKMk2r4pj7kJKr10UaLKpjJB1Aaia4ekSsJml54E9V9CU6FfgGsARwJLBFRFwp6Y2k9+Gto2z/U9JAXW8kNZP/N+k9uTwiHquy7NdFxLqSvg3cHxHHlOZVs32zSFoFOA3YmZT02gXYOiKerGLbrngNjZD0F2D3VncL0mnNiDuNxI2y/UykxrjVZXGn5tq3zSh/o3GrWZpx3jdy3nW6mXs/xD1rn245bweZPwMzMzMzq0UvJZgvJvV7enpEPN4F5VmQlDD6CfCdiPjlKOs3I7m6ELAHaZCtm4Bj60m6SLqBVJPtutIPBEk3xSh9MEu6ISLWyc/L+0S9vtofG5IWICW43wm8Iz+eiIg1q9j2H8B5wKdIid2HSc2uq+o/uplyH6x/Ae4l9ef3fJXbdc1rqJekS0nJ0msYWhu1qwf9qVWz406tcaMJx+umuFNz7dsmlb8pcatRzTjvm3XedaiLkJ6Pe9Y+3XLeDjJ/BmZmZmZWi7GdLkC1quljcjSSDqdyU+/SMfaqYh8LAluRkkQTgcNIg4iMKCL+N29fTK7uChwpqarkKnAC8BLwT1KNyjcBe1exXbkXIyIkRS7TIlVu92rheXkytZZExcLA4qRaMUsAD5CSR9XYgVRreNeIeFDSe4Bqy98wSTcz9LUuBYwBrpJElcmSjr6GJjmg0wVoh2bEHag/buRt645bXRZ3bgHGkRKLVWlS+ZsVtxrVjPO+5vNupGbuktrZzL0f4p61T7ect4PMn4GZmZmZVa1nEsxNMrXw/DvU+GNd0omkgULOJdU+vKWOMjSSXF0zIt6cy3IMqcl+PU6V9FtgnKTPkGqUHVXFdmtLeorU9+rC+Tl5eqHRNpZ0JCk59TSpL9rLgZ/XUjM0JyYuAXaW9DvgLuAX1W7fBFs3uoMueA0Na1ez+n7QhLjRUNzKuiHujANul1RP7dtGyt9Q3GqWZpz3dZ53v2RuM/eLKWvmTqpV3HL9EPesrbrivB1w/gzMzMzMrGo900VGs9XTvE/Sq8wdHKn4xo062FWF5OqVwJW1JFfL+6uso//OVYFlI+LfuW/ZTXPZnwJ+HxH/qXZf9ZB0Hqnm3C2k5PIVwC3VNNPO3VHslB+PAH8E/jciXt+6Eg9bljGkkcjfWON2XfMa6qUmDjQ5KBqJGxX2VVPc6qa4w7w3NN8NzIqIY1pZ/k5rxnnfyHnX6Wbu/RD3zMzMzMzMbGSDVoO5qObMekTM18DxJgALAncC9wMzgSdq3MfaZTVIFi7ULqkmUfULYD/SyhcCFwJIenNetk2N5alJRGwuSaSE0TuBrwBrSXoMuCIiRqqZeTupif7WETE9l/tLrSzvcCLiFUl3SJoQEffWsGnXvIZ6RcRinS5Dr2kwbsyzuxrX75q4ExFDahzn8/4HwLAJ5iaVv9MaPu8bPO863cy95+OemZmZmZmZjWyQE8xt1WBytbSPMQ0WY9nyJE/e782SJja476rk2sq3SHoCeDI/tgbWZ+Sm/x8GdgQuyTWhTyEluDplSWCapKuZWzt1tOb+3fYarM/1etxpRvm7QKfP+043c+/06zczMzMzM7MWG6guMsqaGb8GeK60iDY275e0IrAhKWGyNbB0RIxrw3HvjIhJwyybHhGrtvj4e5Fe8ztJg4ZdXnjcHBGvjrB5aR+LANuSmlu/HzgROCMiLmhVuYcpx3srza+mj9RueQ3WG5oVt3o97nSq/M0y6Of9oL9+MzMzMzOzfjZQCeZOakZytQllOBm4OCKOKpv/aWCTiNihxcf/OfBv4PKImNWE/S0JfBTYISI2bnR/DZRjGeDRavqSrrBtV7wG60+9Hne6ofytMOjn/aC/fjMzMzMzs37jBHObNDu5WmcZlgXOAF4Ers2zJwMLAB+KiAc7Ua5eImkD4GDgMeB7wEmkgQvnA3aJiPM6WDyzIXo97nRD+c3MzMzMzMxsZE4wDyBJ7wPWypPTIuLiTpanl0iaCnwDWAI4EtgiIq6U9Ebg5Ih4a0cLaNalHHfMzMzMzMzM+pMTzGY1kHRDRKyTn98WEWsUll3vBLOZmZmZmZmZmQ2S+TpdALMeU+zz9fmyZb5bY2ZmZmZmZmZmA8U1mM1qIOkV4FlAwMLAc6VFwEIRMX+nymZmZmZmZmZmZtZuTjCbmZmZmZmZmZmZWV3cRYaZmZmZmZmZmZmZ1cUJZjMzMzMzMzMzMzOrixPMZmZmZmZmZmZmZlYXJ5jNzMzMzMzMzMzMrC5OMJuZmZmZmZmZmZlZXZxgNjMzMzMzMzMzM7O6OMFsZmZmZmZmZmZmZnVxgtnMzMzMzMzMzMzM6uIEc5tJ+o2kbzVpXxMkPSNpTJ6+VNKnm7HvvL+/SZrSrP3VcNzvS3pE0oPtPnY1JE2UFJLG1rn9NyQd3exymZmZdRNf81R13K6+5umUZn++1rscR6o6ruOIWRM57lR13J6KO5LeLemOTpej3znB3ESS7pb0vKSnJT0h6XJJe0ia8z5HxB4R8b0q9/WBkdaJiHsjYtGIeKUJZT9Q0u/K9r9FRJzQ6L5rLMcE4CvAmhHxugrLN5L0ag7Spcdf21nGWuTyzizOi4gfRIR/NFnb+WKpquP21MVSKznBYyPxNU/j6rjmuV/Sd1pUllE/A0mLS/qFpHtzef6Tp5dpRZms/zmONK6X4sgwv+OekfSOVpTHrBLHncZ1c9zR3MqAxRhzY0T8MyJWr2P/3yjs57+SXilMT2vuqxm2DF+QNFXSC5KOb8cx6+UEc/NtExGLAa8HDga+DhzT7IOoztqzPWAC8GhEPDzCOg/kIF16bNOuwpl1K18sNa6bL5aGWWecpCMkPSjpOUk3dyIpbwPN1zyNqemaB3gXsJuk7dpSugJJCwAXAW8CNgcWB94BPAqs3+7yWF9xHGlMz8SR8rIUHld0qCxVU+LcSf9w3GlML8SdcYUYs3a9O8mVA0uvYw/gisJ+39S84o7oAeD7wLFtOl7dHCRbJCKejIizgB2AKZLWApB0vKTv5+fLSDo7J4Mek/RPSfNJOol00v41JzG+VrgTs5uke4GLVbmrhjdIulrSU5LOlLRUPtY8NWlLCQxJmwPfAHYo3eHJy+fUXsvl+qakeyQ9LOlESUvkZaVyTFGq1fKIpP2He28kLZG3n5339828/w8AFwLL53IcX8t7LmmNXOYnJE2T9MHCsiE18SR9UtK/CtORk3F35u1/JUl52RhJP82vawawVdlxd5V0W07szZD02Tx/EeBvhdfzjKTly5Npkj6Yy/tELucaZZ/R/0q6SdKTkv4oaaFa3hcbKL5YakwvXCwBc5I9fyd91u8AlgC+CvxY0l7tLo8NNl/ztOeaJyLuAi4H1sz7lqRDchmfUrrJVHzvf63UGuQZSf+W9DqlGsePS7pd0lvzuvN8BhUOv0te50MRcWtEvBoRD0fE9yLi3Lyfka7Djs/XVufk66WrJL2hsHyTXKYnJf0S0Gjvh/UXx5GBiCPDkrSUpJmStsnTi0qaLmmXQll+I+nCHEP+Ien1he3fKemaHEOukfTOwrJPKv1Ge1rSXZI+lueX/yYb8v3In+dBkv4NPAesIumNuQyPSbpD0va1vE7rLo47gxN3yt9bNZhnkfRVSaeXzTtM0qH5+aWSfljpc87LN1CqEPaEpBslbTTC+/fniPgL6aZ+d4sIP5r0AO4GPlBh/r3A5/Lz44Hv5+c/BH4DzJ8f7wZUaV/ARCCAE4FFgIUL88bmdS4F7gfWyuucDvwuL9sImDlceYEDS+sWll8KfDo//xQwHVgFWBT4M3BSWdmOyuVaG3gBWGOY9+lE4Exgsbzt/wG7DVfOsm0rLs/v33RS0F0AeD/wNLB6+WvJ058E/lWYDuBsYBwpSM0GNs/L9gBuB1YClgIuKXvftwLeQPox9F7SBci6I7zvc95rYDXgWWCT/Bq+ll/HAoXP6Gpg+Xzs24A9Ov1d96P7HlSIP6RaZa8Ca+Xp45kbf5bJ3/kngMeAf5JuOp6Ut3keeCZ/J0vn+G6keHYZlePPD/P39al8ji+Vl1U6D+4GPkCqCfci8FI+3o2F/ZXiz3zAN4F7gIdJMWSJvKxUjim5bI8A+4/wPi2Rt5+d9/fNvP8P5Nf8ai7H8RW2rfQ6TgW+kZ8LOCSX8Sng5rL3/tekm07PAP8GXgf8AnicFGPemted5zOoUJbd8nEWKZu/Qz72onk6gFULy4vfgSXzd2B2LsPZwIqFded8Bn74Uf7A1zxtv+YBJuXX/P48vRlwLenaRcAawHKF9/4RYD1gIeBi4C5SongMqSbMJaN9noXlpwAnjLB8tOuw45lb23ks8HvglLxsmbzuR/J+vgS8jONP3z+G+97hOFL+fvRLHBmtrJsCDwKvze/NaYVlx5PixHuABYFDyb/lSL+RHgc+QYovO+XppfPn+hRzY9FywJsqfYbDfD/uJbXcGEu6hrwP2DVPvzW/P2t2+lzyo/rHcN9THHfK34+ejDvl7/cIZbqbGvMsFHJIpFjyLKmmNKSY8DCwXhWf8wqka6ItSb9DN8nT40c5/vep8Bu1mx6uwdweD5C+tOVeIn0xXx8RL0XqFyZG2deBEfFsRDw/zPKTIuKWiHgW+BawvXIfqQ36GPDziJgREc8A+wE7lt2J+05EPB8RNwI3koLWELksOwL7RcTTEXE38DPSBUG1ls93ekqP7YENSEH04Ih4MSIuJiVLdqphvwdHxBMRcS8pibxOnr898IuIuC8iHiP9k5kjIs6JiP9E8g/gAtI/nmrsAJwTERdGxEvAT0kB/52FdQ6LiAfysf9aKJfZiCLiamAmlb+PX8nLxgPLkpICERGfIF1gbROppu6PC9u8l3QBsNkwh9yFdGGzHCk5cFgVZTwP+AHwxxi+CdMn8+N9zL1g+mXZOu8CVgc2Br6tQkuAMoeTfiCskl/PLsCuEfF3YAvm1lD+5GhllzQJ2BC4Ms/alPTDZ7V8jO0Zeqd5e1JCexnSBd0VwHV5+jTg5wCjfAYlmwB/y7G+6HTgNaRazaOZDziOVAt6AimhXf6+mtXK1zxZk695niL9uLsKKLXAeon0w++NpB+7t0XErMK2Z0TEtRHxX+AM4L8RcWKkro3+SEqOVGtpYNYIy6u5DjsjIq6OiJdJCeZ18vwtgWkRcVq+FvoFKclkg8txJOuzOFIsS/GxCEBEXAD8idQdz5bAZ8u2PSciLouIF4D9gXdIWolU2efOiDgpIl6OiJNJN+5L3Si+CqwlaeGImBURtfSbenxETMtxa3Pg7og4Lh/netJ110drfA+sOznuZH0Sdx4pxJj/HWaduvMsubyXMff83xx4JCKuLaw23Of8ceDciDg3UouwC4GppLjX05xgbo8VSDUEy/2EdIfpAqVmO/tWsa/7alh+D+kuWzMGX1k+76+477GkxFRJ8cfAc6QfGuWWyWUq39cKNZTlgYgYV3icmst3X0S82sB+hyv/8sz7vs4haQtJVyo1mXmCFBiqfc+HvK+5/PeVlbua99VsOL5YyvrkYqlkGSoke/IPoEdINw5GFBGPRsTpEfFcRDwNHERKups1wtc8czXzmmdxUk2f54ETAHIS95fAr4CHJR0pafHCtg8Vnj9fYbqW64lHSf8zhlPNdVhV11n5f9Fon731N8eRufopjhTLUnwUb5YfSarxd3xElDcHL8aJZ0jfkeWZ970mT6+Q970DqUXqLKVuet5YQ3mL34/XA28vJsdJ16jzjNthPclxZ65+iDvLFGLMT4dZp9E8ywmkZDH570lly4f7nF8PfLQslryLka+zeoITzC0m6W2kE/Ff5ctyguMrEbEK8EHgy5I2Li0eZpejJYBWKjyfQEp4PEKqvv+aQrnGMDQBMdp+HyCdCMV9v8zQk70aj+Qyle/r/hr3U+4BYCUNHXyhuN8hr5/aLgRmMe/7CoCkBUl3rn8KLBsR44Bzmdt3YE3vqyTlYzX6fpiV+GJprn64WCp5hAoXITnpvkxePiJJr5H0W6V+1Z4i3YUf16SbAjaAfM0zj6Ze80TEk8AfmFsrj4g4LCLWI/VruBqpL/a6dj/K8r8Dm5VqGlYw2nXYSIZcZxWuhWwAOY7Mo5/iyIjye3wkqWn+5yWtWrZKMU4sSqpA8QDzvtdQeI8i4vyI2IR03XQ7qYsAqO73YfE13Qf8oyw5vmhEfK6Gl2ldyHFnHgMTdxr0F+AtSv1Hb01qnVU03Od8H6liVjGWLBIRB7ej0K3kBHOLSFpc0takPut+FxE3V1hna0mr5gvpJ4FXSE14IAWBVeo49MclrSnpNcB3SX1XvUKqabeQpK0kzU9qpr1gYbuHgIkafnTck4EvSVo5/0MvNWl/uZbC5bKcChwkaTGlwRm+DPxu5C1HdRUpqfQ1SfPnTtK3Ib3/ADcAH84JlVVJ/ZdW61RgL0krSloSKCbiFiC9j7OBlyVtQWomX/IQsLRy5/rD7HsrSRvnz+UrpKbzl9dQPrOKfLE0j366WPo7sEWFZM//kPq0vipPP8fwP56+QupW5O05Yf6ePN+Da1lNfM1TWbOveXJZdgSm5em3SXp7fo3PAv9l7ntaq9E+g5NIP4hOVxrkaj5JS0v6hqQtGf06bCTnAG+S9OF8k2wvXCNw4DiOVNZncWQ03yBd/3yKVBHixLKb3ltKepfSQMffA66MiPtIlXtWk7SzpLGSdiBdh50taVlJ2+brpRdIY1uUXt8NwHskTci/1fYbpXxn5+N8Ise5+fP7N1y3bNblHHcqG7C4U7fcKvU00u/BqyN1tVo03Of8O2AbSZtJGiNpIaVBCFesdJwc1xYi9UFdWn9spXU7zQnm5vurpKdJF+H7k/rU3HWYdSeRkgTPkPri/HVEXJKX/RD4pkbuM6aSk0gdoz9I6hR9L5iTCPk8cDQpmfIsqf/Vkj/lv49Kuq7Cfo/N+76M1Mn6f4Ev1lCuoi/m488gJb7+kPdft4h4kfRDZgtSEunXwC4RcXte5RBS0uUhUm3D8rtLIzkKOJ/U7P46Umf5peM+TXqPTyUNJrEzcFZh+e2kQD8jf5bLl5X7DlJzisNzubch9bv6Yg3lMxvCF0uV9dnF0kmkGP4npVGh55e0Ganf65/kmA/px9PO+eJlc4Z2gbEYqeb0E0qjGh9QZ1ltcPmaZ3SNXvOURml/htTiYilSk2yAxUnXKI/nZY+SkjL1GPEziNTn6QdItf8uJA2adTWpxcRVVVyHDSsiHiH1YXhwfg2TSAOh2mBwHBldX8SR8rIUHv8jaT3SNdku+XrtR6Rkc7Fizx9I1yqPkQYA+zikLr9ItQe/ksv/NWDrHFvmy/t9IG/3XuBzebsLSV2U3UQacOzskV5c/t23Kena7wHSd+ZHDL2mtd7guDO6foo7rXQC8Gbm7R4Dhv+c7wO2Jd1Um036Hn6V4fOz3yT9ZtuXFPeez/O6Tmn0SzMz62GS7iZ1GfEyKal5Kylx+pt8oY6k40mj535T0peAvUk1iR8HfhsR38vrbUu66bE4abTa00gXKfOXkrqSJhbnSbqUdNG1MakP4n+QBs97JK//SdIFwBjgx8AXSCMe/13S0qRRit8E3BUR6+b9/S4ijs6J528CnyH9cz4f+GJEPF5ejnysOdtWeJ+WzK9tM9JF11GkUaJfVapx97uIGO7u8UakkYyfy7NeIA3wt3dETFeqAX4IKTH831zOz0bEM8X3Pu/r08DHI2KjPL0qcHtEjK30GVTqOywnhX8IbEcagGsM6ULlR5H7QZU0mXThM4HUjGss8J/8HViedLE4mfRD6WfkUbILn2nF99HMzMysXcqvo8zMuoGkCaSb76+LiKcK8y9lAH9HOcFsZmbW43Kt6b+Rajt8MvzP3czMzPqEE8xm1m1yJaifA4tHxKfKll3KACaY3UWGmZlZj4uIl0j9L/+H1K+ymZmZmZmZNZlSv+5PAZvgbgbncA1mMzMzMzMzMzMzM6vLqDWYJR0r6WFJtxTmLSXpQkl35r9L5vmSdJik6ZJukrRuYZspef07JU1pzcsxMzMzMzMzMzMzs3appouM44HNy+btC1wUEZOAi5g7uusWpFE2JwG7A0fAnIGIDgDeDqwPHFBKSpuZmZmZmQ2iYSrzHCjpfkk35MeWhWX75co8d0jarDB/8zxvuqR9y49jZmZm1kpjR1shIi6TNLFs9rbARvn5CcClwNfz/BPz4EJXShonabm87oUR8RiApAtJSeuTRzr2MsssExMnlh/azHrJtdde+0hEjO90OWrh2GPW2xx3zKzdGog7xwO/BE4sm39IRPy0OEPSmsCOwJuA5YG/S1otL/4VqS/ImcA1ks6KiFtHOrDjjllv8/WOmXXCcLFn1ATzMJaNiFn5+YPAsvn5CsB9hfVm5nnDzZ+HpN1JtZ+ZMGECU6dOrbOIZtYNJN3T6TLUauLEiY49Zj2snrgjaSVSgmdZIIAjI+LQ3Arrj8BE4G5g+4h4XJKAQ4EtgeeAT0bEdXlfU4DSSPffj4gTRju+445Zb6v3emeYyjzD2RY4JSJeAO6SNJ3UOhRgekTMyGU5Ja87YoLZccest/l3lpl1wnCxp5ouMkaUays3baTAiDgyIiZHxOTx43vqZpyZmZn1rpeBr0TEmsAGwJ65tqC7BTOzTvhCHtPm2EIMaUplHklTJU2dPXt2K8ptZmZmA6jeBPNDuesL8t+H8/z7gZUK662Y5w0338zMzKzjImJWqQZyRDwN3EZK0GxL6g6M/He7/HxOt2ARcSVQ6hZsM3K3YBHxOFDqFszMrFpHAG8A1gFmAT9r1o5dmcfMzMxaod4E81nAlPx8CnBmYf4uSjYAnsxdaZwPbCppyXwHftM8z8ysomEGvVlK0oWS7sx/l8zzJemwPLDNTZLWLWwzJa9/Z262bmY2otxc/a3AVbSwWzAzs0oi4qGIeCUiXgWOYm43GK7MY2ZmZl1p1ASzpJOBK4DVJc2UtBtwMLCJpDuBD+RpgHOBGcB00sXQ5wHy4H7fA67Jj++WBvwzMxvG8cxb689N1c2spSQtCpwO7BMRTxWXNbtbMDdVN7NKSi1Fsw8BpZvtZwE7SlpQ0sqk656rSb+vJklaWdICpIEAz2pnmc3MzGywjTrIX0TsNMyijSusG8Cew+znWODYmkpnZgNrmEFvtgU2ys9PAC4Fvk6hqTpwpaRSU/WNyE3VASSVmqqf3Orym1nvkTQ/Kbn8+4j4c579kKTlImJWDd2CbVQ2/9JKx4uII4EjASZPnty0xLWZ9Y5cmWcjYBlJM0k3xjeStA7phtbdwGcBImKapFNJg/e9DOwZEa/k/XyB1EJ0DHBsRExr7ysxMzOzQTZqgrlXTNz3nKbu7+6Dt2rq/sysKVrWVF3S7qTaz0yYMKGmQjU7/pRzPDJrPUkCjgFui4ifFxaVugU7mHm7BfuCpFNIrSSezEno84EfFFpLbArs1+zyOu6Y9YdhKvMcM8L6BwEHVZh/Lqk1aVu0OgYNx7HJbDA4v2PWe/omwdztHCDNmisiQlLTavy5JqHZwNsQ+ARws6Qb8rxvkBLLp+Yuwu4Bts/LzgW2JHUL9hywK6RuwSSVugUDdwtmZmZm1ldacZPNOR7rdU4wm1kvaVlTdTMbbBHxL0DDLHa3YGZmZmZmZsMYdZA/M7MuUmqqDvM2Vd9FyQbkpuqkvgg3lbRkbq6+aZ5nZmZmZmZmZmZN4BrMZtaVhhn0xk3VzczMzMzMzMy6iBPMZtaVhhn0BtxU3czMzMzMrOkkjQOOBtYCAvgUcAfwR2AicDewfUQ8ngdIPpRU0ec54JMRcV37S21m3cBdZJiZmZmZmZmZ2aHAeRHxRmBt4DZgX+CiiJgEXJSnAbYAJuXH7sAR7S+umXULJ5jNzMzMzMzMzAaYpCWA9wDHAETEixHxBLAtcEJe7QRgu/x8W+DESK4ExuWB2M1sADnBbGZmZmZmZmY22FYGZgPHSbpe0tGSFgGWzQOoAzwILJufrwDcV9h+Zp5nZgPICWYzMzMzMzMzs8E2FlgXOCIi3go8y9zuMIA5Y99ELTuVtLukqZKmzp49u2mFNbPu4gSzmZmZmZmZmdlgmwnMjIir8vRppITzQ6WuL/Lfh/Py+4GVCtuvmOcNERFHRsTkiJg8fvz4lhXezDrLCWYzMzMzMzMzswEWEQ8C90laPc/aGLgVOAuYkudNAc7Mz88CdlGyAfBkoSsNMxswYztdADMzMzMzMzMz67gvAr+XtAAwA9iVVDHxVEm7AfcA2+d1zwW2BKYDz+V1zWxAOcFsZmZmZmZmZjbgIuIGYHKFRRtXWDeAPVtdJjPrDe4iw8zMzMzMzMzMzMzq4hrMZmYDbuK+57R0/3cfvFVL929mZmZmZmZmneMazGZmZmZmZmZmZmZWFyeYzczMzMzMOkDSsZIelnRLYd5PJN0u6SZJZ0gal+dPlPS8pBvy4zeFbdaTdLOk6ZIOk6QOvBwzMzMbUE4wm5mZmZmZdcbxwOZl8y4E1oqItwD/B+xXWPafiFgnP/YozD8C+AwwKT/K92lmZmbWMk4wm5mZmZmZdUBEXAY8Vjbvgoh4OU9eCaw40j4kLQcsHhFXRkQAJwLbtaC4ZmZmZhU5wWxmZmZm9v/s3XmYZGV59/HvDxB3BWRCkMVxQQ1uSCaCSwyKC7hh4gYxgoZkzBuMexSNvrgHk6jRaEhQUDAG3AMqURFRNCo6EGQR8zIiCIRlBEQUN+B+/zhPMzVN90yvdaq6v5/rqqvOec6pU3dVdz9ddZ/n3I80mv4U+M+B9Xsm+e8kX03y+61tB+DSgX0ubW2SJElDsUXfAUiSJEmSNpTkb4AbgY+0psuBnavq6iS/C/xHkgfM8pirgdUAO++880KGK0mSlrF5jWBO8rIk5yU5N8lxSW6X5J5JTm8TTHw0yZZt39u29bVt+8oFeQWSJEmStIQkeT7wFOC5rewFVfWrqrq6LZ8B/AC4L3AZG5bR2LG13UpVHVlVq6pq1YoVKxbxFUiSpOVkzgnmJDsALwZWVdUDgc2B/YG3A++qqvsA1wIHt4ccDFzb2t/V9pMkSZIkNUn2AV4FPK2qbhhoX5Fk87Z8L7rJ/C6sqsuBnybZM0mAA4ETeghdkiQtU/OtwbwFcPskWwB3oLts67HAJ9r2Y1g/wcR+bZ22fe/2AUiSJEmSlp0kxwHfBO6X5NIkBwPvBe4MnJzkrCT/0nZ/NHB2krPovk/9RVVNTBD4l8AHgLV0I5sH6zZLkiQtqjnXYK6qy5L8A/Aj4BfAF4EzgJ8MzHo8OMHEDsAl7bE3JrkOuBvw48HjWhdMkiRJ0nJQVQdM0XzUNPt+EvjkNNvWAA9cwNAkSZJmbD4lMramG5V8T+DuwB2BfeYbkHXBJEmSJEmSJGk8zKdExuOAH1bVuqr6DfAp4JHAVq1kBmw4wcRlwE4Abftdgavn8fySliEnF5UkSZIkSRod80kw/wjYM8kdWi3lvYHvAacCz2z7HMT6CSZObOu07V+emBFZkmbCyUUlSZIkSZJGy5wTzFV1Ot3kEmcC57RjHQm8Gnh5krV0NZYnaogdBdyttb8cOHQecUtavpxcVJIkSZIWWJKLkpzTJhhd09q2SXJykgva/datPUne064WPTvJ7v1GL6lPc57kD6CqDgMOm9R8IfCwKfb9JfCs+TyfpOVtsSYXBScYlSRJkiTgMVU1+H3pUOCUqjo8yaFt/dXAvsAu7bYHcES7l7QMzadEhiQN1WJNLgpOMCpJkiRJUxi8KnTy1aLHVudbdPNxbd9DfJJGgAlmSePEyUUlLZokRye5Ksm5A21vSHJZu1T0rCRPGtj2mnZZ6P8keeJA+z6tbW0b6SNJkjQOCvhikjPaFZ4A21XV5W35CmC7tnzL1aLN4JWkt0iyOsmaJGvWrVu3WHFL6pkJZknjxMlFJS2mDzH1VRHvqqrd2u0kgCS70k0y+oD2mH9OsnmSzYH30V02uitwQNtXkiRp1D2qqnan+xxzSJJHD25s36Vm9X3KK0Wl5cEEs6Sx4eSikhZTVZ0GXDPD3fcDjq+qX1XVD4G1dHNQPAxYW1UXVtWvgePbvpIkSSOtqi5r91cBn6b7XHPlROmLdn9V2/2Wq0WbwStJJS0zJpgljZWqOqyq7l9VD6yq57XkzoVV9bCquk9VPauqftX2/WVbv0/bfmHf8UsaSy9qs6MfPTFzOtNfFjqjy0UlSZJGSZI7JrnzxDLwBOBcNrwqdPLVogemsydw3UApDUnLjAlmSZKk6R0B3BvYDbgceMdCHdiahJIkaYRsB3w9yXeBbwOfq6rPA4cDj09yAd2cOIe3/U8CLqS7iuv9wF8OP2RJo2KLTe8iSZK0PFXVlRPLSd4PfLatbuyy0BldLlpVR9KV+WHVqlXWh5ckSb1pV3s+ZIr2q+nmvpncXsAhQwhN0hhwBLMkSdI0JmoONn9Id6kodJeF7p/ktknuCexCN9rnO8AuSe6ZZEu6iQBPHGbMkiRJkjRMjmCWJEkCkhwH7AVsm+RS4DBgryS70c2YfhHwQoCqOi/Jx4DvATcCh1TVTe04LwK+AGwOHF1V5w33lUiSJEnS8JhgliRJAqrqgCmaj9rI/m8F3jpF+0l0dQklSZIkacmzRIYkSZIkSZIkaU5MMEuSJEmSJEmS5sQEsyRJkiT1IMnRSa5Kcu5A2zZJTk5yQbvfurUnyXuSrE1ydpLdBx5zUNv/giQH9fFaJEnS8mWCWZIkSZL68SFgn0lthwKnVNUuwCltHWBfYJd2Ww0cAV1Cmm5S0j2AhwGHTSSlJUmShsEEsyRJkiT1oKpOA66Z1LwfcExbPgZ4+kD7sdX5FrBVku2BJwInV9U1VXUtcDK3TlpLkiQtGhPMkiRJkjQ6tquqy9vyFcB2bXkH4JKB/S5tbdO130qS1UnWJFmzbt26hY1akiQtWyaYJUmSJGkEVVUBtYDHO7KqVlXVqhUrVizUYSVJ0jJnglmSJEmSRseVrfQF7f6q1n4ZsNPAfju2tunaJUmShsIEsyRJkiSNjhOBg9ryQcAJA+0HprMncF0rpfEF4AlJtm6T+z2htUmSJA3FFn0HIEmSJEnLUZLjgL2AbZNcChwGHA58LMnBwMXAs9vuJwFPAtYCNwAvAKiqa5K8GfhO2+9NVTV54kBJkqRFY4JZkiRJknpQVQdMs2nvKfYt4JBpjnM0cPQChiZJkjRjlsiQJEmSJEkSSTZP8t9JPtvW75nk9CRrk3w0yZat/bZtfW3bvrLXwCX1al4J5iRbJflEku8nOT/Jw5Nsk+TkJBe0+63bvknyntb5nJ1k94V5CZIkSZIkSVoALwHOH1h/O/CuqroPcC1wcGs/GLi2tb+r7SdpmZrvCOZ3A5+vqvsDD6HrhA4FTqmqXYBT2jrAvsAu7bYaOGKezy1JkiRJkqQFkGRH4MnAB9p6gMcCn2i7HAM8vS3v19Zp2/du+0tahuacYE5yV+DRwFEAVfXrqvoJG3YykzufY6vzLWCrJNvP9fklSZIkSZK0YP4ReBVwc1u/G/CTqrqxrV8K7NCWdwAuAWjbr2v7S1qG5jOC+Z7AOuCDrT7PB5LcEdiuqi5v+1wBbNeWb+l8msGO6RZJVidZk2TNunXr5hGeJEmSJEmSNiXJU4CrquqMBT6uOR5pGZhPgnkLYHfgiKp6KPBz1pfDAG6Z6bhmc9CqOrKqVlXVqhUrVswjPElLkbXfJUmSJGnBPRJ4WpKLgOPpSmO8m+7q8y3aPjsCl7Xly4CdANr2uwJXTz6oOR5peZhPgvlS4NKqOr2tf4Iu4XzlROmLdn9V235L59MMdkySNFPWfpckSZKkBVRVr6mqHatqJbA/8OWqei5wKvDMtttBwAlt+cS2Ttv+5TbIUNIyNOcEc1VdAVyS5H6taW/ge2zYyUzufA5sIwr3BK4bKKUhSZtk7XdJkiRJGqpXAy9PspauxvJRrf0o4G6t/eVMuqJd0vKyxaZ32ai/Aj6SZEvgQuAFdEnrjyU5GLgYeHbb9yTgScBa4Ia2ryTNxmDt94cAZwAvYfa13291civJarpRzuy8886LErwkSZIkjbqq+grwlbZ8IfCwKfb5JfCsoQYmaWTNK8FcVWcBq6bYtPcU+xZwyHyeT9KyN1H7/a+q6vQk72aK2u9JZn1pVlUdCRwJsGrVKi/tkiRJkiRJmoH51GCWpGGz9rskSZIkSdIIMcEsaWxY+12SJEmSJGm0zLcGsyQNm7XfJUmSJEmSRoQJZkljxdrvkiRJkiRJo8MSGZIkSZIkSZKkOTHBLEmSJEmSJEmaExPMkiRJkiRJkqQ5McEsSZIkSSMkyf2SnDVw+2mSlyZ5Q5LLBtqfNPCY1yRZm+R/kjyxz/glSdLyYoJZkiQJSHJ0kquSnDvQtk2Sk5Nc0O63bu1J8p6WzDk7ye4Djzmo7X9BkoP6eC2SxltV/U9V7VZVuwG/C9wAfLptftfEtqo6CSDJrsD+wAOAfYB/TrJ5D6FLkqRlyASzJElS50N0iZlBhwKnVNUuwCltHWBfYJd2Ww0cAV1CGjgM2AN4GHDYRFJakuZob+AHVXXxRvbZDzi+qn5VVT8E1tL1QZIkSYvOBLMkSRJQVacB10xq3g84pi0fAzx9oP3Y6nwL2CrJ9sATgZOr6pqquhY4mVsnrSVpNvYHjhtYf1G7cuLogRNYOwCXDOxzaWvbQJLVSdYkWbNu3brFi1iSJC0rW/QdgCRJ0gjbrqoub8tXANu15emSOTNK8kjSTCTZEnga8JrWdATwZqDa/TuAP53p8arqSOBIgFWrVtWCBitJGhkrD/3cgh7vosOfvKDH09LjCGZJkqQZqKqiS+osCEcSSpqBfYEzq+pKgKq6sqpuqqqbgfezvgzGZcBOA4/bsbVJkiQtOhPMkiRJ07uylb6g3V/V2qdL5sw4yVNVR1bVqqpatWLFigUPXNKScAAD5TEm+qPmD4GJSUlPBPZPctsk96SrD//toUUpSZKWNRPMkiRJ0zsROKgtHwScMNB+YDp7Ate1UhpfAJ6QZOtWG/UJrU2SZiXJHYHHA58aaP67JOckORt4DPAygKo6D/gY8D3g88AhVXXTkEOWNMaS3C7Jt5N8N8l5Sd7Y2u+Z5PQka5N8tJXuoZ3Q+mhrPz3Jyl5fgKReWYNZkiQJSHIcsBewbZJLgcOAw4GPJTkYuBh4dtv9JOBJwFrgBuAFAFV1TZI3A99p+72pqiZPHChJm1RVPwfuNqnteRvZ/63AWxc7LklL1q+Ax1bVz5LcBvh6kv8EXg68q6qOT/IvwMF09eAPBq6tqvsk2R94O/CcvoKX1C8TzJIkSUBVHTDNpr2n2LeAQ6Y5ztHA0QsYmiRJ0qJqn21+1lZv024FPBb449Z+DPAGugTzfm0Z4BPAe5OkHUfSMmOJDEmSJEmSpGUuyeZJzqKbc+Jk4AfAT6rqxrbLpcAObXkH4BKAtv06Jl110Y7ppMbSMmCCWZIkSZIkaZmrqpuqaje6SYofBtx/AY7ppMbSMmCCWZIkSZIkSQBU1U+AU4GHA1slmSivuiNwWVu+DNgJoG2/K3D1cCOVNCpMMEuSJEmSJC1jSVYk2aot3x54PHA+XaL5mW23g4AT2vKJbZ22/cvWX5aWLyf5kyRJkiRJWt62B45JsjndYMSPVdVnk3wPOD7JW4D/Bo5q+x8FfDjJWuAaYP8+gpY0GuadYG6dzxrgsqp6SpJ7AsfTFXc/A3heVf06yW2BY4Hfpbts4jlVddF8n1+SJEmSJElzV1VnAw+dov1CunrMk9t/CTxrCKFJGgMLUSLjJXSXTUx4O/CuqroPcC1wcGs/GLi2tb+r7SdJkiRJkiRJGlPzSjAn2RF4MvCBth7gscAn2i7HAE9vy/u1ddr2vdv+kjQrSTZP8t9JPtvW75nk9CRrk3w0yZat/bZtfW3bvrLXwCVJkiRJkpaY+Y5g/kfgVcDNbf1uwE+q6sa2fimwQ1veAbgEoG2/ru2/gSSrk6xJsmbdunXzDE/SEuWVE5IkSZIkSSNgzgnmJE8BrqqqMxYwHqrqyKpaVVWrVqxYsZCHlrQEeOWEJEmSJEnS6JjPJH+PBJ6W5EnA7YC7AO8GtkqyRRulvCNwWdv/MmAn4NIkWwB3pZvsT5Jm4x/prpy4c1uf8ZUTSSaunPjx0KKVJEmSJElawuY8grmqXlNVO1bVSmB/4MtV9VzgVOCZbbeDgBPa8oltnbb9y1VVc31+ScvPYl050Y5teR5JkiRJkqRZmm8N5qm8Gnh5krV0IwWPau1HAXdr7S8HDl2E55a0tE1cOXERcDxdaYxbrpxo+0x15QSbunLC8jySJEmSJEmzN58SGbeoqq8AX2nLFwIPm2KfXwLPWojnk7Q8VdVrgNcAJNkLeGVVPTfJx+mujDieqa+c+CZeOSFJkiRJkrTgFmMEsyQNm1dOSJIkSZIk9WBBRjBL0rB55YQkSZIkSVL/HMEsSZIkSSMmyUVJzklyVpI1rW2bJCcnuaDdb93ak+Q9SdYmOTvJ7v1GL0mSlhMTzJIkSZI0mh5TVbtV1aq2fihwSlXtApzC+vJf+wK7tNtq4IihRypJkpYtE8ySJEmSNB72A45py8cATx9oP7Y63wK2SrJ9D/FJkqRlyASzJEmSJI2eAr6Y5Iwkq1vbdlV1eVu+AtiuLe8AXDLw2Etb2waSrE6yJsmadevWLVbckiRpmTHBLEmSJEmj51FVtTtd+YtDkjx6cGNVFV0Sesaq6siqWlVVq1asWLGAoUoad0l2SnJqku8lOS/JS1q7td8lbdIWfQcgSZIkSdpQVV3W7q9K8mngYcCVSbavqstbCYyr2u6XATsNPHzH1iZJM3Uj8IqqOjPJnYEzkpwMPJ+u9vvhSQ6lq/3+ajas/b4HXe33PXqJXGNn5aGfW9DjXXT4kxf0eKMe3yhyBLMkSZIkjZAkd2wJHpLcEXgCcC5wInBQ2+0g4IS2fCJwYBtRuCdw3UApDUnapKq6vKrObMvXA+fTldqx9rukTXIEsyRJkiSNlu2ATyeB7jvbv1fV55N8B/hYkoOBi4Fnt/1PAp4ErAVuAF4w/JAlLRVJVgIPBU5n9rXfPbklLUMmmCVJkiRphFTVhcBDpmi/Gth7ivYCDhlCaJKWuCR3Aj4JvLSqftpOdAFdX5NkVrXf2ySlqwF23nnnhQxV0gixRIYkSZIkSdIyl+Q2dMnlj1TVp1rzlROlL+ZS+93JRaXlwQSzJEmSJEnSMpZuqPJRwPlV9c6BTdZ+l7RJlsiQJEmSJEla3h4JPA84J8lZre21wOFY+13SJphgliRJkiRJWsaq6utAptls7XdJG2WJDEmSpE1IclGSc5KclWRNa9smyclJLmj3W7f2JHlPkrVJzk6ye7/RS5IkSdLiMcEsSZI0M4+pqt2qalVbPxQ4pap2AU5p6wD7Aru022rgiKFHKkmSJElDYoJZkiRpbvYDjmnLxwBPH2g/tjrfAraamH1dkiRJkpYaE8ySJEmbVsAXk5yRZHVr225gtvQrgO3a8g7AJQOPvbS1SZIkSdKS4yR/kiRJm/aoqrosyW8BJyf5/uDGqqokNZsDtkT1aoCdd9554SKVJEmSpCEywSwAVh76uQU93kWHP3lBjydJUp+q6rJ2f1WSTwMPA65Msn1VXd5KYFzVdr8M2Gng4Tu2tsnHPBI4EmDVqlWzSk5LkiRJ0qiwRIYkSdJGJLljkjtPLANPAM4FTgQOarsdBJzQlk8EDkxnT+C6gVIakiRJkrSkzDnBnGSnJKcm+V6S85K8pLVvk+TkJBe0+61be5K8J8naJGcn2X2hXoQkSdIi2g74epLvAt8GPldVnwcOBx6f5ALgcW0d4CTgQmAt8H7gL4cfsiRJkiQNx3xKZNwIvKKqzmyjes5IcjLwfOCUqjo8yaHAocCrgX2BXdptD+CIdi9JM5JkJ+BYumRPAUdW1buTbAN8FFgJXAQ8u6quTRLg3cCTgBuA51fVmX3ELml8VdWFwEOmaL8a2HuK9gIOGUJokiRJktS7OY9grqrLJxI1VXU9cD7dDOn7Ace03Y4Bnt6W9wOOrc63gK1avUJJmqmJE1u7AnsChyTZle5E1ilVtQtwSluHDU9sraY7sSVJkiRJkqQFsiA1mJOsBB4KnA5sN1Bn8Aq6kYbQJZ8vGXjYpa1t8rFWJ1mTZM26desWIjxJS4QntiRJkiRJkkbLfEpkAJDkTsAngZdW1U+7K9I7VVVJZjUrujOqS5qJeZ7YcrItSZIkzcjKQz/X23NfdPiTe3tuSZJmal4jmJPchi65/JGq+lRrvnJihGC7v6q1XwbsNPDwHVubJM3K5BNbg9ta7dNZn5zy6glJkiRJkqTZm/MI5jZ51lHA+VX1zoFNJwIH0c2kfhBwwkD7i5IcTze533UDIw4laUY2dmKrqi6f64ktr56QJEmjYiMTG78B+HNg4mz4a6vqpPaY1wAHAzcBL66qLww9cEmStOgW48qa+V4xM58SGY8Engeck+Ss1vZausTyx5IcDFwMPLttOwl4ErAWuAF4wTyeW9Iy5IktSZK0TExMbHxmkjsDZyQ5uW17V1X9w+DObdLj/YEHAHcHvpTkvlV101CjliRJy9KcE8xV9XUg02zee4r9Czhkrs8nSXhiS1NY7LqI1j6UJA1bOyF+eVu+PsnExMbT2Q84vqp+BfwwyVrgYcA3Fz1YSUtCkqOBpwBXVdUDW9s2wEeBlcBFwLOr6to28OfddN+1bgCePzEZu6TlaV41mCVpmKrq61WVqnpwVe3WbidV1dVVtXdV7VJVj6uqa9r+VVWHVNW9q+pBVbWm79cgSZI0G5MmNobu6qyzkxydZOvWNt3ExpOP5ZwTkqbzIWCfSW2HAqdU1S7AKW0dYF9gl3ZbDRwxpBgljSgTzJIkSZI0gqaY2PgI4N7AbnQjnN8xm+NV1ZFVtaqqVq1YsWKhw5U0xqrqNOCaSc37Ace05WOApw+0H9sG9HwL2KrNhSNpmTLBLEmSJEkjZqqJjavqyqq6qapuBt5PVwYDZjGxsSTNwnYDc9hcQTfxKMzwqgnwyglpuTDBLEmSJEkjZLqJjSeNEPxD4Ny2fCKwf5LbJrkn3WXr3x5WvJKWvjavVs3hcV45IS0Dc57kT5IkSZK0KKab2PiAJLvRJXkuAl4IUFXnJfkY8D3gRuCQqrppyDFLWnquTLJ9VV3eTnBd1dq9akLSBkwwS5IkSdIIqaqvA5li00kbecxbgbcuWlBaVlYe+rlenveiw5/cy/NqWicCBwGHt/sTBtpflOR4YA/guoFSGpKWIRPMkiRJkiRJy1iS44C9gG2TXAocRpdY/liSg4GLgWe33U8CngSsBW4AXjD0gCWNFBPMkiRJkiRp2XLENlTVAdNs2nuKfQs4ZHEjkjROnORPkiRJkiRJkjQnJpglSZIkSZIkSXNiglmSJEmSJEmSNCcmmCVJkiRJkiRJc2KCWZIkSZIkSZI0JyaYJUmSJEmSJElzYoJZkiRJkiRJkjQnJpglSZIkSZIkSXOyRd8BSJK03K089HOLevyLDn/yoh5fkiRJkrR8OYJZkiRJkiRJkjQnJpglSZIkSZIkSXNiiQxJkiQN1biXhVns+MHSNpIkSRofJpg1Fhb6i5xf2iRJkiRJkqT5s0SGJEmSJEmSJGlOhp5gTrJPkv9JsjbJocN+fknLj/2OpGGz35E0bPY7kobNfkfShKEmmJNsDrwP2BfYFTggya7DjEHS8mK/I2nY7HckDZv9jqRhs9+RNGjYNZgfBqytqgsBkhwP7Ad8b8hxSAvOOtEjy35H0rDZ70gaNvsdScNmvyPpFsNOMO8AXDKwfimwx5BjkJalZZwAt9+RFtlC9y+TjVF/M8F+RyNv3P9uxz3+RWC/I2nY7Hck3SJVNbwnS54J7FNVf9bWnwfsUVUvGthnNbC6rd4P+J8FDmNb4McLfMyFZHzzM+rxwejHuNDx3aOqVizg8WZlJv1Oa1/svmfQqP8ObIrx92/cX8Nix2+/c2v+zvRv3F+D8W+c/c7Mjfvv0mwtt9cLy+819/V67XdG/3dt1OOD0Y/R+OZnMeKbsu8Z9gjmy4CdBtZ3bG23qKojgSMXK4Aka6pq1WIdf76Mb35GPT4Y/RhHPb452GS/A4vf9wwa9/fY+Ps37q9h3OOfAfudBTbu8cP4vwbjH3kj1+9MZxn8LDaw3F4vLL/XvNxe74De+51Rf+9HPT4Y/RiNb36GGd9QJ/kDvgPskuSeSbYE9gdOHHIMkpYX+x1Jw2a/I2nY7HckDZv9jqRbDHUEc1XdmORFwBeAzYGjq+q8YcYgaXmx35E0bPY7kobNfkfSsNnvSBo07BIZVNVJwEnDft4BvV4SNgPGNz+jHh+MfoyjHt+sjUC/M9m4v8fG379xfw3jHv8m2e8suHGPH8b/NRj/iBvBfmc6S/5nMclye72w/F7zcnu9txiBfmfU3/tRjw9GP0bjm5+hxTfUSf4kSZIkSZIkSUvHsGswS5IkSZIkSZKWCBPMkiRJkiRJkqQ5McEsSUOU5N5JXp/ECTAkDYX9jiRJkqTFNPRJ/vqQ5I7AL6rq5ra+GXC7qrqh38ggyb5V9Z+T2v6iqv6lr5i0OJLcYRR+5zR8Se4OPAf4Y+BBwN8C+/ca1Awl2X1j26vqzGHFMh9JDq6qowbWNwdeV1Vv7DGsOUnyW8DtJtar6kc9hjNrSe4EUFU/6zuWpcx+Z7SM69/tUuk77Xc0bEk+AxwHnFBVP+87nsWyFPvr2Wh94nYM5FXGpX8fR0leUlXvTvLIqvqvvuOZTpLHAbu21TVV9Y0+4xmU5PbAcxmID/hEVf26v6g2NCYx7gmcV1XXt/W7AL9TVaf3G1m/lsUkf0m+BTxu4kNl+5D5xap6RL+RQZJv0H1Q/3JbfxXwmKrat9/IIMkfbWx7VX1qWLFsTJJ7Ae8GHg7cDHwTeFlVXdhrYE2SRwAfAO5UVTsneQjwwqr6y57j+gwwbQdQVU8bYjhLUpLVwAHADsDH2u2Eqrpnr4HNQpJT2+LtgFXAd4EAD6b7wPTwvmKbjST/DmwFHAxsA3wI+GpVvbLHsGYlydOAdwB3B64C7gGcX1UP6DWwGUryIOBYuvc/wDrgoKo6t9fAlhj7ndGyBP5ux7rvtN8ZHUl2BP4JeBTd58+vAS+pqkt7DWyRJPkDupN8Twa+AxwPfLaqftlrYAtsKfXXs5Xkr4DDgCvpvoMCVFU9uL+olrYkZ1XVbknOrKqNntzoQ5KdgBOA64EzWvPvAr8A9gOeV1Uf6Cm8if+JJwKnsWF8uwKPB15ZVa/rKTxgPGIESPLfwO7VEqptEOuaUfi9TPJQ4JXA77SmNcDfV9UFSbaoqhsX67mXxQhmutHKt4xYqKqfJblDnwENeBrw2SR/DewD3J+u8xkFT93ItgJGIsEM/DvwPuAP2/r+dCMG9ugtog29C3giXUdJVX03yaP7DQmAf2j3fwT8NvBvbf0Aug9Kmr/30p3w+OOqWgOQZKzO6lXVYwCSfIrun+g5bf2BwBt6DG1WquqPkzwHOAf4Od3PZGRHPkzjzcCewJeq6qFJHgP8Sc8xzca/Ai+vqlMBkuwFHAn0frJ3ibHfGS1j/Xe7BPpO+53R8UG6z+zPaut/0toe31tEi6iqvgp8tY1wfSzw58DRwF16DWyBLbH+erZeAtyvqq7uO5Bl5PwkFwB3T3L2QHsYjeT++4D3VNWHBhuTHEj32azoBp715T3A6qo6ebCxjbg+FxiFUmrjECN0g3Vv+XxdVTcn6T2/muQZwNuBt7V76E7+fTzJ/wHeAuy9WM/f+xswJD9PsvvEJTpJJs4i9a6qftxGt3yJ7gzNMwd/UftUVS/oO4YZukNVfXhg/d9awn5kVNUlSQabbuorlgntgy9J3lFVqwY2fSbJmp7CWmp2AJ4BvCPJb9ONJLxNvyHN2f0mvjQAVNW5SX5nYw8YJUl2ofsi8Em6s7nPS/LfY1a25jdVdXWSzZJsVlWnJvnHvoOahTtOJHkAquorrYSVFpb9zmgZ67/bJdB32u+MjhVV9cGB9Q8leWlfwQxDu8z7qXQjmXenuwJgqVoK/fVsXQJc13cQy0lVHdA+23yBbqDeqLn/5OQyQFUdm+RtdP1An7afnLgFqKovJfkN6wfs9WkcYgS4MMmLgSPa+l8Co3AF/WF01RsuGmg7O8mXge8D71zMJ18uCeaX0mXs/5fu7NZv0/2j702S6+nOYKXdbwncC3hmkqqq3s9uJ/mTqvq3JC+fantVLeov56Yk2aYt/meSQ+kuPSu6n+1JvQV2a5e0MhmV5DZ0X9TO7zmmQXdMcq+JkiJJ7gn45WthfKFdJvMv7dLQ5wBXJjkf+HRVvbbf8Gbl7CQfYP1I9+cCZ29k/1HzGeCQqjol3dmel9NdsjoWl6k3P2klnk4DPpLkKroRhePiwiSvByZOCP4Jo/FBbKmx3xkt4/53O+59p/3O6Lg6yZ/QXWUI3RVzS3bkZ5KPAQ8DPk93ZclN9Pz9c5Ethf56ti4EvpLkc8CvJhr7/o681FXVFcBD+o5jGpmysSuf8IuqumrI8Uy2WZLbVtWvBhuT3I7uhPgonDwehxgB/oJutPXr6HJQpwCre42os8Wk5DIAVXVRkosX+3vAsqjBDNASe/drq/9TVb/pM55xkGR1VR2Z5LCptlfPE7wk+SHrk/STVVXda8ghTSnJtnQ1oh9HF+sX6WrOjcSH6iT70F0ueiFdfPeguyzli70GtgS0UV4PnaJ9F+CAqnpTD2HNSfun/n+A329NpwFHTP7nP6qS3KWqfjqp7b5V9f/6immmkuxcVT9qo+5+AWxG98XtrsBHRqUv2ZQkWwNvZMP6m2+sqmt7DWyJsd8ZDUvo73Zs+06w3xklSe5BV4P54XQ/i28AL64lOiFakicC19KVBHkW8EPgk1X13l4DWyTj3F/P1ah+R14OkjySrgTLPegGTU6UyOj1+3+SdwF3Al5abXLP9jngXXQJ5pf0HN/r6Mp2HVJVF7e2lXSJ0u9U1Zt7DA8YjxhHWZLvAk+d/L+1/Q/+zGKXkVlOCeZHACvZcIbXY3sLqEnyh8CXq+q6tr4VsFdV/UefcQEk+VBVPb/vOLT4ktyWrv43wPeX8ofBYUpyKRu5DGUcRjgk2Q/Ysare19a/Dayg+3L4qqr6RJ/xbUqSV1XV37XlZ1XVxwe2vW0cRnNmYCKTJJ+sqmf0HdNstC+dfwHch66O69Ge5F089jujYQn83Y5132m/o74kuS/d6OwDgB8DH6WblOoevQa2SJZCf63xk+T7wMvoSozeUnqy75O3bVDj3wLPBy5uzTsDxwCvGYX/Q0leBLwKmJiT7OfAP1TVP/UX1YbGJMb70pXH2K6qHpjkwcDTquotPcf1dODv6GowT0ySuAo4FHj1YucZl0WCOcmHgXsDZ7G+A6qqenFvQTVpM6FOapty9NGwZURnZ51KuokkdqWbwRgYjRMIAElW0E3ssZINT3D8aV8xDWr/CP8PMDHx4FeAfx2Ff4DjLsnldP94phtlP/IjCZP8F7B/VV3S1s+im6zmTsAHq2rRJglYCJOSPBv0aePSxw3+TxiV/w+zkeSjwG/oRg7uC1xUVS/tNaglzH5nNCyBv9ux7jvtd0ZHkv+7kc211EajJbmZ7vfu4Kpa29ou7Htk5WJZCv31bCU5cWPbq2oUawMvKUlOr6o9+o5jOunqr9+nrf6gqm5IskdVnd5nXIOS3Bmgqq5v68+oqk/2G9WGRjnGJF8F/poubzLxee/cqnpgv5FBkocAr2B9ObPzgHdU1XcX+7mXSw3mVcCuNZrZ9M2maBuVn8sdkjyUaWoJVZs0sW/t8qS96BLMJ9F9kfg6MBIJZuAEug+aX2IEJvebwhF0E0D9c1t/Xmv7s94iWjouH4dkziZsOfGlofl6VV0DXJPxmCgp0yxPtT6qaprlcbFrVT0IIMlRwLd7jmeps98ZDeP+dzvufaf9zuiYqub4HYGDgbsBSyrBDPwRsD9wapLP080RMw5/M3O1FPrr2Xo43QR/xwGns7R/vqPq1CR/D3yKDetfj0R+oqp+QXf1zKCP041mHgkTSdsB76Kb0HdkjHiMd6iqbycb/Pnf2Fcwg6rqu0neWFU/GPZzj0oic7GdSzex3+V9BzKFNUneCbyvrR/C+qHsfdsBeAfTjIKiOzs9Cp5JV+j/v6vqBUm2Y/0EE6PgDlX16r6D2Ijfq6rBiRK+3Gr3aP6WwgfOrQdXqupFA6srhhzLXGwsyTMuSZ+HJPkp3e/T7dsyrK831/uksJtwy9UQVXXjpA9iWnhL4Q0e934Hxv/vdtz7TvudEVFV75hYbqPRXgK8gC7x+o7pHjeu2uXH/9GSq/vRTTb/W0mOoJtodanNcbIU+uvZ+m3g8XRlUP4Y+BxwXFWd12tUy8vE6OXfbfdhtPITUxn1f0SjHh+MVow/TnJv2meiJM9ktPKNR6eb7Ps7dIMdT6uqySc9FtxySTBvC3yv1YQaPMM1Cpev/BXwerr6XAAn0yWZR8HaqhrlTnrCL6rq5iQ3JrkLcBWwU99BDfhskidV1Ul9BzKNm5Lce+IMV5J7MZojrcfRUrgs8PQkf15V7x9sTPJCxmNE2MaSPLeb/mGjo6o27zuGeXrIpPf99gM/k3FItI0b+50RsIT+bse177TfGSFJtgFeTjfR5THA7rXEJ1qsboKvfwf+Pd1kk88CXk032fdSMvb99WxV1U3A54HPt3lsDgC+0kYMLslJHEdFkpe3xc+2+wLW0Y2c/2E/Uc3YqJ+cHfX4YLRiPAQ4Erh/ksvoJnJ9br8hrVdVf5BkS+D36K72/1ySO1XVNov5vMulBvMfTNVeVV8ddizTaWf0q6p+1ncsE8alZmCSfwZeS3c52iuAnwFnVdULeg2sSXI93aWAv2b9iJqR+XKTZG/gg8CFdF+87gG8oKpO7TUwjYQkvwX8B93JuYnLzn4XuC3w9Kq6sqfQJC1R9jvS0tEuY/8jui/i7xul7zqav+XaX7fE8pPpkssrgRPpJhO9rM+4lrpWGnOybYAnAm+oquOHHNIGknyGqZOgAR5bVb2WjUlyDtPHd9+quu2QQ7p1IGMQ46B2tcpmwA109eg/0nNIACR5FPD77bYV3Xx0X6uq4xb1eZdDghmglU34vbb67aq6qs94JiR5EF2t4IkzCT8GDqqqc/uLqpPkCVX1xSS/W1VnTNr2lKr67HSP7UuSlcBdqursvmMZJ+1D0v3a6v9U1a82tr+WnySPZWCigKr6cp/xSFr67Hek8dcmvfsVXW3KwS+ejiZfQpZTf53kWOCBdHP/HD8K39uXu3aVxJf6noB2moGNE/1e+h7gmOQeUzXTXf39mqp60pBDunUwU8d4i6q6eFixTKVdMX8IXTnZE+jm2TqEbqDj2VW1X4/h3SLJjXSld/8WOKmqfj2U510OCeYkzwb+HvgK3R/Q7wN/XVWf6DMugCTfAP5mYrRokr2At1XVI/qMa1CSM4EDJ/55JjkAeGnfM7cm2eg/kFEp8g+Q5GnAo9vqV0YpOZ/kNsD/YSA+utlQfzPtgyRJkiRpmWknTSYmr/SkyYgYhauvk+wH7FhV72vr36arRV7Aq6vq433GNyjJQ+lqiD+LrrzDJ0e1xEuSbYGrawSSl0lOAK4FvklXlu636P72X1JVZ/UY2gaSbAU8ki7H83vAzcA3q+r1i/m8y6UG89/QTWR2FUCSFXRnGnpPMAN3HCxFUFVfGcEZd58JfCLJH9Ml5w8EntBvSEA3MUixvtj75A5nJOpHJzmc7o964nKJlyR5ZFW9psewBh0B3Ab457b+vNb2Z71FJEmSJEkjpqo26zsGbSjJY+iSfn17FV3ZzglbAqvoymV+EOg1wZzkvnRlXQ6gu3L+o3SDTh/TZ1yDkuwJHA5cA7wZ+DDdnGqbJTmwqj7fZ3zAvarqQQBJPkA3sd/OVfXLfsPaUFX9JMmFdKPTdwQeQZfzWVTLJcG82aSSGFfT1UkZBRcmeT3dHw7An9DVwh0ZVXVhkv3p6mv9CHhCVf2i36iAbqKMS6rqcoAkBwHPAC4C3tBfWLfyJGC3qroZIMkxwH8Do5Jg/r2qesjA+peTfLe3aCRJkiRJGjBNfd5tgP+lGwTXty2r6pKB9a9X1dXA1SMyiPD7wNeAp1TVWoAkL+s3pFt5L938WncFvgzsW1XfSnJ/4Di6CTb7dMtV3lV1U5JLRy25DNCSyxM/7yPo5tha9DIZyyXB/PkkX6D7hQR4DvCfPcYz6E+BNwKfautfa229m6ID3wbYnG62YKrqwf1Edot/AR4HkOTRdPVl/grYjW4ikWf2FtmtbUV3Fg66znKU3JTk3lX1A4Ak9wJu6jkmSZIkSZImPGXSetGVTvj5VDv3YOvBlap60cDqiiHHMpU/ohthfWqSzwPHs/5q8FGxRVV9ESDJm6rqWwBV9f1kJEJ9SJKftuUAt2/ro1Yi5z4TAxwnJHlpVf3jYj7psqjBDJDkj4BHtdWvVdWn+4xnHIxBgfXvToy8TfI+YF1VvaGtn1VVu/UY3i1azerDgVPpOp5H0xXR73uW25cC36BLfr+frvYSdDMh/+lSnpxDkiRJkqSFkuQjdPMtvX9S+wuBvarqgH4i21AbTb0fXamMxwLHAp+eSOz2KcmZE5M1Di5Pta7ZSfKjqtp5UZ9jKSeYk9wH2K6q/mtS+6OAyydGbPYhyWe49eUdt6iqpw0xnGkl2ZxuJuD79x3LZEnOpSs9cWOS7wOrq+q0iW1V9cB+I1wvyfZ0dZgBvl1VV/QZD0CSf6CrxfM7wAXApXRJ8E9W1f/2GZskSZIkSeMiyW/RlRX9FXBma/5d4LbA06vqyp5Cm1aSrekm+ntOVe09AvHcRDeJZoDbAzdMbAJuV1WLXkd4qUpySVXttKjPscQTzJ+lGyl6zqT2BwFvq6qn9hMZJPmDjW2vqq8OK5ZNaTNl/lVV/ajvWAYl+Ru6+sY/BnYGdq+qaicWjqmqR/YaYJPklMmd9VRtfUkyMfnAI4CHt9tPqmrXXgOTJEmSJGmMJHks8IC2ep5XBmsUDGME81Kvwbzd5OQyQFWdk2RlD/EMxjAyCeQZ2Bo4L8m36c4mAf2Psq6qtyY5Bdge+GKtP1uyGV0t5l4luR1wB2DbdmZwomjQXYAdegvs1m5PF9Nd2+1/gVv93UiSJEmSpOm1hLJJZQ1dkuuZulLCxIjwRbXUE8xbbWTbor+5G5NkF7rZMa8F3klXA/f3gR8AB1fVmh7Dm+z1fQcwnYmi75Pa/l8fsUzhhcBLgbsDZwy0X083O2qvkhxJd2b1euB0unrM76yqa3sNTJIkSZIkSTNWVXfu8/k36/PJh2BNkj+f3Jjkz9gw4deHDwLfpBstejpwNLAt8ErgfT3GdStV9dWJG3AecNqYjcDuyzfoyk68sqruBbwROBf4KvDvfQbW7ExXD+oK4DK6Gsw/6TMgSZIkSZIkjZelXoN5O+DTwK9Zn1BeBWwJ/GGfE60lOauqdmvLa6vqPlNt61OSPYHDgWuANwMfpkuCbwYcWFWf7zG8kZfkTOBxVXVNkkcDx9OV7tgN+J2qemaf8QEkCd0o5ke02wPpft7frKrD+oxNkiRJkiRJo29Jl8hos3Q+Islj6BJnAJ8bkSLrNw8s/3Qj2/r0XroyHnelqyG0b1V9K8n9geMAE8wbt3lVXdOWnwMcWVWfBD6Z5Kz+wlqv1a0+N8lPgOva7SnAwwATzJIkSZIkSdqoJZ1gbpOs/QVwH7pJy46qqhv7jeoW909yNl2x7Xu3Zdr6vfoLawNbVNUXAZK8aaLecVV9vxv4qk3YPMkW7Xdub2D1wLbe//aSvJj1I5d/Q1fS4xt05Vqc5E+SJEmSJEmb1HuSa5EdQ5c4+xqwL/A7dJOujYKHANsBl0xq34muJu4oGBxJ/YtJ25ZubZWFcxzw1SQ/pnv/vgaQ5D50I4X7thL4OPCyqrq851gkSZIkSZI0hpZ6DeZzqupBbXkL4NtVtXvPYQGQ5LPAa6rqnEntDwLeVlVP7SeyDWK5Cfg53ajq2wM3TGwCbldVt+krtnHR6lhvD3yxqn7e2u4L3Kmqzuw1OEmSJEmSJGmelvoI5t9MLFTVjSNW1mG7ycllgKo6J8nKHuK5laravO8Yxt1EWZFJbf+vj1gkSZIkSZKkhbbUE8wPSTIxgV6A27f10M1vdpf+QmOrjWy7/bCCkCRJkiRJkqS5WtIJ5hEfgbsmyZ9X1fsHG5P8GXBGTzFJkiRJkiRJ0owt6RrMoyzJdsCngV+zPqG8CtgS+MOqGpWJ/iRJkiRJkiRpSiaYe5bkMcAD2+p5VfXlPuORJEmSJEmSpJkywSxJkiRJkiRJmpPN+g5AkiRJkiRJkjSeTDBLkiRJkiRJkubEBLMkSZIkSZIkaU5MMEuSJEmSJEmS5sQEsyRJkiRJkiRpTkwwS5IkSZIkSZLmxASzJEmSJEmSJGlOTDBLkiRJkiRJkubEBLMkSZIkSZIkaU5MMEuSJEmSJEmS5sQEsyRJkiRJkiRpTkwwS5IkSZIkSZLmxASzJEmSJEmSJGlOTDBLkiRJkiRJkubEBLMkSZIkSZIkaU5MMEuSJEmSJEmS5sQEsyRJkiRJkiRpTkwwS5IkSZIkSZLmxASzJEmSJEmSJGlOTDBLkiRJkiRJkubEBLMkSZIkSZIkaU5MMEuSJEmSJEmS5sQEsyRJkiRJkiRpTkwwS5IkSZIkSZLmxATzPCX5lySvX6Bj7ZzkZ0k2b+tfSfJnC3Hsdrz/THLQQh1vFs/7liQ/TnLFsJ97LpL8fpL/6TsOadjsz2b0vCPVny3kz0xaKPYlM3pe+xJpkdgHzeh5R6oPmq0kH0ryljk+doOfqbQY7Idm9Lxz7ocW+j3YxHPN+/1J8vwkX1+omEaVCeaNSHJRkl8kuT7JT5J8I8lfJLnlfauqv6iqN8/wWI/b2D5V9aOqulNV3bQAsb8hyb9NOv6+VXXMfI89yzh2Bl4B7FpVvz3F9r2S3Nw6zJ8luSzJGxcplg1+BklWJqmB5/5Zku9W1deq6n5zOP5rB47zyyQ3Dayft7CvZsrnv22So5Jc3H5nz0qy72I/r8aD/dn8zbA/u3SK9gX5ADTVB5OZ/sykhWJfMn/LrS9pn0/+NsmP2u/OBUlemSST9ntiktPa79a6JF9N8rTFiEnjyz5o/jbVB7V97pLkH9vf7c+S/KCtb7sAz7/J930htL60krx6sH0hf6ZanuyH5m8OeaKJ28MXMIZbvRdT6eP9GVcmmDftqVV1Z+AewOHAq4GjFvpJkmyx0MccETsDV1fVVRvZ539bh3kn4FHAwUmePpToOltNPH9VPWSuB6mqtw28jr8Avjlw3AcsXLjT2gK4BPgD4K7A64CPJVk5hOfWeLA/m5+Z9GfScmBfMj/LrS/5OLA38CTgzsDzgBcC75jYIckz237HAjsC2wH/F3jqsIPVWLAPmp+N9kFJtgROAR4A7APcBXg4cDXwsMUObgHf94OAa4ADZ/HcGUwSShthPzQ/s8oTDdy+OawA7Q/moKq8TXMDLgIeN6ntYcDNwAPb+oeAt7TlbYHPAj+h+2f2Nbok/ofbY34B/Ax4FbASKOBg4EfAaQNtW7TjfQX4W+DbwE+BE4Bt2ra9gEunipfug8Cvgd+05/vuwPH+rC1vRpeAvBi4iu4D/V3btok4Dmqx/Rj4m428T3dtj1/Xjve6dvzHtdd8c4vjQ1M8dqrX8THgtW05wLtajD8Fzpn03v8z8J/t+P8F/Dbwj8C1wPeBh7Z9N/Yz2GJjMbX39ZXA2cB1wEeB223id+f5wNfb8l8Dn5y0/T3Auzf1c27b9wS+Qfd79V1gr1n8Dp8NPKPvvyVv/d+wP+ulP5sca1t/CnBWe2+/ATx4YNuhwA+A64HvAX/Y2n8H+CVwU3v+n0zxM9sLuJRuNMBVwOXACwaOfTfgM+39/w7wFlo/5c3bTG/Yl9iXzKIvoUss/xLYaVL7Hi2Ge9F91vsR8Nd9/357G/0b9kHD6IP+DLgSuNNGjn934JPt+D8EXjyw7Q103+eOpeuDzgNWtW0zet/bvh8HrqD7/nUa8ICB57jlZzxNfHdsz71/e99XDWyb6mf6Vrrvkr8A7tP377m30b5hP9TbZ6GB7bfE3Nb/FDifLg/0BeAeA9seAJzc3vsrgddu4r3YoD+Y4rn+vD3XxGes3Vv7lJ+92rbnswy+d5mNn6Wq+jbdh+7fn2LzK9q2FXQjL17bPaSeR/cH+NTqzrr83cBj/oDuw/4Tp3nKA+n+WLYHbqRLTG4qxs8DbwM+WtOPyn1+uz2G7sP9nYD3TtrnUcD96L4c/N8kvzPNU/4TXedxr/Z6DqT7IvIlYF/Wn3l6/qZiT7IL8EjgW63pCcCjgfu253g23dnzCc+m66i2BX4FfBM4s61/AngnwCZ+BjPxbLpO6J7Ag+neu5n6N2CfJFu117gF3YedYwf2mfLnnGQH4HN0X962oUt0fzLJik09aZLt6N63RS/PofFkfzalBevPppLkocDRdKP37gb8K3Biktu2XX5A9/O4K/BG4N+SbF9V57PhlRFbTfMUv90euwPdB9P3Jdm6bXsf8PO2z0HtJs2bfcmU7Es6jwdOr6pLBhur6nS634u96d7Pneg+t0mzZh80pfn0QY8DPl9VP5vqwG1E32foBr7s0GJ5aZLB9+tpwPHAVsCJE69jlu/7fwK7AL9F9/3uI9O81qn8EV3S6ON0yaZNfeZ5HrCa7iqLi2fxPBJgPzTNUy7qZ6EJSfaje0//iO49/hpwXNt2Z+BLwOfpTozdBzhlE+/FtP1BkmfRnUQ7kO7qjqexPj815Wev+by2cWOCeW7+ly7ZN9lv6P7A71FVv6mulm9t4lhvqKqfV9Uvptn+4ao6t6p+DrweeHYWZkKC5wLvrKoL24eH1wD7T7oE441V9Yuq+i7dB4hbdUAtlv2B11TV9VV1Ed0lj8+bRSx3b7WLfgr8P+B0YKI24G/o/rDvD6Sqzq+qywce++mqOqOqfgl8GvhlVR1bXX2ijwIPncHz/7g9/0+SvHKafd5TVf9bVdfQfaDabaYvrsV7GvCs1rQP8OOqOmNgt+l+zn8CnFRVJ1XVzVV1MrCG7jLTaSW5Dd2HsGOq6vszjVXLkv1Zs8D92S03ug9hE1YD/1pVp1fVTdXV8/oV3ZUKVNXHW19zc1V9FLiA2V2O+hvgTe1ndhLdl6v7tdf2DOCwqrqhqr4HWEtMC8m+pLEv2cC2dCOgp3I53RfBuw2sS3NlH9QsQB90Nzb+9/h7wIqqelNV/bqqLgTe355zwtfb95eb6EZpTpXImmyD972qjm7x/4ouofOQJHed4Ws4iC5xdBPw73Tv4202sv+Hquq8qrqxqn4zw+eQJrMfahbrs1CSO06x318Af9tyRTfSJY53S3IPuqu9rqiqd1TVL1ssp2/ieTfWH/wZ8HdV9Z3qrK2qi2FBPnuNPRPMc7MD3fD6yf4eWAt8McmFSQ6dwbEumcX2i4Hb0H1Yn6+7s+HZmIvpavhuN9A2OJvnDXRnrybbtsU0+Vg7zCKW/62qrarqLnRnuX9B+7JSVV+mO2P2PuCqJEcmucvAY68cWP7FFOtTxXyr19Cef6uq+odp9pnJe7Exx9Ali2n3H560fbqf8z2AZ03xBXPaM2FtVMGH6S75eNEs49TyY3+23kL2Z7fcWH/CDLq/6VdM+pveqb0GkhyYboLOiW0PZHbv0dXtg9WEide6gvV12ids6uclzYZ9yXr2Jev9mOk/s2zftl89sC7NlX3QevPtg65m43+P92BS4odu9ODG4rzdDGrJ3vK+Jtk8yeHpJhf8Kd0l/jCD9znJTnSjLydGPJ8A3A548kyeW5oH+6H1FuWzUEuoT3YP4N0D/dE1dOW3dqD7bPSDWTwnbPy9n/Z4C/DZa+yZYJ6lJL9H94v69cnb2tmQV1TVveiGyr88yd4Tm6c55KbOXO00sLwz3dmvH9NdmniHgbg2p/vQP9Pj/i/dH+LgsW9kwwTtTPy4xTT5WJfN8jgAVNV1dGeZnzrQ9p6q+l1gV7qSD389l2Oz6fdkMf0H8OAkD6Q7izb5Eq/pfs6X0J2dHOxU71hVh0/1JElCN7nAdnS1lz0Dr2nZn93KgvZn07gEeOukv+k7VNVx7Sz7++lODN2tJZTOpfuABPPrw9bRvSc7DrTtNM2+0qzYl9yKfcl6XwL2aAmfWyTZg+49+SrwP+31PGMecWkZsw+6lfn2QV8CnjjNSEHo/l5/OKn/uXNVbfQKywEzed//GNiPrlzHXelqv8L6fmxjnkeX5/hMkiuAC+kSzBsrk9Hn90QtAfZDtzKMz0ITLgFeOKlPun1VfaNtu9c0j5vLe38JcO/JjTP47LUsmGCeoSR3SfIUulpS/1ZV50yxz1OS3Kcl+a6jm7zk5rb5Sqb/xd6YP0mya5I7AG8CPtEu9fl/dGeCn9wu93kdcNuBx10JrMz0s14eB7wsyT2T3In19WdunGb/KbVYPga8Ncmd2x/Wy+nqDs9ai2V/Wt3gJL+XZI/2Gn9ON1HMzRs5xMbM9Wcwb9WV8PgEXfL821X1o0m7TPdz/jfgqUme2M7k3y7JXkl2ZGpH0NVqeupGLqfRMmd/NrWF7s+m8X7gL1q/liR3bK/7znQT0hRdAockL6A78z3hSmDHdLO7z0p7bZ8C3pDkDknuzyxmVZemYl8yNfuSDfb/EnAK3fwRD2ifZfakey+Orar/aZcJvxx4fZIXtN+rzZI8KsmRs41Ry4d90NQWoA/6MF0S5ZNJ7t/+Hu+W5LVJnkQ3sdj1SV6d5Pbt7/qBLcE2EzN53+9MV/bnarpk2dtmeGzoEslvpCtpOHF7BvCkJHeb9lHSHNgPTW1In4Um/AvwmiQPAEhy13S1kqGbXHH7JC9NctsWyx5t26bei6l8AHhlkt9tn7/u017bpj57LQsmmDftM0mup/sn+zd0k8a9YJp9d6E74/szusnm/rmqTm3b/hZ4XTZe53cqH6abgfQKujOvL4ZbRvr+Jd0v+GV0yddLBx738XZ/dZIzpzju0e3Yp9HN/PtL4K9mEdegv2rPfyHdGbt/b8efqbsn+VmSn9FdNrENXe0f6Aqnv59uNtCL6T5k/P0c45zrz2ChHAM8iFuXx4Dpf86X0J29fy1dZ3UJ3QjuW/3tto7thXQfoq6YeE+TPHfyvlq27M82bb792UZV1Rq6mYffS9evraVNGlpdLdN30L3fV9L1F/818PAv0518uyLJj+fw9C+iGwV0Bd37dRzdlzdptuxLNs2+ZL1nAKfSTbDzyxbX5+nqSE+8nk8Az6GbsOh/W9xvobu0XZrMPmjT5twHVVfz+HHA94GTgZ/SJZW3pZu08ya6KzJ3a3H+mO41z7Q+8kze92PpvvtdBnyP9RPAb1Q7gXUP4H1VdcXA7US6fvKAGcYobYr90KYtWJ5o4Harq52q6tPA24Hj05XUOZduEkGq6nq6CYefSvdeXUBXQgc2/V7cSlV9HHhrey3X012pvs0MPnstC6lN1haXtBCS7Ez3Qe23q+qnA+1foTvb+YG+YpO0/CR5O11/tKmZ1SVpWrPtS5IcQ1fj8clV9etFDU6SJElD4QhmaQjaZRcvB44fTC5L0rC0y1wf3C7nehhwMPDpvuOSNF4WoC/5M7qRXLsvSoCSJEkauk3N5CppntJNkHEl3WVe+/QcjqTl6850l7Lfna5Pegdefi5p9ubVl7QJiN++OKFJkiSpD5bIkCRJkiRJkiTNiSUyJEmSJEmSJElzMtIlMrbddttauXJl32FImoczzjjjx1W1ou84ZsO+Rxpv9juShs1+R9Kw2e9I6sN0fc9IJ5hXrlzJmjVr+g5D0jwkubjvGGbLvkcab/Y7kobNfkfSsNnvSOrDdH2PJTIkSZIkSZIkSXNiglmSJEmSJEmSNCcmmCVJkiRJkiRJc2KCWZIkSZIkaRlIslOSU5N8L8l5SV7S2rdJcnKSC9r91q09Sd6TZG2Ss5PsPnCsg9r+FyQ5qK/XJKl/JpglSZIkSZKWhxuBV1TVrsCewCFJdgUOBU6pql2AU9o6wL7ALu22GjgCuoQ0cBiwB/Aw4LCJpLSk5ccEsyRJkiRJ0jJQVZdX1Zlt+XrgfGAHYD/gmLbbMcDT2/J+wLHV+RawVZLtgScCJ1fVNVV1LXAysM/wXomkUbJF3wEslJWHfm5Bj3fR4U9e0ONJWnrsdyT1ZaH7n8nsj6ThSLITcCywHVDAkVX17jYy8KPASuAi4NlVdW2SAO8GngTcADx/IlHULk9/XTv0W6rqGEbQYvdfo8b+VKMsyUrgocDpwHZVdXnbdAVdvwRd8vmSgYdd2tqma5/8HKvpRj6z8847zyo+P+9I48MRzJIkSZLUDy9Vl9SLJHcCPgm8tKp+OritqorupNe8VdWRVbWqqlatWLFiIQ4paQSZYJYkSZKkHnipuqQ+JLkNXXL5I1X1qdZ8ZetPaPdXtfbLgJ0GHr5ja5uuXdIyZIJZkiRJkno2rEvVk6xJsmbdunUL+wIkjYVWauco4PyqeufAphOBg9ryQcAJA+0HprMncF3rn74APCHJ1u2KiSe0NknL0JKpwSxJkiRJ42jypepd/qdTVZVkwS5VB44EWLVq1YIcU9LYeSTwPOCcJGe1ttcChwMfS3IwcDHw7LbtJLq672vpar+/AKCqrknyZuA7bb83VdU1Q3kFkkaOCWZJkiRJ6snGLlWvqstncan6XpPav7KYcUsaT1X1dSDTbN57iv0LOGSaYx0NHL1w0UkaV5bIkCRJkqQeeKm6JElaChzBLEmSJEn98FJ1SZI09kwwSxo5SXYCjqWb0KaAI6vq3Um2AT4KrAQuAp5dVde20T/vpvvCdQPw/IkZ2ZMcBLyuHfotVXUMkiRJI8BL1SVJ0lJgiQxJo+hG4BVVtSuwJ3BIkl2BQ4FTqmoX4JS2DrAvsEu7rQaOAGgJ6cOAPYCHAYe1y0YlSZIkSZK0AEwwSxo5VXX5xAjkqroeOB/YAdgPmBiBfAzw9La8H3Bsdb4FbNUmxHkicHJVXVNV1wInA/sM75VIkiRJkiQtbSaYJY20JCuBhwKnA9u1iWwArqAroQFd8vmSgYdd2tqma5/qeVYnWZNkzbp16xbuBUgaG0mOTnJVknMH2rZJcnKSC9r91q09Sd6TZG2Ss5PsPvCYg9r+F7QyPZIkSZK0ZJlgljSyktwJ+CTw0qr66eC2VoOwFuq5qurIqlpVVatWrFixUIeVNF4+xK2vcrA0jyRJkiRthAlmSSMpyW3okssfqapPteYrW+kL2v1Vrf0yYKeBh+/Y2qZrl6RbqarTgGsmNVuaR5IkSZI2wgSzpJGTJMBRwPlV9c6BTScCE5ebHwScMNB+YLtkfU/gulZK4wvAE5Js3UYQPqG1SdJMWZpHkiRJkjZii74DkKQpPBJ4HnBOkrNa22uBw4GPJTkYuBh4dtt2EvAkYC1wA/ACgKq6Jsmbge+0/d5UVZNHJ0rSjFRVJVnQ0jzAkQCrVq1asONKkiRJ0jCZYJY0cqrq60Cm2bz3FPsXcMg0xzoaOHrhopO0zFyZZPuqunwWpXn2mtT+lSHEKUmSJEm9sESGJEnS9CzNI0mSJEkb4QhmSZIkIMlxdKOPt01yKXAYluaRJEmSpI0ywSxJkgRU1QHTbLI0jyRJkiRNwxIZkiRJkiRJkqQ5McEsSZIkSZIkSZoTE8ySJEmSJEmSpDkxwSxJkiRJkiRJmhMTzJIkSZIkSZKkOTHBLEmSJEmSJEmak00mmJMcneSqJOcOtL0hyWVJzmq3Jw1se02StUn+J8kTB9r3aW1rkxy68C9FkiRJkiRJkjRMMxnB/CFgnyna31VVu7XbSQBJdgX2Bx7QHvPPSTZPsjnwPmBfYFfggLavJEmSJEmSJGlMbbGpHarqtCQrZ3i8/YDjq+pXwA+TrAUe1ratraoLAZIc3/b93uxDliRJkiRJkiSNgvnUYH5RkrNbCY2tW9sOwCUD+1za2qZrv5Ukq5OsSbJm3bp18whPkiRJkiRJkrSY5ppgPgK4N7AbcDnwjoUKqKqOrKpVVbVqxYoVC3VYSZIkSZIkSdIC22SJjKlU1ZUTy0neD3y2rV4G7DSw646tjY20S5IkSZIkSZLG0JxGMCfZfmD1D4Fz2/KJwP5JbpvknsAuwLeB7wC7JLlnki3pJgI8ce5hS5IkSZIkSZL6tskRzEmOA/YCtk1yKXAYsFeS3YACLgJeCFBV5yX5GN3kfTcCh1TVTe04LwK+AGwOHF1V5y30i5EkSZIkSZIkDc8mE8xVdcAUzUdtZP+3Am+dov0k4KRZRSdJkiRJkqQFkeRo4CnAVVX1wNb2BuDPgXVtt9e2HA5JXgMcDNwEvLiqvtDa9wHeTTeI8ANVdfgwX4ek0TLXSf4kSZIkSZI0Xj4E7DNF+7uqard2m0gu70pX4vQB7TH/nGTzJJsD7wP2BXYFDmj7SlqmTDBLkiRJUg+SHJ3kqiTnDrS9IcllSc5qtycNbHtNkrVJ/ifJEwfa92lta5McOuzXIWl8VNVpwDUz3H0/4Piq+lVV/RBYCzys3dZW1YVV9Wvg+LavpGXKBLMkSZIk9eNDOJJQ0mh4UZKz24mvrVvbDsAlA/tc2tqma5e0TJlgliRJ2oQkL0tyXpJzkxyX5HZJ7pnk9DZi8KNJtmz73ratr23bV/YcvqQR5UhCSSPiCODewG7A5cA7FurASVYnWZNkzbp16zb9AEljyQSzJEnSRiTZAXgxsKpNhrM53SjCt9ONMrwPcC3dBDi0+2tb+7vafpI0G44klDQ0VXVlVd1UVTcD76c7cQVwGbDTwK47trbp2qc69pFVtaqqVq1YsWLhg5c0EkwwS5IkbdoWwO2TbAHcgW50z2OBT7TtxwBPb8v7tXXa9r2TZHihShpzjiSUNFRJth9Y/UNgoi78icD+7eqsewK7AN8GvgPs0q7m2pLuxPuJw4xZ0mjZou8AJEmSRllVXZbkH4AfAb8AvgicAfykqm5suw2OGLxlNGFV3ZjkOuBuwI8Hj5tkNbAaYOedd17slyFpTFTVlRPLSd4PfLatbmzE4IxHEgJHAqxataoWKGRJYyTJccBewLZJLgUOA/ZKshtQwEXACwGq6rwkHwO+B9wIHFJVN7XjvAj4At2VXUdX1XnDfSWSRokjmCWNHGdUlzRK2uXp+wH3BO4O3JGpJ+WaFS8ZlTQVRxJKWkxVdUBVbV9Vt6mqHavqqKp6XlU9qKoeXFVPq6rLB/Z/a1Xdu6ruV1X/OdB+UlXdt217az+vRtKocASzpFH0IeC9wLGT2t9VVf8w2DBpRvW7A19Kct+2+X3A4+lGFn4nyYlV9b3FDFzSkvQ44IdVtQ4gyaeARwJbJdmijWIeHDE4Mcrw0lZS467A1cMPW9KocyShJElaCkwwSxo5VXVakpUz3P2WGdWBHyaZmFEd2ozqAEkmZlQ3wSxptn4E7JnkDnQlMvYG1gCnAs8EjgcOAk5o+5/Y1r/Ztn+5qrwUXdKtVNUBUzQftZH93wrcaqRgVZ0EnLSAoUmSJM2YJTIkjZNFm1HdSW8kTaeqTqebrO9M4By6z09HAq8GXt5ObN2N9Umho4C7tfaXA5bokSRJkrRkOYJZ0rg4Angz3eWib6abUf1PF+rgTnojaWOq6jC6S9cHXcj6KyYG9/0l8KxhxCVJkiRJfTPBLGksLOaM6pIkSZIkSZobS2RIGgvOqC5JkiRJkjR6HMEsaeQ4o7okSZIkSdJ4MMEsaeQ4o7okSZIkSdJ4sESGJEmSJEmSJGlOTDBLkiRJkiRJkubEBLMkSZIkSZIkaU5MMEuSJEmSJEmS5sQEsyRJkiRJkiRpTkwwS5IkSZIkSZLmxASzJEmSJEmSJGlOTDBLkiRJkiRJkubEBLMkSZIkSZIkaU5MMEuSJEmSJEmS5sQEsyRJkiRJkiRpTkwwS5IkSZIkSZLmZIu+A5AkSdLysvLQzy3q8S86/MmLenxJkiRJ6zmCWZIkSZIkSZI0JyaYJUmSNiHJVkk+keT7Sc5P8vAk2yQ5OckF7X7rtm+SvCfJ2iRnJ9m97/glSZIkabFsMsGc5OgkVyU5d6Bt1l+okhzU9r8gyUGL83IkSZIWxbuBz1fV/YGHAOcDhwKnVNUuwCltHWBfYJd2Ww0cMfxwJUmSJGk4ZjKC+UPAPpPaZvWFKsk2wGHAHsDDgMMmktKSJEmjLMldgUcDRwFU1a+r6ifAfsAxbbdjgKe35f2AY6vzLWCrJNsPNWhJkiRJGpJNJpir6jTgmknNs/1C9UTg5Kq6pqquBU7m1klrSZKkUXRPYB3wwST/neQDSe4IbFdVl7d9rgC2a8s7AJcMPP7S1raBJKuTrEmyZt26dYsYviRJkiQtnrnWYJ7tF6oZfdECv2xJkqSRswWwO3BEVT0U+Dnrr94CoKoKqNkctKqOrKpVVbVqxYoVCxasJEmSJA3TvCf5m8sXqk0czy9bkiRplFwKXFpVp7f1T9AlnK+cKH3R7q9q2y8Ddhp4/I6tTZIkSZKWnLkmmGf7hcovWpIkaSxV1RXAJUnu15r2Br4HnAhMTFx8EHBCWz4ROLBNfrwncN3AlV+SJEmStKTMNcE82y9UXwCekGTrNrnfE1qbJEnSOPgr4CNJzgZ2A94GHA48PskFwOPaOsBJwIXAWuD9wF8OPVpJkqQpJDk6yVVJzh1o2ybJyUkuaPdbt/YkeU+StUnOTrL7wGMOavtfkOSgqZ5L0vKxyQRzkuOAbwL3S3JpkoOZ5ReqqroGeDPwnXZ7U2uTJEkaeVV1Vivh9eCqenpVXVtVV1fV3lW1S1U9buKzTZvs+JCqundVPaiq1vQdv6TRZKJHUg8+BOwzqe1Q4JSq2gU4hfVzTewL7NJuq4EjoOungMOAPYCHAYdN9FWSlqctNrVDVR0wzaa9p9i3gEOmOc7RwNGzik6SJEmSlq4PAe8Fjh1om0j0HJ7k0Lb+ajZM9OxBl+jZYyDRs4pubpwzkpxYVdcO7VVIGhtVdVqSlZOa9wP2asvHAF+h63f2A45tuZ5vJdmqlUndCzh54uR6kpPpktbHLXb8kkbTvCf5kyRJkiTNXlWdBky+snM/ugQP7f7pA+3HtqskvgVMJHqeSEv0tKTyRKJHkmZqu4H5Iq4AtmvLOwCXDOx3aWubrv1WkqxOsibJmnXr1i1s1JJGhglmSZIkSRodJnok9aaNVq4FPN6RrczYqhUrVizUYSWNGBPMkkaSNQklSdJyZ6JH0pBc2a6IoN1f1dovA3Ya2G/H1jZdu6RlygSzpFH1IZx8QpIkLT8meiQN24nAxGCcg4ATBtoPbAN69gSua1dYfAF4QpKt2/erJ7Q2ScuUCWZJI8mahJIkaZky0SNp0SQ5DvgmcL8klyY5GDgceHySC4DHtXWAk4ALgbXA+4G/BGiT+70Z+E67vWliwj9Jy9MWfQcgSbOwqDUJ6UY/s/POOy9gyJIkSVNriZ69gG2TXEp35dXhwMda0udi4Nlt95OAJ9Elem4AXgBdoifJRKIHTPRI2oiqOmCaTXtPsW8Bh0xznKOBoxcwNEljzASzpLFUVZVkQWsSAkcCrFq1asGOK0mSNB0TPZIkaSmwRIakcWJNQkmSJEmSpBFiglnSOLEmoSRJkiRJ0gixRIakkWRNQkmSJEmSpNFnglnSSLImoSRJkiRJ0uizRIYkSZIkSZIkaU5MMEuSJEmSJEmS5sQEsyRJkiRJkiRpTkwwS5IkSZIkSZLmxASzJEmSJEmSJGlOTDBLkiRJkiRJkubEBLMkSdImJNk8yX8n+Wxbv2eS05OsTfLRJFu29tu29bVt+8peA5ckSZKkRWaCWZIkadNeApw/sP524F1VdR/gWuDg1n4wcG1rf1fbT5IkSZKWLBPMkiRJG5FkR+DJwAfaeoDHAp9ouxwDPL0t79fWadv3bvtLkiRJ0pJkglmSJGnj/hF4FXBzW78b8JOqurGtXwrs0JZ3AC4BaNuva/vfSpLVSdYkWbNu3bpFCl2SJEmSFpcJZkmSpGkkeQpwVVWdsdDHrqojq2pVVa1asWLFQh9ekiRJkoZii74DkCRJGmGPBJ6W5EnA7YC7AO8GtkqyRRulvCNwWdv/MmAn4NIkWwB3Ba4eftiSJEmSNBwmmCVJkqZRVa8BXgOQZC/glVX13CQfB54JHA8cBJzQHnJiW/9m2/7lqqohh61FtvLQzy36c1x0+JMX/TkkSZKkhWCJDEmSpNl7NfDyJGvpaiwf1dqPAu7W2l8OHNpTfJIkSZI0FI5gliRJmoGq+grwlbZ8IfCwKfb5JfCsoQYmSZIkST1yBLMkSZIkSZIkaU5MMEuSJEmSJEmS5sQEsyRJkiRJkiRpTkwwS5IkSZIkSZLmxASzJEmSJEmSJGlO5pVgTnJRknOSnJVkTWvbJsnJSS5o91u39iR5T5K1Sc5OsvtCvABJkiRJkiRJUj8WYgTzY6pqt6pa1dYPBU6pql2AU9o6wL7ALu22GjhiAZ5bkiRJkiRJktSTxSiRsR9wTFs+Bnj6QPux1fkWsFWS7Rfh+SVJkiRJkiRJQzDfBHMBX0xyRpLVrW27qrq8LV8BbNeWdwAuGXjspa1tA0lWJ1mTZM26devmGZ4kSZIkjR/LEUoaNvsdSXM13wTzo6pqd7ryF4ckefTgxqoquiT0jFXVkVW1qqpWrVixYp7hSZIkSdLYshyhpGGz35E0a/NKMFfVZe3+KuDTwMOAKydKX7T7q9rulwE7DTx8x9YmSbPimXVJkrRMWY5Q0rDZ70japDknmJPcMcmdJ5aBJwDnAicCB7XdDgJOaMsnAge2ZM+ewHUDpTQkabY8sy5JkpayBS9HKEmbYBlUSXOyxTweux3w6SQTx/n3qvp8ku8AH0tyMHAx8Oy2/0nAk4C1wA3AC+bx3JI02X7AXm35GOArwKsZOLMOfCvJVkm29wSXJEkacY+qqsuS/BZwcpLvD26sqkoyq3KELWG0GmDnnXdeuEglLRUL3u9U1ZHAkQCrVq2a1WMljY85J5ir6kLgIVO0Xw3sPUV7AYfM9fkkacDEmfUC/rV9aJntmXUTzJIkaWQNliNMskE5wqq6fC7lCE30SNqYxeh3JC0P853kT5L6sOATjHrpliRJGhWWI5Q0bPY7kuZjPiUyJKkXjuiRJElLnOUIJQ2b/Y6kOTPBLGmstLPpm1XV9QNn1t/E+jPrh3PrM+svSnI8sAeeWZckSSPOcoSShs1+R9J8mGCWNG48sy5JkiRJkjQiTDBLGiueWZc0bEl2Ao6lO8FVwJFV9e4k2wAfBVYCFwHPrqpr050Bezfdya0bgOdX1Zl9xC5JkiRJi81J/iRJkjbuRuAVVbUrsCfd5KK7AocCp1TVLsApbR26CUh3abfVwBHDD1mSJEmShsMEsyRJ0kZU1eUTI5Cr6nrgfGAHYD/gmLbbMcDT2/J+wLHV+RawVZt8VJIkSZKWHBPMkiRJM5RkJfBQ4HRgu4FJQ6+gK6EBXfL5koGHXdraJh9rdZI1SdasW7du8YKWJEmSpEVkglmSJGkGktwJ+CTw0qr66eC2Vu+9ZnO8qjqyqlZV1aoVK1YsYKSSJEmSNDwmmCVJkjYhyW3okssfqapPteYrJ0pftPurWvtlwE4DD9+xtUmSJEnSkmOCWZIkaSOSBDgKOL+q3jmw6UTgoLZ8EHDCQPuB6ewJXDdQSkOSJEmSlpQt+g5AkiRpxD0SeB5wTpKzWttrgcOBjyU5GLgYeHbbdhLwJGAtcAPwgqFGK0mSJElDZIJZkiRpI6rq60Cm2bz3FPsXcMiiBiVJkiRJI8ISGZIkSZIkSZKkOTHBLEmSJEmSJEmaExPMkiRJkiRJkqQ5McEsSZIkSZIkSZoTE8ySJEmSJEmSpDkxwSxJkiRJkiRJmhMTzJIkSZIkSZKkOTHBLEmSJEmSJEmaExPMkiRJkiRJkqQ5McEsSZIkSZIkSZqTLfoOQJIkSZIkLQ0rD/1c3yEM1UWHP7nvECSpdyaYJUmSJEmSpAU0jJMtnuDQqDDBLEmSJC0zi/2l1y+8kiRJy4c1mCVJkiRJkiRJc2KCWZIkSZIkSZI0J5bIGJKFvgzRyw4lSZIkSZIk9c0EswAT4JIkSZIkSZJmzwSzxoIJcEmSJEmSJGn0DD3BnGQf4N3A5sAHqurwYccgLQaT4KPLfkfSsNnvSBo2+x1Jw2a/s/QtdJ5jMvMeS8dQE8xJNgfeBzweuBT4TpITq+p7w4xDWo6WawJ8Ofc7y/VnLvVtOfc7kvphvyNp2Ox3JA3abMjP9zBgbVVdWFW/Bo4H9htyDJKWF/sdScNmvyNp2Ox3JA2b/Y6kWwy7RMYOwCUD65cCewzukGQ1sLqt/izJ/yxwDNsCP97UTnn7Aj/rzBnf/Ix6fDD6MS50fPeYTzALYJP9Dix637PcfuYLbUbx9WzUY1xu8dnv3Nqs3uOe/09OZdzjh/F/Dcsq/jmw3xl9vfwvHMG/haVsuf2M7Xdubdz/V8H4v4ZlFf8IGkb8U/Y9IzfJX1UdCRy5WMdPsqaqVi3W8efL+OZn1OOD0Y9x1ONbLIvZ94z6e2p88zfqMRrfaFrszzyDxv09Hvf4Yfxfg/EvDcPsd0aNvwNLnz/j0eTnndkZ99dg/P3qM/5hl8i4DNhpYH3H1iZJi8V+R9Kw2e9IGjb7HUnDZr8j6RbDTjB/B9glyT2TbAnsD5w45BgkLS/2O5KGzX5H0rDZ70gaNvsdSbcYaomMqroxyYuALwCbA0dX1XnDjIHRvyTM+OZn1OOD0Y9x1OObFfudGTG++Rv1GI1viEak35ls3N/jcY8fxv81GP8IG9F+Z9Qs6d8BAf6Mh2pE+52l8Dsw7q/B+PvVW/ypqr6eW5IkSZIkSZI0xoZdIkOSJEmSJEmStESYYJYkSZIkSZIkzYkJZkmSJEnSkpDkpCQr+45DkqTlZMkmmJO8pN0/su9YJEmSNDdJ7p3k9Un6njhI0nj4IPDFJH+T5DZ9ByNp8aSzU99xSFrCk/wlOauqdktyZlXt3nc8G5NkT+C8qrq+rd8F+J2qOr3fyCDJQ4FXAr/TmtYAf19VFyTZoqpu7C86SHJ74LnArq1pDfCJqvp1f1GtN+rxASR5HAPxVdU3+oxnqUlyR+CPgP2r6sk9x/KPwDeA/6qqy/qMZVOSvBz46KjFmWSj/0+q6sxhxTKVJC+l+xmf2Xf/vDFJNgeOrarn9h3LUpbk4Ko6amB9c+B1VfXGHsOakSR3B54D/DHwIOBvgU9V1Tm9BjYDo95PzEWS3wJuN7FeVT/qMZxZS3IngKr6Wd+xaDjaz/z1wD7Ah4GbJ7ZV1Tv7iksLJ8n/3cjmqqo3Dy0Y9SrJOVX1oL7jWEhJHgUcUFWH9B3LxiTZedw+EwxKcjvgL4D7AOcAR43yd6jpJPkw8KKquq6t3wM4uqr2HmYcWwzzyYbs/CQXAHdPcvZAe+j+4Ty4p7imcgQw+GXkZ1O0DV2SZwBvB97W7gFWAR9P8n+AtwBD/YUdlORBwInAacAZrfmJwMuSPB54ZVW9zvimjW8n4ATg+oH4npHkF8B+wPOq6gN9xTfOkmwJPJkuMfJE4JPAv/QaVGct8HTg75JAl4j8BvBfwHer6ubpHzp0d6YbfXQN8FHg41V1Zc8xAbxjI9sKeOywApnGjsA/AvdPcg7dz/YbwDeq6po+AxtUVTcluUeSLUfphNsStHf7X34wsA3wIeCrvUa0CUlWAwcAOwAfo4v9hHFIig+Y6CduR/e56bt0nz8fTHei+eE9xTVrSZ5G93ruDlwF3AM4H3hAn3HNVPssdizd73+SrAMOqqpz+41MQ/Br4OfAbek+U4zSZxwtjJ9P0XYH4M+AuwEmmJePM5P8XlV9p+9A5qMN7vtj4FnAD4FP9RvRjPwHLW+V5JNV9Yx+w5m1Y4DfAF8D9qUbePeSXiOam68Dp7dBWjsAfw28YthBLNkRzABJfhv4AvC0yduq6uLhRzS1idHWk9rO7jsJ3hLzT6uqiya1rwS+D7yzql7bQ2gTcZwKvK2qTp7U/ji6L9HnVdUT+4itxTHq8Z1INxrsQ5PaDwReSnci5nd7CG1sJXkCXWLkCcCpdInRf6qqlX3GNZU2OvAR7fY04Leq6i79RnVrSR5MN4rxGcClVfW4nkMaC+0kxyq6n+/D2+0nVbXrRh84REmOpbs65kQGviQ6smxhJXkO8D669/iPq+q/eg5po5L8Gvgm8IqqWtPaLqyqe/Ub2ewl+RRw2MSo6yQPBN5QVc/sN7KZS/JduhNnX6qqhyZ5DPAnVXVwz6HNSJJvAH9TVae29b3oPps9os+4tLiS7AO8k+7/y5uq6oaeQ9IiS3JnuqTQwXQnJ99RVVf1G5WGJcn36UagXkz3eWcUBxVOKcl96b4/HgD8mO774yur6h69BjZDSf67qh46eXlcDI5+T7IF8O1Rr4AwnTbq/VS636OHVtUVw45hKY9gpr2hD+k7jhm4MMmL6UYtA/wlcGGP8UzYYnJyGaCqLkpycZ/J5Wb7yclbgKr6UpLfAH/YQ0yDRj2++09OLgNU1bFJ3kbPI+jH1Ofpzn4+qqp+CJDk3f2GtKF0Q5cfRJd4fCTdWdq1dJePjqKrgCuAq4Hf6jkWkvzRxrZX1aiMNLg9cBfgru32v3SXfY2SH7TbZnSjy7TAkuxC94X7k3TJ/Oe1D/+jnGzZge6E0jvaQIGPAeNaQ/V+gyU9qurcJL+zsQeMoN9U1dVJNkuyWVWd2sotjYs7TiSXAarqK610lZa2vwGeVVXWbV/ikmwDvJyuJOExwO5VdW2/UakHvQ3aWgDfp/v++JSqWguQ5GX9hjQrNc3yuPjNxEJV3diu8h07SZ5HVxbqQLor5k5K8oKq+u4w41jSCWa4ZZK/N9Bd0rcF689mjdJImL8A3gO8ju6P8hRgda8RdX4zVU2dVs/lVz3FNGizJLetqg1iaXV0fjMCX6BHPb4pe88kmwG/8Kz/nOwO7A98KcmFwPHA5v2GtF6Sk+mSjmcB36IbxXV+r0FNI8lfAs8GVgAfB/68qr7Xb1QAPHUj24qeL2VLciTdpevXA6fTlcd45yh+2ZooeWBt1EX1GeCQqjqlnVx6OfAdRru8wRfayJF/SbIj3RUMVyY5H/j0CJzcno2zk3wA+Le2/lzg7I3sP4p+0v5GTwM+kuQqpr4sfVRdmOT1rD+J+ieMxiAOLaKq+v2+Y9DiS/L3dPOcHAk8yM8Ry9rjBuecAEhyOHBoT/HMxh/RfX88Ncnn6b4/jlOW8yFJfkoX8+3bMqzPu43cFbKTPGRSzLcfeD3jEP+EZ9ANcrsKOC7Jp+lOuu02zCCWdIkMuOVyiZfR1Zi9aaK9qq7uLagxkeTpwN/R1WCeqNG7iq6jfnVV/Uc/kXWSvA7Yk+7L88WtbSVdsv47fU/sMAbxvQu4E/DSqvp5a7sj8C66BPM41h4aGUkeQXep0zPo6m9+uqqO7Dmmf6U7o/kLugTzN4FvVtWP+4xrKkn+lm6Sv7P6jmWctA+m2wLn0iWXvwmcWyP4z76VC/gwXW1U6C7nOtARZwsnyV2q6qeT2u5bVf+vr5g2ZbrLK9to7AOq6k09hDUn7YTy/wEmkl2nAUdMPvE8iiYGGLTPBb+gu9LguXRXRHxkXD5HJ9kaeCPwKLqTgF8D3jiKJ90kzU6Sm+kGPd3IhiMnxy0xpHlKchLd/6aPtPX3Abcbl3JOcMv38P3ovj8+lm7+gE9X1Rd7DUxjq4+5bpZDgvn0qtqj7zg2ptXdOQLYrqoe2GqOPq2q3tJzaCR5CF1x8InRTufR1bQa6lD76SR5EfAqugkdoBtV8w9V9U/9RbXeKMeX5DbA3wLPp6tXBbAz3Zmu11TVb6Z5qGahjQjfmy4x8qd9xwNd0onu5Mcj2v0KuiTkQb0GNoUkv0U3URYAk6+o6FOSJ9P1jYPx9Z78aiNVH8D6GtsPBK6hO5lwWJ+xDbI26uJJ8qqq+ru2/Kyq+vjAtreN8ijgJJfS1U6d0jjU6E6yH7BjVb2vrX+brp8t4FVV9Yk+45uJJGdO1CDMGE7ak1vPCn+0n2skaWlKcnu6mutHA/vQzTsytoOl2snRZwL7V9XefcczU60G8C5V9cEk2wJ3nigbOQ7GMf6Jz/xJ3jPV9qp68VDjWQYJ5sPpLlH/FANlHarqzN6CmiTJV+lmefzXgQLp51bVA/uNrJPk3lX1g77j2Jg2sQNVdX1bf0ZVfbLfqNYb5fjaP+T7tNUfVNUNSfaoqtP7jGuctdI8Z1XVz5P8CV3pjHfXiEwumuS2wO/R1WCeSDJfVW2Cg1GQ5Kl0Saa709VhvgdwflWNxKX9Sf6F7sTRY4AP0H0I/PYojZRo5QUmfsZPAe5WVVv1GtSAJN+tqodsqk2zNyk5eMvyVOujJsnldCfdp7o8tEbhJM6mJPkvui+Fl7T1s+hGI90J+OA4fFnM+E/a81E2nBX+oqp6aa9BSZIWVKvBPeHOwH8A/wX8X4CquqaHsOZsUoJzBV2CcyzKOiU5jO5q9/tV1X3TTSj/8ap6ZM+hzci4xp/kqVX1mSRTDhSrqmOGGc+Sr8EMTIxe/t12H7oRJI/tJ5wp3aGqvj2poPiNfQUzhaNbouI7dB/UT6uBSWtGwUTidsC76CY1GgmjHF9V/YJbT/71cbrRzJqbI+jqOU1cAfABusuc/qDPoFpZlEcA9wXOpCuf8C/AQVX1kx5Dm8pb6BLfX6qqhyZ5DF3tzFHxiKp6cJKzq+qNSd4B/GffQaWbMHZi5PJv6MpkfINuRMdI9dtYG3UxZZrlqdZHzeXjkETehC0nksvN19uX3GsyPhPMjfukPbvW+lnhjwK+3XM8kqSFdwa3Lo/y5HYrYJTm3dqowQQn8EG6CY4/TDdYZBz8IfBQuu+YVNX/TgyyGxNjGX9VfabdDzWRPJ0lm2BO8vK2+Nl2X8A6ug/5ozbM/cdJ7k3rHJM8E7i835DWq6o/SLIl3YjHvYDPJblTVW2z8Uf2atS/QBvf0nZjVVW7TPq9VXVUklEY2fpDusmmzqqqmza1c89+U1VXJ9ksyWZVdWqSf+w7qAG/bPc3tDPcVwPb9xjPhJV0J4heVlUj839kGn9KVxt1YmLEr7U2zd/GkoOjnixcCv9/th5cqaoXDayuGHIsczXuk/YsiVnhJUnTq6p7tnKED6+q/+o7nnkaywTngF+3778TOa1xOaE+YSzjT3LixrZX1dOGFQss4QQz3SUSk90D+Jskb6iq44cd0EYcQjf77f2TXEaXBHpuvyGt1y7V+P1224ouaf+1PmOagVH/Am18S9v1SV5DNyLz0e2Dz216jomqeg90JTySjGwJj+YnSe5ENynWR5JcRVfDvFdJXko3IvjEJFvRTYR6Jt3fzAf6i6xTVRMnV0myObAdA//rR6mGdZtk68Xtw3OVs78vpI0lB283/cNGwsiXj5iB05P8eVW9f7AxyQsZk5G0VbV53zHM01KZFV6StBFVdXOS99IlZ8fZWCY4B3ws3YTyWyX5c7pBI+/fxGNGybjG/3DgEuA44HR6Hqix5GswT9bq9HxpFOsPtk5kM+AGutp9H+k5JACS3Eh3+cnfAifVkGeinE6Sc5g6ERrgvlV12yGHtGEQox/fZ5g+vsdW1bj9UxsZSX4b+GPgO1X1tSQ7A3tV1bE9hwZAkrOBhwAPBj5Elxh9dlX1WsJjUOsPf0HXJz4XuCvd7NBX9xzXP9CVn/gd4Gy6Om/fBL7Rd2yDkvwVcBhwJXBza66qenB/UW0oyYPoSsdMXA3zY7pyLef2F5U0f+kmJ/0Purk/Jub8+F3gtsDTq+rKnkKTJGnJaZ/Pvwl8qsY0wZXklcAuwOPp8i5/Cvx7Vf1Tr4HNQpLHA0+gyyd8oapO7jmkWRnH+NuAoscDB9B9t/8ccFxVnddLPGP69zcvozJZSZK70I1e3gE4AfhSW38FcHZV7ddjeLdoo/QeCTyarkzGzcA3q+r1Pcd1j41t73s05jTxBdgJeE1VPWnIIW0YSDJVMnGiQ0hVfXWY8Wh4Jib5SvJ/gctaCY+Rmfir/aP8UlU9pu9YptPKBq2iSzY/vN1+UlW79hpYk2QtsMcoJb0nS/IN4G+q6tS2vhfwtqp6RJ9xSQslyWOBiYlJz6uqL/cZjyRJS1GS64E70s1j9UvG9GqVcUxwTmiDg35ZVTcluR9dLen/rKrfbOKhI2Hc4wdIclu6RPPfA2+sqvcOO4alXCJjSm2iqGv7jqP5MF0s3wT+HPgbus7kD6vqrB7j2kBV/STJhXSJ0R3pEiqjcLn/rRLISbYFrh6FM5eD8SV5KN2I1mfRlUAZhQn+tgJ2rKr3AST5Nl1tyAJe3WNcYy/JnsA/0Y1y3RLYHPhZVd2118DWG8kSHhPaP/abk9y1qq7rO55p3B64C93I6rsC/8toTaJ3CTCq792EO04klwGq6itjeDmgNK2WUDapLEnSIqqqcapVPKX2GfjLVXXyRIIzyW3GKMF5GvD7SbYGPg+sAZ7DCJV+3YSxjb8llp9Ml1xeCbwH+HQfsSzZBPM05Qm2oUsCHDj8iKZ0r4EZrj9AN7HfzlX1y40/bLhacvn7dHWXjwBeMAplMloS73DgGuDNdAn7bYHNkhxYVZ/vOb770v2RH0B36fdH6UYGj8qozFcB+w+sT4zIvCPdzLUf7yOoJeK9dO/tx+ne0wOB+/Ya0YaeQ3fC4+CquqKV8Pj7nmOa7GfAOUlOZqD2clW9uL+QIMmRdCMSr6erc/UN4J2tnnDvBia4vRD4SpLP0V2mD0BVvbOXwKZ2YZLX0/Xd0J3wuLDHeCRJkjRGkmwB3NTqF+8E7AGsHaUBezM0tgnOJlV1Q5vY/oiq+rskZ/Ud1CyMZfxJjgUeCJxEN2q511KDSzbBDDxl0nrRjWztfZKoAYMzXN+U5NJRSy4396mqmwcbkry0qv6xp3gmvBd4Ld3owS8D+1bVt5Lcn67Iea8JZtYn5Z9SVWsBkrys35A2sGVVXTKw/vV2Of3VjiKcv6pam2TzqroJ+GCS/wZe03dcAFV1BfDOgfUf0dXCHSWfajcYKN3SUyyDdqaro3oBcBlwKfCTPgOaZGIEx4/abct2g9GbvPNPgTey/uf8tdYmSZIkbVSbjO3twM+SvBn4a7q5Dx6a5OiqenuvAc7OWCY4ByTJw+kS4ge3tnGaMHhc4/8TusFYL6GbPH2ivZcyMUs2wdx3/d0ZGosZricnl5uXA/845FAm26KqvgiQ5E1V9S2Aqvr+wB9Wn/6IbhTrqUk+DxzPaCTIJmw9uFJVLxpYXTHkWJaaG1qN3u8m+Tu6qxM26zmmW4xyCY8k+zHCpVuqap90HcwD6MoFvQJ4YJJr6GrTH9ZzfG8ESPKsqtrgKoQkz+onqqm1Ud+9jkiXJEnS2HopcG+6ARbnA/eoqh8nuQPwHbrk87gY1wTnhJfSDab6dFWdl+RewKkbf8hIeSljGH9VjUyOAZbpJH+avySXVNVOPcdwy6RkkycoG7EJy+4I7EdXKuOxdCNFPz2RHO8xro8AX6mq909qfyGwV1Ud0E9k469N8HglXfL2ZXS1eo+YGMnetyRrmKKER1X1PsI6yX8B+0+Mrm9n7h8L3An4YFXt3WN4G0iyI90EqI+gu2rmblW1Va9BNVP1gaPSLyb5DBsZTV1VTxtiONL/Z+/O4yyp6vv/v94CggqyyITI5mAkGtzAjIjR5IvigrhAjCK4oWKICRrXn4LRgFtEEzUaIwkKAlFBRFSiuCBC0CjgQBBBNE4QBGQZFhF3gc/vjzrN3Gm6p/e7dL+ej8d99L2n6lZ9bnX3uVWfc+ocSZI0gpL8T1Xt0p5/p6oePtGyUZDk/9F1XPnvqnpXS3C+atDDA0ozsWh7MGvBDUPLxFgP8N7e37TXGw0urLW1YVk+AXyijan0bLqemANNMNMlPj+b5Ll0txIB/DHd7f/7DCqoUTZB79v/An6P7v/lW8BQJJhhqIfwmGjolpuAm4Zh6JYkf0uXUP4TumGOvtkexzAEk/wleQqwF7BNkg/0LLo33czaw+CfBh2AJEmSRt49kuxCd6fo3ZOMdaQYqnzAdFTVfwH/1fP6MkboTr8kZzJBjqiqHj+AcGZs1OMfFvZg1qSS3MrEieQA96gqGygWgSSPp7vdH+CSNuu9ZmFUet8mORt4AnA03fAd1wAv6m31H5Qkq6rqAZMs+7+q+oN+xzQuhvcC/w18s6quGWQsE0nycGBnulsC396Kb6PrUX/WMExGmGT7Nu63JEmSNCs9ScGxYSh7cxepqsf1P6rZGfUEZ5I/7nm5EfAXwG1V9foBhTQjox7/sDBBqElV1SZTr6VR1xLKJpXnx1D3vu3xArqW/oPperJvS/clOgzOTfKXkwzdct6AYrpTVb1m0DFM4Xt0Y7fdnTUT5m0PfBT4/KCCGuezwNjwRp+uqmH525MkSdLoeANw5VinjyQH0F3TXA4cPriwZuV1Pc/vTHAOKJYZq6rzxxX9d5tLZySMevzDwgSzJM2foZ44cUSG8HDolrl5N12P+ftV1a0ASe5NNyzFP9HNMDxovZOd3n9gUUiSJGmU/RvdXZkk+TPgncAr6O7mOwp41sAim6FRT3Am2aLn5d3ort8GPoH8dI16/MPCBLMkzZ+h7n0LvJ5ucr8xG9J9eW5M18P15EEE1auqrgf+ZNzQLV9w6JZpexrdhI133mJXVT9L8tfA9xmOBHNN8lySJEmarvXa3aIAzwGOqqpPA59uQxWOjEWQ4OxNkN8G/Ag4cECxzMaoxz8UTDBL0vwZ9t63ozKEh0O3zF71Jpd7Cm9PMizJ3HVN0FpVde/BhSZJkqQRsV6S9avqNmAP4KCeZaOW6xrJBOfY3CpVtcOgY5mNUY9/2IzaP50kDa0R6H071EN4aF58L8kLq+r43sIkz6frwTxwVbXeoGOQJEnSyDsB+K8kNwC/Ar4OkOQBwC2DDGy6FkGC87OM9twqn2W04x8qJpglaZ4Nce/bYR/CQ3N3MHBKkpewpifECuAewJ8PLCpJkiRpHlXVO5KcAdwX+ErPXXx3oxuLeRR8ltFOcI763CqjHv9QMcEsSUvHsA/hoTmqqquBR43rRX9aVZ0xwLAkSZKkeVdV50xQ9r+DiGWWRj3BOepzq4x6/EMlEwzVKElaxMYlHy8ZoiE8JEmSJGlJSHJBVT1i/PNRkeR24Be0uVWAX44tYgTmVhn1+IeNCWZJkiRJkiSpj0xwajExwSxJkiRJkiRJmpW7DToASZIkSZIkSdJoMsEsSZIkSZIkSZoVE8ySJEmSJEmSpFkxwSxJkiRJkiRJmhUTzJIkSZIkSZKkWTHBLEmSJEmSJEmaFRPMkiRJkiRJkqRZMcEsSZIkSZIkSZoVE8ySJEmSJEmSpFkxwSxJkiRJkiRJmhUTzJIkSZIkSZKkWTHBLEmSJEmSJEmaFRPMkiRJkiRJkqRZMcEsSZIkSZIkSZoVE8ySJEmSJEmSpFkxwSxJkiRJkiRJmhUTzJIkSZIkSZKkWTHBLEmSJEmSJEmaFRPMkiRJkiRJkqRZMcEsSZIkSZIkSZoVE8ySJEmSJEmSpFkxwSxJkiRJkiRJmhUTzJIkSZIkSZKkWTHBLEmSJEmSJEmaFRPMkiRJkiRJkqRZMcEsSZIkSZIkSZoVE8ySJEmSJEmSpFkxwSxJkiRJkiRJmhUTzAsoyb8lefM8bWv7JD9Psl57fVaSl87Httv2vpjkgPna3gz2+/YkNyS5dhbvfWOSj8xyv5cnecJs3jtsFtNn0cKzXprWfmddL/XDfP4Op9iPdYumzbplWvudcd2S5HlJvrJA8eye5KqF2LbUD9Y709rvUJ/TSKPAumZa+11ydU2SP03yg/lcN8nhST429+gGwwTzLLUL718luTXJT5N8M8nLktx5TKvqZVX1tmlua50X8VX146rauKpun4fY7/JHW1VPqarj5rrtGcaxPfBaYKeq+v0Jlq914ZPk7klOSfLfSe5dVf9QVS9ty5YnqSTr9+8TTE+SbZN8PMmNSX6R5Lwkew06Li0+1ktzN8166Y52Yjj2+M8FjOdFSb7RWzbd36E0X6xb5m62dUtVfbyqntTPWBdakj9J8rX293RLklOTPGjQcWm4WO/M3VT1TltnkyTvbcfoF0l+nOTkJI/qZ6wz1ZI1Y3XlL9p1YG/9uf2gY9RosK6Zu8Vc18BauabeOuY7VfX1qnrgdLYxk3VHmQnmuXl6VW0C3A84AngDcPR872QYk6bzZHvgxqq6fqoVk2wInAJsBjypqn62wLHNiyRbAN8Afgs8GNgSeB9wYpJ9BhiaFi/rpbmZTr30k3ZiOPZ4er+CkwbIumVu5r1uGcVjleTRwFeAzwFbAzsAFwH/nWT5AEPTcLLemZt11jvt+uprwEOBpwH3Bv4IOBF4ymx22K9j2ZI1G1fVxnTXWACb9dSfP+5HHFo0rGvmZtHWNeP01jEPH8D+h19V+ZjFA7gceMK4sl2BO4CHtNfHAm9vz7cEPg/8FLgJ+Dpdgv8/2nt+BfwceD2wHCjgQODHwNk9Zeu37Z0FvBM4D/gZ3Yn6Fm3Z7sBVE8UL7EmX7Pxd2993erb30vb8bsCbgCuA64HjgU3bsrE4Dmix3QD83TqO06bt/avb9t7Utv+E9pnvaHEcO8F7dweuAu5JdzHyJeAePcsPBz7Wnv+4xfXz9nh0K/9L4FLgVuB7wCN6jsfr6C5qbgE+CWzUs+2nARe239c3gYeNO5aTvnfcZ3gbcDFwt3HlbwAuAzL+dzvB7+MP6CrkG9vx/jhd5Tbp36KPpfmY6G8B66WJjtOc66XplPf+Pujqq5Pafm8FLgFW9Ky7HV0j2ur2v/5BuhOvXwO3t3h+Ov532F7/JbCq/Q5PBbbuWVbAy4Aftt/zvwJpy6xbfEzrMdHfAtYtEx2nhahbXgR8o+d1AQe3/+kftbKpzlkOpTsHuhn4KO2cZfw+gUOA/2PNOdOfj4tlsnOqrYFPt8/9I+Bv13GMvg58aILyLwIfnegz93zuBwz6f8FH/x5Y7/Sj3nkpcA1wryl+F+8HrmzH4XzgT3uWHQ6cDHysLX9p+z19q/0urqE7p7l7z3ueBPyA7jrqQ8B/jR2btvwldHXNzcCXgftNEd+dvzvgkcB1wHo9y5/Z83sYi/eTdHXZBcDDe9addn3mY3E8sK6xrpmirhn/O+spX+v3wzryRBOs+wbgarp66AfAHj2fc9JrxmF/2IN5HlXVeXQJ0T+dYPFr27JlwFbAG7u31Avo/qGfXl1LyLt73vP/6BIMT55kly+k+6e4L3Ab8IFpxPgl4B+AT9bkLS8vao/HAfcHNqb7Z+31WOCBwB7A3yf5o0l2+S90ldH92+d5IfDiqvoqXWvVWG+dF03y/g3pLjp+DexdVb+aZL0/az83a9v7VpJn0/2DvpCulewZdImUMfvSVcw7AA9rn5kkuwDHAH8F3Af4d+DU1vK2zvdO4InAp6vqjnHlJ7X3PmCS9/UK3ZfO1nR/D9u1zyVNyXppQnOtl2brGXQt9ZvRJYI/CJBuDLbP052sLQe2AU6sqkvpksPfavFsNn6DSR5PVz/sS3fMr2j76PU0uguuh7X1xn531i2aNeuWCfWrbtkHeBSw0zTPWZ5Hd1z/APhDuovCifwf3e9zU+AtwMeS3BdgsnOqdgvxfwLfoau79gBeleQuv8ck9wT+BPjUBPs+ie5CUJqU9c6E5lLvPAH4clX9YoqP9W1gZ2AL4BPAp5Js1LN8b7rEz2Z0jdW3A6+mS8Q9un2GvwFIsmVb91C6OusHdPUCbfnedL+7Z9L9Lr8OnDBFfHeqqm/TXe/11icvoEvW9Mb7qZ7P89kkG8ykPtPiZl0zIeua6ZkyT5TkgcDLgUdW13P+yXTJ6TETXjOOAhPM8+8ndP8Q4/2OrsK4X1X9rrrbemqKbR1eVb9YR1L1P6rq4vaP+mZg35aomKvnAe+tqsuq6ud0/5T7jbsN4S1V9auq+g7dl/BdKrQWy37AoVV1a1VdDryH7kt+ujahqyyOq6rfzPBzvBR4d1V9uzqrquqKnuUfqKqfVNVNdCcTO7fyg4B/r6pzq+r26sYw+g2w2zTeO96WdK1p442VLZvqQ7S4T6+q31TVauC9dJW6NF3WS8081UtbtzHaxh77TvN936iq06obc+0/euLblS7J+/+1Y/vrqvrGpFtZ2/OAY6rqglZHHgo8etyt5kdU1U+ru130TFp9Zd2ieWDd0vS5bnlnVd3UjtV0zlk+WFVXtnOWdwD7T7TRqvpUO7e5o6o+SddLete2eLJzqkcCy6rqrVX126q6DPhwOxbjbUF37THZedGU50QS1jt3mod6Z0vgzgm5kuzc6p6fpWcyqqr6WFXdWFW3VdV76DoA9Y4l+q2q+myrO35VVedX1Tlt/cvpGr7Gzi/2Ai6pqlOqaiyR1jsp2Mvo6rhL2/J/AHZOcr9pfiaA44Dnt8+0BV3y5hM9y8+vqpOr6nd05z4b0dWZM6nPtPhZ1zTWNXe6oecc7XWTrDOdPNHt7bPtlGSDqrq8qv6vZ/lk14xDzwTz/NuG7laJ8f6R7hbmryS5LMkh09jWlTNYfgWwAd0/71xt3bbXu+316VroxvT+c/6SrjVsvC1bTOO3tc0MYrmBrjI7bhatx9vR9caZzGSf4X7Aa3sv8tq2tp7Ge8e7ge4LaLz79ixfpyRbJTkxydVJfkZ3W8h8/J61dFgvrTEf9dJPqmqznsdJ03zf+Pg2aid42wFXtJObmVrruLSTxxtZ+/NMeFysWzQPrFvW6Gfd0nsspnPOMv7Y9S67U5IXJrmwZzsPYc0xnuyc6n6MS4zT9QjaaoJ1b6a7hXay86Ipz4kkrHd6zbXeuZGe/8equrC6u6WeSZf8ACDJ65Jcmm5Szp/S9WLsPQ5rHcckf5jk80mubecX/9Cz/ta967fE3FU9b78f8P6e+uQmujuuZlKXfgx4epJ70fUm/HpV9TZs9e7/jrb/rZlZfabFz7pmDeuazpY952j/NMk6Ux7PqloFvIruzrDr2/XYunJNY9eMQ88E8zxK8ki6P8i79DxrLT2vrar703V5f02SPcYWT7LJqVrCtut5vj1da9oNwC/oxi0ei2s91u4VMtV2f0L3D9e77dvoxrOaiRtaTOO3dfVMNlJVp9CN+3dyksdNttoEZVfS3Q46U1cC7xh3kXfPqprNLRNfBZ6Znllom33pKrhVdL8v6PmdAb2zr/4D3ed7aFXdm65FPrOIRUuQ9dJdzEu9NIGpPt+6XAlsP8mJw4yOS7uYug/T+zzWLZo165a7WKi6ZSK9n2k65yzjj91Pxm+w9dj5MN0tm/dpF34Xs6ZOmOyc6kq6saB7979JVe11l6C7nlnfAp5X1AwAALNdSURBVJ49wXb2pRs3Eu76O51wRnotPdY7dzHXeucM4Ent3GFCSf6UbizZfYHNW91wC2ufL4z/vEcC3wd2bOcXb+xZ/xpg257tp/c1XZ3yV+PqlHtU1Ten+Zmoqqvp6ppn0vWw/I9xq9z5e23XaNvS/U6mXZ9pcbOuuQvrmnlWVZ+oqsfSHdMC3tWP/S40E8zzIMm9kzyNbpyUj1XVdydY52lJHtD+sG+h6xY/Ni7vdXRj2czU85PslG5Mu7cCJ7du9P9L18rx1CQb0I211zsW33XA8gmSnmNOAF6dZIckG7NmbJ8Z9a5rsZwEvCPJJu3i5TV0rcoz0i6UXg58LsljJlhlNd3x7D2OHwFel+SP03nAFLc8jPkw8LIkj2rvu1c7lpvMNG7gfXQtb0cn+f0kGyXZn+7Wl8Pa7R2r6Srn5ydZL8lLWPsibhO6AfNvSbIN8P/NIg4tMdZLE5vPemmcqT7fupxHdxJ0RKtvNuqp564Dtk1y90neewLw4nS3mm1Id1zObbeJTcW6RTNm3TKxBaxbpjKdc5aDk2yb7lbxv6ObdGa8e9Fd4KwGSPJiuh7MYyY7pzoPuDXJG5Lco53HPKRdnE/kEOCAJH/bjtPmSd5ON87lP7R1vgM8uNVrG+HY8Eue9c7E5qHeOZ7u/OMz7f92vfY/t6JnnU3oElKrgfWT/D3dOOzrsgndJFw/T/Ig4K97ln0BeGiSfdI1rB/M2h1r/g04NMmDAZJsmm4M+Jk6ni5Z9VC6SZR7/XGSZ7b9v4puWKFzmHl9pkXGumZi1jXzK8kDkzy+Xbv9mjWTJI48E8xz859JbqVr/fg7ujGcXjzJujvS9Wb9OV2L6oeq6sy27J3Am7LusVwm8h90M5peSzd21N8CVNUtdIObf4QucfkL1r4dYGxylRuTXDDBdo9p2z6bbvbcXwOvmEFcvV7R9n8ZXQvgJ9r2Z6y6cQVfC3whya7jlv2SblzB/27Hcbeq+lQr+wTdDJyfZeJxlMbvZyVdj+kP0t3OuYrJJ/Gbals30g2cvxHdjOs/p6tgD66q3uPwl3TJnRuBB9PNAj/mLcAj6L7AvsBdT5KkXtZLU5u3emnMND7fut57O/B0ukk/f9ze95y2+Gt0swdfm+Qut49XN7HGm+lmPL+GrnFqumMFWrdoJqxbpjbvdctUpnnO8gngKy2u/wPePsF2vkc3nuK36C5YHwr8d8/yCc+pWv31NLoxBn9E18vpI3SN6xPF+w268VCfSVdn3UQ3g/0eVXVxW+d/6S6wv0o3DvR0x6TX4mO9M7VZ1ztV9Wu6yb++R3ce8DO6ibAeSdeLEODLwJfoEl1XtFinut3/dcBz6eqKD9PTqFVVN9DdxfBuuuuenYCVdElequozdD35Tkx3y/vFdBOIzdRn6HoGfqZdJ/b6HN151s10PZyfWd1YujOqz7SoWNdMzbpm/mwIHEFXx1wL/B7d+NgjLzXleOSS5kuSe9NdsH2mqv5+0PFIkqTFK8nlwEtbY9TQSfIwuslHn1tVXx50PJL6q/W8vAp4Xk+Sbr62/X90t8B/tafscOABVfX8+dyXpOG2kHWN1rAHs9RHVfUzuhlNb49jCkqSpCWsqi4C9qG7jXUkJrCRNDdJnpxks3Z7+NiYqefM8z7+gm7Yn6/N53YljY5+1DVa25QJ5iTHJLk+ycU9Zf+Y5PtJLkrymSSb9Sw7NMmqJD9I8uSe8j1b2apMb6ZNaVGqqiur6i1Vde3Ua0uSJC1eVfX1qvqnmY4JKWlkPZpuuJ4b6IYI26eqfjVfG09yFt3kXwdX1aIY11TSrCxoXaO7mnKIjCR/Rhs3tqoe0sqeBHytqm5L8i6AqnpDkp3oBhLfFdiabmyaP2yb+l/giXTd0r8N7N/Ge5MkSZIkSZIkjaApezBX1dl0E3D0ln2lp5fBOcC27fnewIlV9Zuq+hHdRCO7tseqqrqsqn5LNyvn3vP0GSRJkiRJkiRJAzAfY529hDWzNW7D2mOaXNXKYO0ZIK8CHjXRxpIcBBwEcK973euPH/SgB81DiJIG5fzzz7+hqpYNOo6Z2HLLLWv58uWDDkPSLFnvSOo36x1J/Wa9I2kQJqt75pRgTvJ3wG3Ax+eynV5VdRRwFMCKFStq5cqV87VpSQOQ5IpBxzBTy5cvx7pHGl3WO5L6zXpHUr9Z70gahMnqnlknmJO8CHgasEetGcj5amC7ntW2bWWso1ySJEmSJEmSNIKmHIN5Ikn2BF4PPKOqftmz6FRgvyQbJtkB2BE4j25Svx2T7JDk7sB+bV1JkiRJkiRJ0oiasgdzkhOA3YEtk1wFHAYcCmwInJ4E4JyqellVXZLkJOB7dENnHFxVt7ftvBz4MrAecExVXbIAn0eSJEmSJEmS1CdTJpirav8Jio9ex/rvAN4xQflpwGkzik6SJEmSJEmSNLRmNUSGJEmSJEmSJEmznuRvFCw/5AsD2e/lRzx1IPuVFosk2wHHA1sBBRxVVe9PsgXwSWA5cDmwb1XdnG6snvcDewG/BF5UVRe0bR0AvKlt+u1VddxcYptLvWLdIGm+LPQ5jvWVpDHzXd9Yv0iaL4PK+UyX9Z2WEnswSxpGtwGvraqdgN2Ag5PsBBwCnFFVOwJntNcAT6GbVHRH4CDgSICWkD4MeBSwK3BYks37+UEkSZIkSZIWMxPMkoZOVV0z1gO5qm4FLgW2AfYGxnogHwfs057vDRxfnXOAzZLcF3gycHpV3VRVNwOnA3v275NIkiRJkiQtbiaYJQ21JMuBXYBzga2q6pq26Fq6ITSgSz5f2fO2q1rZZOWSJEmSJEmaByaYJQ2tJBsDnwZeVVU/611WVUU3PvN87eugJCuTrFy9evV8bVaSJEmSJGlRM8EsaSgl2YAuufzxqjqlFV/Xhr6g/by+lV8NbNfz9m1b2WTld1FVR1XViqpasWzZsvn7IJIkSZIkSYuYCWZJQydJgKOBS6vqvT2LTgUOaM8PAD7XU/7CdHYDbmlDaXwZeFKSzdvkfk9qZZIkSZIkSZoH6w86AEmawGOAFwDfTXJhK3sjcARwUpIDgSuAfduy04C9gFXAL4EXA1TVTUneBny7rffWqrqpL59AkiRJkiRpCTDBLGnoVNU3gEyyeI8J1i/g4Em2dQxwzPxFJ2kpSnI5cCtwO3BbVa1IsgXwSWA5cDmwb1Xd3O7CeD9dw9cvgRdV1QWDiFuSJEmSFppDZEiSJE3P46pq56pa0V4fApxRVTsCZ7TXAE8BdmyPg4Aj+x6ppJGQ5Jgk1ye5uKfsH5N8P8lFST6TZLOeZYcmWZXkB0me3FO+ZytbleQQJEmS+sgEsyRJ0uzsDRzXnh8H7NNTfnx1zgE2G5ugVJLGORbYc1zZ6cBDquphwP8ChwIk2QnYD3hwe8+HkqyXZD3gX+kat3YC9m/rSpIk9YUJZkmSpKkV8JUk5yc5qJVt1SYUBbgW2Ko93wa4sue9V7WytSQ5KMnKJCtXr169UHFLGmJVdTZw07iyr1TVbe3lOcC27fnewIlV9Zuq+hHd3BO7tseqqrqsqn4LnNjWlSRJ6gsTzJIkSVN7bFU9gq6H4MFJ/qx3YRsLvmaywao6qqpWVNWKZcuWzWOokhaRlwBfbM8na7yaVqMW2LAlSZIWhglmSZKkKVTV1e3n9cBn6HoMXjc29EX7eX1b/Wpgu563b9vKJGnakvwdcBvw8fnapg1bkiRpIZhgliRJWock90qyydhz4EnAxcCpwAFttQOAz7XnpwIvTGc34JaeoTQkaUpJXgQ8DXheu0MCJm+8slFLkiQN1PqDDkCSJGnIbQV8Jgl0506fqKovJfk2cFKSA4ErgH3b+qcBe9GNj/pL4MX9D1nSqEqyJ/B64P9V1S97Fp0KfCLJe4GtgR2B84AAOybZgS6xvB/w3P5GLUmSlrIpE8xJjqFrPb++qh7SyrYAPgksBy4H9q2qm9Ndeb2f7qLql8CLquqC9p4DgDe1zb69qo5DkiRpyFXVZcDDJyi/EdhjgvICDu5DaJJGXJITgN2BLZNcBRwGHApsCJzeGrbOqaqXVdUlSU4Cvkc3dMbBVXV7287LgS8D6wHHVNUlff8wkiRpyZpOD+ZjgQ8Cx/eUHQKcUVVHJDmkvX4D3cQ3O7bHo4AjgUe1hPRhwAq6CXDOT3JqVd08Xx9EkiRJkkZJVe0/QfHR61j/HcA7Jig/je7uCUmSpL6bcgzmqjobuGlc8d7AWA/k44B9esqPr845wGZt0psnA6dX1U0tqXw6sOc8xC9JkiRJkqQ5SvLqJJckuTjJCUk2SrJDknOTrEryySR3b+tu2F6vasuXDzh8SQM020n+tuqZrOZaurEJAbYBruxZ76pWNln5XSQ5KMnKJCtXr149y/AkSZIkSZI0HUm2Af4WWNGGR12Pbkz3dwHvq6oHADcDB7a3HAjc3Mrf19aTtETNNsF8pzbOYE254vS3d1RVraiqFcuWLZuvzUqSJEmSJGly6wP3SLI+cE/gGuDxwMlt+fg72MfubD8Z2KPNyyVpCZptgvm6NvQF7ef1rfxqYLue9bZtZZOVS5IkSZIkaYCq6mrgn4Af0yWWbwHOB35aVbe11XrvRr/zTvW2/BbgPuO3613q0tIw2wTzqcAB7fkBwOd6yl+Yzm7ALW0ojS8DT0qyeZLNgSe1MkmSJEmSJA1Qy9XsDewAbA3ci3mYO8u71KWlYf2pVkhyArA7sGWSq4DDgCOAk5IcCFwB7NtWPw3YC1gF/BJ4MUBV3ZTkbcC323pvrarxEwdKkiRJkiSp/54A/KiqVgMkOQV4DLBZkvVbL+Xeu9HH7lS/qg2psSlwY//DljQMpkwwV9X+kyzaY4J1Czh4ku0cAxwzo+gkSZIkSZK00H4M7JbknsCv6HI+K4EzgWcBJ3LXO9gPAL7Vln+t5YQkLUFTJpglSZKk+bT8kC8s6PYvP+KpC7p9SZIWm6o6N8nJwAXAbcD/AEcBXwBOTPL2VnZ0e8vRwH8kWQXcBOzX/6glDQsTzJIkSZIkSUtcVR1GNyxqr8uAXSdY99fAs/sRl6ThN9tJ/iRJkiRJkiRJS5wJZkmSJEmSJEnSrJhgliRJkiRJkiTNiglmSZIkSZIkSdKsmGCWJEmSJEmSJM2KCWZJkiRJGoAkxyS5PsnFPWVbJDk9yQ/bz81beZJ8IMmqJBcleUTPew5o6/8wyQGD+CySJGnpMsEsSZIkSYNxLLDnuLJDgDOqakfgjPYa4CnAju1xEHAkdAlp4DDgUcCuwGFjSWlJkqR+MMEsSZIkSQNQVWcDN40r3hs4rj0/Dtinp/z46pwDbJbkvsCTgdOr6qaquhk4nbsmrSVJkhaMCWZJkiRJGh5bVdU17fm1wFbt+TbAlT3rXdXKJiu/iyQHJVmZZOXq1avnN2pJkrRkmWCWJEmaQpL1kvxPks+31zskObeNhfrJJHdv5Ru216va8uUDDVzSSKuqAmoet3dUVa2oqhXLli2br81KkqQlzgSzpKEzyYQ3hye5OsmF7bFXz7JDWzLnB0me3FO+ZytbleSQ8fuRpBl4JXBpz+t3Ae+rqgcANwMHtvIDgZtb+fvaepI0E9e1oS9oP69v5VcD2/Wst20rm6xckiSpL9YfdACaP8sP+cJA9nv5EU8dyH61qB0LfBA4flz5+6rqn3oLkuwE7Ac8GNga+GqSP2yL/xV4It2tot9OcmpVfW8hA5e0+CTZFngq8A7gNUkCPB54blvlOOBwugm39m7PAU4GPpgkrReiJE3HqcABwBHt5+d6yl+e5ES6Cf1uqaprknwZ+Ieeif2eBBza55glSdISZoJZ0tCpqrNncFv53sCJVfUb4EdJVtHNoA6wqqouA2gXY3sDJpglzdQ/A68HNmmv7wP8tKpua697xzu9cyzUqrotyS1t/RvGbzTJQcBBANtvv/1CxS5piCU5Adgd2DLJVcBhdInlk5IcCFwB7NtWPw3YC1gF/BJ4MUBV3ZTkbcC323pvrarxEwdKkiQtGBPMkkbJy5O8EFgJvLbNlL4NcE7POr2JnvET3jxqsg2b6JE0kSRPA66vqvOT7D6f266qo4CjAFasWGEPZ2kJqqr9J1m0xwTrFnDwJNs5BjhmHkOTJEmaNsdgljQqjgT+ANgZuAZ4z3xu3ElvJE3iMcAzklwOnEg3NMb7gc2SjDXU9453eudYqG35psCN/QxYkiRJkvppTgnmJK9OckmSi5OckGQjZ1WXtBCq6rqqur2q7gA+zJphMJzwRtKCqapDq2rbqlpON97716rqecCZwLPaauPHSD2gPX9WW9/eyZIkSZIWrVknmJNsA/wtsKKqHgKsR3fh5azqkubd2GzqzZ8DF7fnpwL7tUasHYAdgfPoxiHcsTV63Z2ufjq1nzFLWtTeQDfh3yq6MZaPbuVHA/dp5a8BDhlQfJIkSZLUF3Mdg3l94B5Jfgfck+62dWdVlzQnk0x4s3uSnYECLgf+CqCqLklyEt3kfbcBB1fV7W07Lwe+TNcAdkxVXdLfTyJpMamqs4Cz2vPLWHMnRe86vwae3dfAJEmSJGmAZp1grqqrk/wT8GPgV8BXgPOZ46zqTrQlaZIJb46eoGxs/XcA75ig/DS6GdclSZIkSZK0AOYyRMbmdL2SdwC2Bu4F7DnXgJxoS5IkSZIkSZJGw1wm+XsC8KOqWl1VvwNOoZtp3VnVJUmSJEmSJGkJmEuC+cfAbknumSTAHnRjoDqruiRJkiRJkiQtAbNOMFfVuXST9V0AfLdt6yicVV2SJEmSJEmSloRZT/IHUFWHAYeNK3ZWdUmSJEmSpBGSZDPgI8BDgAJeAvwA+CSwHLgc2Leqbm53sr8f2Av4JfCiqrqg/1FLGgZzSjBLkiRJkiRpUXg/8KWqelaSuwP3BN4InFFVRyQ5hO5u9DcATwF2bI9HAUe2nxohyw/5wqBDWKfLj3jqoEPQNM1lDGZJkiRJkiSNuCSbAn9GG+a0qn5bVT8F9gaOa6sdB+zTnu8NHF+dc4DNkty3r0FLGhommCVJkiRJkpa2HYDVwEeT/E+SjyS5F7BVVV3T1rkW2Ko93wa4suf9V7WytSQ5KMnKJCtXr169gOFLGiQTzJIkSZIkSUvb+sAjgCOrahfgF3TDYdypqopubOZpq6qjqmpFVa1YtmzZvAUrabiYYJYkSZKkIZPk1UkuSXJxkhOSbJRkhyTnJlmV5JNtjFSSbNher2rLlw84fEmj5yrgqqo6t70+mS7hfN3Y0Bft5/Vt+dXAdj3v37aVSVqCTDBLkiRJ0hBJsg3wt8CKqnoIsB6wH/Au4H1V9QDgZuDA9pYDgZtb+fvaepI0bVV1LXBlkge2oj2A7wGnAge0sgOAz7XnpwIvTGc34JaeoTQkLTHrDzoASZIkSdJdrA/cI8nvgHsC1wCPB57blh8HHA4cSTfZ1uGt/GTgg0nSbmeXpOl6BfDxdnfEZcCL6TomnpTkQOAKYN+27mnAXsAq4JdtXUlLlAlmSZIkSRoiVXV1kn8Cfgz8CvgKcD7w06q6ra3WO6HWnZNtVdVtSW4B7gPc0LvdJAcBBwFsv/32C/0xJI2YqroQWDHBoj0mWLeAgxc6JkmjwSEyJEmSJGmIJNmcrlfyDsDWwL2APee6XSfbkiRJC8EEsyRJkiQNlycAP6qq1VX1O+AU4DHAZknG7kLtnVDrzsm22vJNgRv7G7IkSVqqTDBLkiRJ0nD5MbBbknsmCWsm2zoTeFZbZ/xkW2OTcD0L+JrjL0uSpH4xwSxJkiRJQ6SqzqWbrO8C4Lt0121HAW8AXpNkFd0Yy0e3txwN3KeVvwY4pO9BS5KkJctJ/iRJktYhyUbA2cCGdOdOJ1fVYUl2AE6kS/KcD7ygqn6bZEPgeOCP6W5Rf05VXT6Q4CWNrKo6DDhsXPFlwK4TrPtr4Nn9iEuSJGk8E8ySJEnr9hvg8VX18yQbAN9I8kW6XoLvq6oTk/wbcCBwZPt5c1U9IMl+wLuA5wwqeEmSJEnzb/khXxh0COt0+RFP7du+HCJDkiRpHarz8/Zyg/Yo4PF0t7ADHAfs057v3V7Tlu/RxlCVJEmSpEXHBLMkSdIUkqyX5ELgeuB04P+An1bVbW2Vq4Bt2vNtgCsB2vJb6IbRkCRJkqRFxwSzJEnSFKrq9qraGdiWbvzTB811m0kOSrIyycrVq1fPdXOSJEmSNBBzSjAn2SzJyUm+n+TSJI9OskWS05P8sP3cvK2bJB9IsirJRUkeMT8fQZIkqT+q6qfAmcCjgc2SjM1nsS1wdXt+NbAdQFu+Kd1kf+O3dVRVraiqFcuWLVvo0CVJkiRpQcy1B/P7gS9V1YOAhwOXAocAZ1TVjsAZ7TXAU4Ad2+MguklwJEmShlqSZUk2a8/vATyR7pznTOBZbbUDgM+156e217TlX6uq6lvAkiRJktRHs04wJ9kU+DPgaICq+m3r1dM7sc34CW+ObxPlnEPX6+e+s92/JElSn9wXODPJRcC3gdOr6vPAG4DXJFlFN8by0W39o4H7tPLXsKaxXZIkSZIWnfWnXmVSOwCrgY8meThwPvBKYKuquqatcy2wVXt+54Q3zdhkONf0lJHkILoezmy//fZzCE+SJGnuquoiYJcJyi+jG495fPmvgWf3ITRJkiRJGri5DJGxPvAI4Miq2gX4BeN66LTbQWd0S6jjEUqSJEmSJEnSaJhLgvkq4KqqOre9Ppku4Xzd2NAX7ef1bfmdE940vZPhSNJakhyT5PokF/eUzXgS0SQHtPV/mOSAifYlSZIkSZKk2Zl1grmqrgWuTPLAVrQH8D3Wnthm/IQ3L2yJoN2AW3qG0pCk8Y4F9hxXNqNJRJNsARwGPIruNvbDxpLSkiRJkiRJmru5jMEM8Arg40nuDlwGvJguaX1SkgOBK4B927qnAXsBq4BftnUlaUJVdXaS5eOK9wZ2b8+PA86im2TrzklEgXOSjE0iujvdZFw3ASQ5nS5pfcJCxy9JkiRJkrQUzCnBXFUXAismWLTHBOsWcPBc9idpyZvpJKKTlUuSJEmSJGkezGUMZkkamNlMIrouSQ5KsjLJytWrV8/XZiVJkiRJkhY1E8ySRslMJxGd9uSiVXVUVa2oqhXLli2b98AlSZJmog35dXKS7ye5NMmjZzPhsSRJ0kIzwSxplMx0EtEvA09Ksnm7AHtSK5MkSRp27we+VFUPAh4OXMoMJzyWJEnqh7lO8idJCyLJCXST9G2Z5CrgMOAIZjCJaFXdlORtwLfbem8dm/BPkiRpWCXZFPgz4EUAVfVb4LdJZjThcc/cFZIkSQvGBLOkoVRV+0+yaEaTiFbVMcAx8xiaJEnSQtsBWA18NMnDgfOBVzLzCY/XSjAnOYiuhzPbb7/9ggUvSZKWFhPMkiRJkjRc1gceAbyiqs5N8n7WDIcBdA3sSWY04XFVHQUcBbBixYp5myx5kJYf8oV53d7lRzx1XrcnjZok6wErgaur6mlJdgBOBO5D19j1gqr6bZINgeOBPwZuBJ5TVZcPKGxJA+YYzJIkSZI0XK4Crqqqc9vrk+kSzjOd8FiSZuqVdGO+j3kX8L6qegBwM3BgKz8QuLmVv6+tJ2mJMsEsSZIkSUOkqq4FrkzywFa0B/A9Zj7hsSRNW5JtgacCH2mvAzyerpELurHf92nP926vacv3aOtLWoIcIkOSJEmShs8rgI8nuTtwGd0kxndjBhMeS9IM/TPwemCT9vo+wE+r6rb2emx8d+gZ+72qbktyS1v/ht4NOva7tDSYYJYkSZKkIVNVFwIrJlg0owmPJWk6kjwNuL6qzk+y+3xtdzGO/S7prkwwS5IkSZIkLW2PAZ6RZC9gI+DewPuBzZKs33ox947vPjb2+1VJ1gc2pZvsT9IS5BjMkiRJkiRJS1hVHVpV21bVcmA/4GtV9TzgTOBZbbXxY7+PjQn/rLa+PZSlJcoEsyRJkiRJkibyBuA1SVbRjbF8dCs/GrhPK38NcMiA4pM0BBwiQ5IkSZIkSQBU1VnAWe35ZcCuE6zza+DZfQ1M0tCyB7MkSdI6JNkuyZlJvpfkkiSvbOVbJDk9yQ/bz81beZJ8IMmqJBclecRgP4EkSZIkLRwTzJIkSet2G/DaqtoJ2A04OMlOdLeCnlFVOwJnsObW0KcAO7bHQcCR/Q9ZkiRJkvrDBLMkSdI6VNU1VXVBe34rcCmwDbA3cFxb7Thgn/Z8b+D46pxDN/v6ffsbtSRJkiT1x5wTzEnWS/I/ST7fXu+Q5Nx2W+gnk9y9lW/YXq9qy5fPdd+SJEn91M5fdgHOBbaqqmvaomuBrdrzbYAre952VSsbv62DkqxMsnL16tULF7QkSZIkLaD56MH8SrqePGPeBbyvqh4A3Awc2MoPBG5u5e9r60mSJI2EJBsDnwZeVVU/611WVQXUTLZXVUdV1YqqWrFs2bJ5jFSSJEmS+mdOCeYk2wJPBT7SXgd4PHByW2X87aJjt5GeDOzR1pckSRpqSTagSy5/vKpOacXXjQ190X5e38qvBrbrefu2rUySJEmSFp259mD+Z+D1wB3t9X2An1bVbe117y2hd94u2pbf0tZfi7eLSpKkYdIaxI8GLq2q9/YsOhU4oD0/APhcT/kL09kNuKVnKA1JkiRJWlRmnWBO8jTg+qo6fx7j8XZRSZI0bB4DvAB4fJIL22Mv4AjgiUl+CDyhvQY4DbgMWAV8GPibAcQsSZIkSX2x/hze+xjgGe0CayPg3sD76WZKX7/1Uu69JXTsdtGrkqwPbArcOIf9S5IkLbiq+gYw2bBee0ywfgEHL2hQkiRJkjQkZt2DuaoOraptq2o5sB/wtap6HnAm8Ky22vjbRcduI31WW39Gk+FIkiRJkiRJkobHXMdgnsgbgNckWUU3xvLRrfxo4D6t/DXAIQuwb0mSJElaFJKsl+R/kny+vd4hyblJViX5ZJK7t/IN2+tVbfnygQYuSZKWlHlJMFfVWVX1tPb8sqrataoeUFXPrqrftPJft9cPaMsvm499S5IkSdIi9Urg0p7X7wLeV1UPAG4GDmzlBwI3t/L3tfUkSZL6YiF6MEuSJEmS5iDJtsBTgY+01wEeD5zcVjkO2Kc937u9pi3fo60vSZK04EwwS5IkSdLw+Wfg9cAd7fV9gJ+2ydQBrgK2ac+3Aa4EaMtvaeuvJclBSVYmWbl69eoFDF2SJC0lJpglSZIkaYgkeRpwfVWdP5/braqjqmpFVa1YtmzZfG5akiQtYesPOgBJkiRJ0loeAzwjyV7ARsC9gfcDmyVZv/VS3ha4uq1/NbAdcFWS9YFNgRv7H7YkSVqK7MEsSZIkSUOkqg6tqm2rajmwH/C1qnoecCbwrLbaAcDn2vNT22va8q9VVfUxZEmStISZYJYkSZKk0fAG4DVJVtGNsXx0Kz8auE8rfw1wyIDikyRJS5BDZEiSJEnSkKqqs4Cz2vPLgF0nWOfXwLP7GpgkSVJjD2ZJIyfJ5Um+m+TCJCtb2RZJTk/yw/Zz81aeJB9IsirJRUkeMdjoJUmSJEmSFg8TzJJG1eOqaueqWtFeHwKcUVU7Amew5tbQpwA7tsdBwJF9j1SSJEmSJGmRMsEsabHYGziuPT8O2Ken/PjqnEM3+/p9BxCfJEmSJEnSomOCWdIoKuArSc5PclAr26qqrmnPrwW2as+3Aa7see9VrWwtSQ5KsjLJytWrVy9U3JIkSZIkSYuKCWZJo+ixVfUIuuEvDk7yZ70Lq6roktDTVlVHVdWKqlqxbNmyeQxVkiRJkoZbku2SnJnke0kuSfLKVu5cN5KmZIJZ0sipqqvbz+uBz9DNpn7d2NAX7ef1bfWrge163r5tK5MkSZIkdW4DXltVOwG70XXk2QnnupE0DSaYJY2UJPdKssnYc+BJwMXAqcABbbUDgM+156cCL2wt7LsBt/QMpSFJkiRJS15VXVNVF7TntwKX0g0t6Fw3kqa0/qADkKQZ2gr4TBLo6rBPVNWXknwbOCnJgcAVwL5t/dOAvYBVwC+BF/c/ZEmSJEkaDUmWA7sA5zLzuW7szCMtQSaYJY2UqroMePgE5TcCe0xQXsDBfQhNkiRJkkZako2BTwOvqqqftY49QHdtlWRGc920SdkPAth+++3nM1RJQ8QhMiRJktYhyTFJrk9ycU+ZE95IkqRFJckGdMnlj1fVKa14TnPdOJm6tDTMOsHsDKOSJGmJOBbYc1yZE95IkqRFI11X5aOBS6vqvT2LnOtG0pTm0oPZGUYlSdKiV1VnAzeNK3bCG0mStJg8BngB8PgkF7bHXsARwBOT/BB4QnsN3Vw3l9HNdfNh4G8GELOkITHrMZhby9Q17fmtSXpnGN29rXYccBbwBnouuIBzkmyW5L62cEmSpBE05wlvHJNQkiQNi6r6BpBJFjvXjaR1mpcxmOc4w6gkSdLIahdYM5rwpr3PMQklSZIkjbw5J5jHzzDau2w2F1xJDkqyMsnK1atXzzU8SZKkhTCnCW8kaV2c70aSJI2SOSWYnWFUkiQtUU54I2khOd+NJEkaGbNOMDvDqCRJWgqSnAB8C3hgkquSHIgT3khaQFV1TVVd0J7fCvTOd+MEo5IkaajMepI/1sww+t0kF7ayN9JdYJ3ULr6uAPZty04D9qK74Pol8OI57FuSJKkvqmr/SRY54Y2kBTfH+W7W6tDj5KKSJGkhzDrB7AyjkiRJkrRwxs93091E2qmqSjKj+W6q6ijgKIAVK1bMeHJSSZKkicx5kj9JkiRJ0vxaiPluJEmSFoIJZkmSJEkaIs53I0mSRslcxmCWBmr5IV8Y2L4vP+KpA9u3JEmSFj3nu5EkSSPDBLMkSZIkDRHnu5EkSaPEBLMkSZI0A/24i8q7pSRJkjQqHINZkiRJkiRJkjQr9mCWJEmSJGkBLMQdD97hIEkaNvZgliRJkiRJkiTNiglmSZIkSZIkSdKsmGCWJEmSJEmSJM2KCWZJkiRJkiRJ0qw4yZ8kSZK0xCzExGO9nIRMkiRp6TDBLEmSJGmkmCCXJEkaHg6RIUmSJEmSJEmaFXswSyNkoXvrTMZePJIkSZIkSZqIPZglSZIkSZIkSbNiglmSJEmSJEmSNCt9HyIjyZ7A+4H1gI9U1RH9jkHS0rIY6p25DI8y1yFOBrlvaVQthnpH0mix3tFszfcwfJ7/LR3WO5LG9LUHc5L1gH8FngLsBOyfZKd+xiBpabHekdRv1juS+s16R1K/We9I6tXvHsy7Aquq6jKAJCcCewPf63MckpYO650RZc9pjTDrHUn9Zr2jRcse1kPLekfSnfqdYN4GuLLn9VXAo/ocg6SlxXpHMzKoxLYJ9UXFekdSv1nvSAOyhBPg1juS7pSq6t/OkmcBe1bVS9vrFwCPqqqX96xzEHBQe/lA4Ad9C3BtWwI3DGjfg+DnXfwG9ZnvV1XLBrBfYHr1Tiufr7pnUMfZ/S7u/Q5y36O436VW70zHqH/vjXr8MPqfwfjXzXpn+P9Ghj0+GP4YjW9u5js+6535N+x/Q6PAYzg3o3D8Jqx7+t2D+Wpgu57X27ayO1XVUcBR/QxqIklWVtWKQcfRL37exW8pfuZmynoH5q/uGdRxdr+Le7+D3PdS2+886Wu9Mx0jfjxHPn4Y/c9g/ENv4PXOsB/jYY8Phj9G45ubYY9vFgZe78y3Rfg76juP4dyM8vHr6yR/wLeBHZPskOTuwH7AqX2OQdLSYr0jqd+sdyT1m/WOpH6z3pF0p772YK6q25K8HPgysB5wTFVd0s8YJC0t1juS+s16R1K/We9I6jfrHUm9+j1EBlV1GnBav/c7CyNxC8c88vMufkvxMwN9r3cGdZzd7+Le7yD3vdT2Oy+G8HxnpI8nox8/jP5nMP4hNwT1zrAf42GPD4Y/RuObm2GPb8aGoN6Zb4vudzQAHsO5Gdnj19dJ/iRJkiRJkiRJi0e/x2CWJEmSJEmSJC0SJpglSZIkSZIkSbNiglmS5kGSeyfZZNBxSJIkSZIk9ZMJ5gkk+YMkb07iDKhaFJL8XpLtxx6DjmcxSfLIJN8FLgIuTvKdJH886LgWkyRbrOsxoJg2HsR+paVoMZyXjfr3cJKNrfc0Sobx3GFUJdlwOmWaWJJXTqdM/Tf2e0jymEHHshgkWS/J1qN8vqO5cZK/JsnWwHOA5wIPBd4JnFJV3x1oYAsgySPWtbyqLuhXLP2U5MCqOrrn9XrAm6rqLQMMa0EleQbwHmBr4HrgfsClVfXggQa2iCS5CDi4qr7eXj8W+FBVPWyB93tvYFlV/d+48odV1UULue9J4nliVZ2+QNv+EVBAgO2Bm9vzzYAfV9UOC7HfKWL6cVUt2ElTkocCHwa2Ab4IvKGqbm7LzquqXRdgn89c1/KqOmW+9zlBDBcBJwKfHP+3relZLN/xi+W8bNS/h1tddDywBV29uxo4oKouHmhg07QUz/36oTWsT3oRudDnQNMxjOcO65JkG7r6Yf2xsqo6e3ARrZHkgqp6xFRlg9KShB8FbgU+AuwCHFJVXxloYM0kx+9/qmqXQcWkTpILq2rnYfp7HlVJXgEcBlwH3NGKaxi+D0ZFkj8BlrP298DxAwtoFtafepXFLclBwP50F/EnAQcCn1vkJ57vaT83AlYA36E74XoYsBJ49IDiWmh7JPkLut/xFsCxwH8NNKKF9zZgN+CrVbVLkscBzx9wTIvN7WPJZYCq+kaS2xZyh0n2Bf4ZuD7JBsCLqurbbfGxwCBOkI6mu4Cbd2MXgUk+DHymqk5rr58C7LMQ+2zbf81ki4CF7sl3JHA4cA7wUuAbSZ7Rkq4bLNA+n76OZQUseIK5xfAc4KQkdwCfBE6qqh/3Yd+LxUh/xy/C87JR/x7+d+A1VXUmQJLdgaOAPxlgTDOxFM/9+uFp7efB7ed/tJ/PG0AsExrUucNsJHkX3Xff94DbW3EBA00wJ/l9urr4Hkl2ofsuAbg3cM+BBXZXL6mq9yd5MrA58AK6v8mBJpiT7E/XSHr/JKf2LNoEuGkwUWmcS5P8ENi6dXIYE0yOztQrgQdW1Y2DDmQUJfkP4A+AC1n7e2CkEsxLvgdzkt8C3wJeW1UrW9llVXX/wUa28JKcAhw21hsoyUOAw6vqWYONbOEkeQ7wr8AvgOdW1X8POKQFlWRlVa1I8h1gl6q6I8l3qurhg45tsUjyz8A9gBPovgSeA/wa+BgsTG/BJBcCT6mqa5LsSvfFc2hVfWYhe0SMOzleaxHw+Kq610Lst2f/362qh05VNo/7+zXwj8BEDQavrqrNFmK/bd9r/Z+2pNRRdBdNH1oKvSyS7Ai8GXheVa036HhGzah+xy+287JR/x6eKNZRih+W3rlfP010zjFsPQH7fe4wG0l+ADysqn4z6Fh6JTkAeBFdY+XKnkW3Asf2486m6UhyUVU9LMn7gbMW+nx4BnHdD9iB7g6cQ3oW3QpcVFUL2iFF09MaUr4MPGP8sqq6ov8RjaYkZwJP9O96dpJcCuxUI56gXfI9mOlaZf8CeE+rXE5i4XqHDZsH9t5qWlUXJ/mjQQa0kFqy4pXAp4E/Al7QTj5+OdjIFtRP042ZeDbw8STX011gaf6MXWQfNq58F7qE8+MXYJ/rVdU1AFV1Xks+fj7JdqzjltV58Kd0Pe9+Pq48wLwP2TCBnyR5Ey15T9dT6icLuL8LgM9W1fnjFyR56QLud2wfm1bVLQBVdWbrhfdpul54C73vpwIPpusFS4vhrQu937bv+9E11DyHrgX/9f3Y7yI0qt/xi+28bNS/hy9L8mbW9FB9PnDZAOOZkSV67tdPSfKYsaR9u7132Ob46fe5w2xcRlfPDVWCuaqOA45L8hdV9elBx7MO5yf5Cl0y99B0k27fMcV7FlxVXZHkKuDXVeWdE0Oqqq5lzfWcZu8y4KwkX6CnLquq9w4upJFyMfD7wDWDDmQu7MHc08qeZFu6C9r9gXvR3U71xkHGt5CSnEB3kdN7wrVxVe0/uKgWTpLv042Ve0aSAK+hu6VqJMZBnIkk21fVj5PcC/gV3cn+84BNgY9768r8SbJeVd0+9Zrzus9vAi/oHaO2nUx/FnhsVS3IxCtJvgi8e+xW6XHLzq6qP1uI/fbsYwu6RP7Yfs4G3lJVC3KbYZIHAjdW1Q0TLNuqqq5biP227T8XuKyqzhlXvj3w5qr6ywXc97/R3fr6OLqxDJ8FnFdVBy7UPnv2fS7dRfan6MZhHplE1rAZ1e/4xXJetli+h5NsDrwFeCxdA+bX6erdmwca2DQtpXO/QUg3qfExdH/XoRvn+CULcffWbPX73GE2knyaLsF1BmsnZv52YEH1SDeh319w17FB+9LwPJUkdwN2pjtv+mmS+wDb1ADmJJlIkjOAZ451GtDwSTfJ3+GsGQd9bIiMkbx7ahCSjO9sBcAID3HWV60H+M7Aeaz9PXCXnvXDzATzJLfPtB4P+w/LF+dCSLIR8Nd0vRKhO+E6cthuz5ovSe5dVT8bV/aHVfW/g4ppoYy7QP90Vf3FoGNarJJcRtcz6piqurRP+3w48IuqWjWufANg36r6eD/iGJSWTK+qGt+TWvOg51bTsZ8bA1+sqj+d8s1z3/cDq+oHC72fpWBUv+MXy3nZqH8Pt7+flwEPAL5L9x33u8FGNXNL6dxvkJJsCmACbXbaUBR30XoQD1ySLwG3AOezZmxQquo9k76pj1rj0fOA+1fVW1tj/O9X1XkDDg2AJJ+ju7PxdHruYBmWBgTd2Rj5au76Nz4SjcGDlGR9h8WYuyT/b6LyUbv7wSEyYFkmn8hpUSYvkuwNbFtV/wq8L90EBMvoWkyuAk4eYHjzLsnrq+rdVfWzJM+uqk/1LH4RMBK9oWYoPc9teV1YDwf2A45uPSiOAU4cf0E7n6rqO5OU/w5YtMnlJA+lG296i/b6BuCAqrp4gfb3z1X1qiT/yV2HHim6CVr+fXwv41HfN11vS4BfJtm67eu+C7Cfifw0ydHA1lX1lCQ7AY+uqqP7tP+Rtwi+4xfLedmofw8fB/yOrsfyU+iGl3jVIAOaiSV67td343u2dnm+4enZCl2DAvA67tr7diGGMJuVYUkkr8O2VbXnoINYhw/RDYnxeOCtdGMcfxp45CCD6nEK/ZkoWbN3S1V9cdBBjKjzaBPMJ/mXqnrFgOMZSaOWSJ6MCWZYD9iYtS8ExizW7t2vp0uIjbk78Md0x+GjDP/F50ztB7y7PT+U7tbrMXuyOC8yapLnmidjrbVVdSvwYeDDreXxE3RJnZOBt43vZTzPMTwTeBfwe3R12NjtXPdeqH0Ocr/AvwOvGRuiI8nudBPf/ckC7W9szNF/mmT5lnQNCjstsn1/PslmdPXm2PjTH1mA/UzkWLrvob9rr/8X+CRggnn6Rv07frGcl4369/BO1SZBa40+Q9ETcAaW4rnfIHyONT1bh/XuiE8B/0b3PdbXIc2mkuS7rKN+qKqH9TGcdflmkof2jus/ZB5VVY9I8j8AVXVzkrsPOqgxVXVci+cPW9EPRvGOkEXuzCT/SNcQ0Ds8wdAM9zPEes/XHjOwKEZUkm9U1WOT3Mra3wf9ur6eVyaY4ZphamXvk7tX1ZU9r7/RxiG7qY0VuNhkkucTvV4sHp7kZ3Sf7x7tOYxoRTWkzgMekWQ94KnAS+jG7XoPXS/iPwVOY83J5EJ4N/D0fg3NMQT7vVfv+M9VddZC1lnVJvdbV4tykt8uln0neSRwZVW9rb3emO7W+O8D75vPfa3DllV1UpJDAarqtiRDlRAYAaP+Hb9YzstG/Xv4zuRH+z8cZCyzsRTP/QZh2Hu2AtxWVUcOOohJPG3QAUzTY4EXJfkRXfJtrB4blgT479r5eAEkWcYQTPI3pnWIOA64nO7YbZfkgKo6e4BhaW2Paj//uP0MCzdZ+2Izio3ow+R5AFW1yaADmQ8mmJfmSebmvS+q6uU9L5f1OZZ+WFcvokVZIVbVeoOOYQn5IXAm8K6q+lZP+clJFnTSO+C6ASR5B7nfy5K8mTW9e59PN2Pxgmpjv76TrrfwRmPlVXX/qvrPRbTvfwee0Pb7Z8ARwCvohlY4im6yv4X2izY5z9hF4m50veM0faP+Hb8ozssWwffww8clxe/RkzAfhQT5kjv3G5Ch7dnaJvcD+M8kfwN8hrV7Jg58kr+qugIgybuq6g29y5K8C3jDhG/sv6cMOoApfIDu97tVknfQna+8abAhreU9wJPG5phow7acwJpkpgakZ0iuz7efBayma5z/0WCiGjkPSnIR3fnBH7TnMHwNUcPqM6wZYmTk5uwYz0n+ki2G4QSjn5J8HDirqj48rvyvgN1ryGeYn6nW++0XtAsk4Jdji4CNqmqDQcWm0ZXkKuC9wD3pxqxdqzKtqvf2IYb3A78PfJa1L5oWdJy3Ae53c+AtdD1poBsb9PCqunmB9/sNuhno3wc8HXgxcLeq+vuF3G+/953kO1X18Pb8X4HVVXV4e31hVe083/ucIIZHAP8CPAS4mC4h+qwakpngR8Gof8cvxfMyzT/P/RZWz9AO6wM70jX2DlXP1tbbtphkuJ2qGpqx0XsnBe0pu2gYjuOYJI8Fdqyqj7YewhsPUwIuyYOAPdrLrw2oI8SEJvpdDtvvd6lKctgExVsAT6a7xjixzyGNnCT3W9fysYY0Tax3cuvJJroeJUu+B/MSvYh5NfDZJM8FxsYV+mNgQ2CfQQW1UBZBLyINp95xQjceUAz3prtoflJPWbHwE4kMZL8tkTyIGbfvUVVnJEk7STo8yfnAgieY+7zv9Xpmgt4DOKhn2YKeL/QMz3FBG8v8r+gmjvoK3cR0mr6R/o5foudlmmee+y24oR/aoap2GHQMU0ny18DfAPfv6fUHsAnw34OJ6q5aEm4F8EC6sfw3AD7GcI23ek+6c/Oia1QaJiuTfITumEF3S/zKAcajpqreMlF5uwPiq4AJ5ilMlkBOcjdgf8AE87qN+pwda1nyPZiXsiSPBx7cXl5SVV8bZDzSKJmot4kWRpJT17W8qp6xwPv/Jl2v6ZOBrwFXA0dU1QMXcr/93neSvwP2Am4AtgceUVWV5AHAcVW1YBeSSS4AnlBVN7XhOU5kzfAcf1RV/RieY1HxO17SQmvDGF1S3YTHJLk3XZ197mAjWyPJwcDHq+qn7fXmwP5V9aGBBtbFsindsEbvBA7pWXTrMDW2JbkQ2AW4oKen3dD0wE3y98CzgU/TdfzYB/hUVb19kHGNSbIhcDBr34H3oaoa1okxxeLoTdoPrd4/GNgGOBU4HXg58FrgO1W19wDDG3pT3HE1CkOSrcUEsyTNwiBPOpK8vqreneRfmKCls6oWpJfvAPe7GriSbry6cxl3u+u6JsKbp/0/ErgU2Ax4G7Ap8O6qOmch9zuIfbdkwX2Br1TVL1rZH9LdCrtgM2kPw/AckqSZSfI/tMbI9vpuwMphaoCf6DtkWBJHPeNET2hYksxJzquqXcc6V7QJY781RAnmHwAPr6pft9f3AC7sR0eAKeL6PeCNwAPoJk1+Z1X9bN3v0jBI8jjgzVXlJH9TSPI54GbgW3R3QP4e3bXaK6vqwgGGpgFY8kNkSNIs7TH1KgtmbFy5ft9eN6j9/j7wRLrbrJ4LfAE4oaou6cfOq+rb7enP6cZA7pt+73uixHVV/e9C75cBDs8hSZq1jCWXAarqjiTDVmev14aZGkuCrwfcfcAxjTmfNQ3248eKLmBYxok+Kcm/A5sl+UvgJcCHp3hPP/2EbiLkX7fXG9Ld8TVox9P9jv+FbliZ99Pn80itW8948r22oPubemH/IxpJ96+qhwK0oWCuAbYfa/DR0mIPZknSyGi3Ge4P/CPwlqr64ALua2BDcwx6WJB+G+TwHJKk2UlyCnAWcGQr+hvgcVW1z6BiGi/JP9F9r/x7K/orujH/Xzu4qEZPkifSzb0R4MtVdfqAQ7pTks8Cj6S7Nb/oOiWcR5vDYaHusJtGXHfendVeO7zekJlggroCbhy7i09TG/937d/50maCWZJGzKCSjwNOuG4IPJUuubycboyvY6pqwXqoDHJojkEPCzIIgxqeQ5I0O20IgA8Aj6dLzJxBd1v06oEG1qMN23EQ8IRWdDrw4aq6Y3BRdZI8qKq+n2TCZMywffe1sVbv7KE+REN4HLCu5VV1XL9i6ZXkO8DurDmHO7P39bAcP2kuesYQhrXHER7JMYQ1NyaYJWnEDCr5OMD9Hg88BDgNOLGqLl6I/Uyw3/VYMzTHw+jj0ByD3LckSdOR5DFV9d9TlQ1SkldW1funKhuEJEdV1UFJzpxgcQ3L+K9J/gp4C90QFHewJnE0FEN4JHk68IVhaDToleRy1hyv8Ybm+EnSfDHBLEkjZlDJxwHu9w7WtIz3fmn1rWW8n0NzDNO+JUmazES3Qg/b7dGTxDgUk/yNiiQ/BB5dVTcMOpaJJPkY8Gjg03R3t31/wCHdKUmA7arqx4OORZIW2rBNwiBJmkJV3Q58CfhST/LxrCQLmnwc4H7vtlDbnsoEQ3N8APjMYt+3JEmTSfJo4E+AZUle07Po3sB6g4lqbUnGJgbeYdwQX5sAQzU0QZIJJxOrquP7Hcsk/o/ulvehVFXPb8N37A8cm6SAj9J1grh1wLFVki8ADx1kHJLUDyaYJWkEDSr5uJSSnuOG5nhLv4bmGPS+JUmawt2BjemuJTfpKf8Z8KyBRHRX3wSuAbYE3tNTfitw0UAimtwje55vBOwBXAAMS4L5UOCbSc4FfjNWOKjJ8yZSVT9LcjLd+K+vAv4c+P+SfKCq/mWgwcEFSR5ZVd8ecByStKAcIkOSRswAxyQeyH4HZZBDcwzDsCCSJK1LktdX1bvHlT27qj41qJgmkuR+wI5V9dUk9wDWH3TP1nVJshndedaeg44FIMl5wDeA79KNKQwMbvK8MUmeWVWnJHkG8GLgAXRJ+eOq6vok9wS+V1XLBxzn91tsV9Cd242dyz1skHFJ0nwzwSxJI2ZQyUeTnpIkacyIjMH8l8BBwBZV9QdJdgT+rar2GHBok0qyAXBxVT1w0LHA8I5ZPfa3luQ44OiqOnuCdfaoqjMGEF5vDPebqLyqruh3LJK0kBwiQ5JGzKDGJB7kWMiSJGk4JHkKsBewTZIP9CzaBPjdYKKa1MHArsC5AFX1wyS/N9iQ1pbkP1nTcH83YCfgpMFFdBdfTHIQ8J+sPUTGUIxlXVUHrGPZQJPLLYYrANrf3UYDDkeSFowJZkmSJEnSdP0EOB94Rvs55n4M32Rwv6mq3yYBIMn6rH0X1jD4p57ntwFXVNVVgwpmAvu3n4f2lBVw/wHE0utBSSYaT3uohqBoQ3i8B9gauJ7u/+RS4MGDjEuS5psJZkmSJEnStFTVd4DvJPk43dwMzwWeDfwI+PQgY5vAfyV5I3CPJE8E/oauJ+7QqKr/GnueZEvgxgGGcxdVtcOgY5jEj4CnDzqIaXgbsBvw1araJcnjgOcPOCZJmnfe7ixJkiRJmpYkf5jkMLpJ3/4F+DHd3D6Pq6oPDja6uzgEWE0X61/RTVT8poFG1CTZLclZSU5JskuSi4GLgeuSDMUEf9BN3Jhkk/b8TWPxDjou4LdVdcVkj0EH1+N3VXUjcLckd6uqM4EVgw5KkuabPZglSZIkSdP1feDrwNOqahVAklcPNqSJVdUdST4LfLaqVg86nnE+CLwR2BT4GvCUqjonyYOAE4AvDTK4Hm+uqk8leSzwBOAfgX8DHjXYsPjvdqy2Ac6tqp+PLUiyZ1UNy/H7aZKNgbOBjye5njWTZkvSomEPZkmSJEnSdD0TuAY4M8mHk+xBN+7t0Ejn8CQ3AD8AfpBkdZK/H3RsPdavqq9U1aeAa6vqHICq+v6A4xrv9vbzqcBRVfUF4O4DjGfM/wKfA14BXJxk755l/zCYkNZI8oAkjwH2phub/NV0jQY30sUsSYuKCWZJkiRJ0rRU1Weraj/gQcCZwKuA30tyZJInDTS4NV4NPAZ4ZFVtUVVb0PW4fcwQ9ba+o+f5r8YtG6aJCK9O8u/Ac4DTkmzIcOQR/hL446raB9gdeHOSV7Zlw9Dg8c/Az6rqF1V1R1XdVlXHAZ8BDh9oZJK0AFI1TN9dkiRJkqRRkmRzuon+nlNVewxBPP8DPLGqbhhXvgz4SlUNfAzhJLfTDZUQ4B50vVxprzeqqg0GFVuvJPcE9gS+W1U/THJf4KFV9ZUBx3VJVT245/XGwMnA94DHV9XOg4qtxfPtqnrkJMu+W1UP7XdMkrSQhqHlUZIkSZI0oqrq5qo6ahiSy80G45PLAG0c5qFI3FbVelV176rapKrWb8/HXg9FjABV9cuqOgW4Jcn2dMdvGIbxuC7JzmMv2hjMTwO2BIYhebvZOpbdo19BSFK/mGCWJEmSJC0mv53lMo2T5BlJfgj8CPiv9vOLg40KgBcC1/YWtGEoXgj82WBCWsvKJH85vjDJS4HzBxCPJC0oh8iQJEmSJC0aPcNP3GURQzT8xChI8h3g8cBXq2qXJI8Dnl9VBw44tKGWZCu68ZZ/y5qE8gq6CRL/vKquney9kjSKTDBLkiRJkqS7SLKyqla0RPMuVXVHku9U1cMHHdsoaAn5h7SXl1TV1wYZjyQtlPUHHYAkSZIkSRpKP20T6J0NfDzJ9UzcO1wTqKozgTMHHYckLTR7MEuSJEmSpLtIci/gV3TzNz0P2BT4eFXdONDAJElDxQSzJEmSJElapyRbAjeWSQRJ0jh3G3QAkiRJkiRpeCTZLclZSU5JskuSi4GLgeuS7Dno+CRJw8UezJIkSZIk6U5JVgJvpBsS4yjgKVV1TpIHASdU1S4DDVCSNFTswSxJkiRJknqtX1VfqapPAddW1TkAVfX9AcclSRpCJpglSZIkSVKvO3qe/2rcMm+DliStxSEyJEmSJEnSnZLcDvwCCHAP4Jdji4CNqmqDQcUmSRo+JpglSZIkSZIkSbPiEBmSJEmSJEmSpFkxwSxJkiRJkiRJmhUTzJIkSZIkSZKkWTHBLEmSJEmSJEmaFRPMkiRJkiRJkqRZMcEsSZIkSZIkSZoVE8ySJEmSJEmSpFkxwSxJkiRJkiRJmhUTzJIkSZIkSZKkWTHBLEmSJEmSJEmaFRPMkiRJkiRJkqRZMcEsSZIkSZIkSZoVE8ySJEmSJEmSpFkxwbyAkvxbkjfP07a2T/LzJOu112cleel8bLtt74tJDpiv7c1gv29PckOSa/u978UgybFJ3j7oODQcrHOmtV/rnHli/aOJWA9Na79DXQ8leVGSbyzAdi9Jsvt8b1eSpFHmudO09jvU507qmGCepSSXJ/lVkluT/DTJN5O8LMmdx7SqXlZVb5vmtp6wrnWq6sdVtXFV3T4PsR+e5GPjtv+UqjpurtueYRzbA68Fdqqq359knU2SvLcdo18k+XGSk5M8qp+xzlaSDZO8s8X9qyQ/TPK6JBl0bBot1jlzt0TqnLu34/3DFv/lSY5JsnzQsWn0WQ/N3VT1UJLdk9zRLg5vTfKDJC/uZ4zrkmR5kmrx/TzJdUk+n+SJU723qh5cVWf1IUxpSiZ0prXfvid0Wv3ygH7tT1ponjvN3QzPncYe/9nPGNUxwTw3T6+qTYD7AUcAbwCOnu+dJFl/vrc5JLYHbqyq6ydamGRD4GvAQ4GnAfcG/gg4EXjKbHY4gGP5KWAPYC9gE+AFwF8B7+lzHFocrHPmZinUOScDzwCeC2wKPBw4n64ekuaD9dDcrLMean5SVRvT1UFvAD6cZKe+RDd9m7UYHw6cDnwmyYsmWnER/y41pEzozN2wNoYleVqS81oj+o1JPpZkm3Hr3DfJ0UmuabF9P8lbktxroeOTJuG509xM+9yp5/H0fgWnHlXlYxYP4HLgCePKdgXuAB7SXh8LvL093xL4PPBT4Cbg63QJ/v9o7/kV8HPg9cByoIADgR8DZ/eUrd+2dxbwTuA84GfA54At2rLdgasmihfYE/gt8Lu2v+/0bO+l7fndgDcBVwDXA8cDm7ZlY3Ec0GK7Afi7dRynTdv7V7ftvalt/wntM9/R4jh2gve+FLgGuNcUv4v3A1e243A+8Kc9yw6nS7h8rC1/afs9fav9Lq4BPgjcvec9TwJ+ANwCfAj4r7Fj05a/BLgUuBn4MnC/SeLaA/g1sN248kcBtwP3n+hvqcX8sZ7XnwKubfGcDTy4Z9mxtL8xH4v7Mf7vpJVZ59z1OC3lOmfsM263jti3Bk5tfxOrgL8cF/tJ7fjdClwCrOhZvgtwQVv2SbrEu/XPEnpgPdSPemiiz7EaeBbwVOB/2me/Eji8Z50vAi8f977vAM9szx9Elwi+ia6+2bdnvfvQ1Qs/a8f2bcA3Jvlsa/1OespfB1wH3K3n2L8BuAj4DbB+z+9j63Yctuh5/y7tuG7QXk+r3vPhY6IHPXVV+398BvAj4KNz2dYky9efoOzOumUW+zucnuuAAR7Dx46vi8Ytv7OuAgLsA9xGl5Cey34LeMAky57V6qnnAvcAfh84BriMrtELYIv2O/sEsLyVbUd37vawQR9XH0vvMVEdgudOEx2neT136lm2G/DNdjy/A+zes+wsunOe/6a7vvkKsGXP8sf2vPdK4EWtfEPgn9rnug74N+Aeg/5bG4aHPZjnUVWdB1wF/OkEi1/bli0DtgLe2L2lXkD3h/n06lpa3t3znv9H13vuyZPs8oV0J+D3pftC/8A0YvwS8A/AJ9v+Hj7Bai9qj8cB9wc2pkuI9Hos8EC6JOrfJ/mjSXb5L3SVxf3b53kh8OKq+ipdj8CxlqYXTfDeJwBfrqpfTPGxvg3sTHdC8QngU0k26lm+N13CZzPg43TJ3VfTVd6Pbp/hbwCSbNnWPZTugusHwJ+MbSjJ3nS/u2fS/S6/DpwwSVxPBM6tqit7C6vqXLq/hen2KPwisCPwe3TJnY9P831a5KxzJrSU65wnAOeNr3PGOZHu72Jrugu1f0jy+J7lz2jrbEaXcPpgi+PuwGfpTm63oGv4+ot17EdLhPXQhOZSD90pyd2S/Dnd/+N3gV+0bW1Gl2z+6yT7tNVPAPbvee9OdD2lvtB67Z1OV1/9HrAf8KGeXtH/Stcgfl+6Y/uSdcU1iVPath/YU7Z/i3OzqrptrLCqfkLX6NZbhzwXOLmqfjfDek9ap6q6papOBZ4DHJDkIbD2PAJJtmxDvfw0yU1Jvt7+//6Drufcf7aeuq/vGSbmwCQ/Br7WU9bbe/APWk/bnyX5XJIt2r52T3JVb4xjvaST7En3t/+ctr/vtOV3DrnR4npTkiuSXJ/k+CSbtmVjcRyQboivG5L83WTHJsmm7f2r2/be1Lb/BLo6Y+sWx7FTHOOqqs/SNQjtlG6IwH9O8pP2+Od2l9jYfv8yyap2rE9NsvVUv8ckobsD9O1V9Ymq+lVVXUvXkP9L4JVt1dfQJYqeX1WXt/iurKpXVtVFU+1H6gfPnSY0L+dOvdrdDV8A3k53/fI64NNJlvWs9lzgxXTnMHdv65DkfnR5mH+h+13sDFzY3nME8Iet7AHANsDfTzeuxcwE8/z7Cd0f73i/o/uHvl9V/a6qvl7VNX+sw+FV9Yuq+tUky/+jqi5uyZA3A/umjf01R88D3ltVl1XVz+kSH/uNO2l6S/ti/w5dS9BdKpwWy37AoVV1a/uSfw/dMBHTsSVdz92x7e3cTvx+luQHY+VV9bGqurGqbquq99C1KPVe4Hyrqj5bVXe0mM+vqnPa+pcD/05XiUE3lMUlVXVKuxj6QG8MwMuAd1bVpW35PwA7twpoovivmeSzXUNXUU2pqo5px+83dL0aHj52IilhnXMn6xzuw+R1Dkm2Ax4DvKGqfl1VFwIfoTuBG/ONqjqtutt8/4M1x3k3YAPgn9vf08l0iXYJrIfuNA/1EHRJnZ/S9fY5DHhBVf2gqs6qqu+2uuUiuqTrWF3yGdauG54HnNLOHZ4GXF5VH2310P8Anwae3eL9C+Dv23G/GJjNrfg/aT97/w4+0BI7E/0uP0FLiLfE0X6tDGZW70nTYkJnQgvVGPZ3dOcNO9PVk7vS9UakNWq/E9iX7thcQdewPZUH0iX7P9VbWFV30NVnT2pFT6Cr++6YxjalQfLcqZnPc6eex77A84HT2rXNHVV1OrCS7vprzEer6n/bsTuJrt6CLvH81ao6of0ebqyqC9s5y0HAq6vqpqq6la7e3m8GsS5aJpjn3zZ0tzKM9490tyN/JcllSQ6ZxrbW1Qtt/PIr6C7+t5xWlOu2ddte77bXpzvhGtObAPkl3cnNeFu2mMZva5sJ1p3IjXSVKwBVdWFVbUbXo6W3Ffx1SS5Ncku7INuUtY/DWscxyR+2XgrXJvkZXYUwtv7Wveu3yry3l8H9gPePVVx0v+tM8plu6I1/nPu25euUZL0kRyT5vxbr5W3RfPyetThY56yx1OucteKfwNbA2InQmPHHZ/xx3qidJG4NXD3uBLf3OGtpsx5aY671EHRJnc2qaouq2rmqTgRI8qgkZ7behrfQJWK3BGj/119gzQXO/qy54+l+wKN6L7zoLgp/ny6htj53Pa4zNfb5ev8O1vW7/DTw6CT3Bf6M7tbXr/fEO916T5oJEzrNQjaGtRjfWlXXV9Vq4C09230ecExVXdAawA6lqwuWT7GvsXp+oob03o4762xsl4aI505rzOe509jjJLrziWePO/95LGtfL00W33bA/02wn2XAPYHze7b5JabZeXCxM8E8j5I8ku6f4Bvjl7Uv7tdW1f3pbkF+TZKxIRImO4GZ6sRmu57n29OdHN1AdwvlPXviWo+1/+Cn2u5P6P4Ze7d9G934MjNxQ4tp/Launub7zwCelHVMyJDkT+nGH9oX2Lwlg26huxAZM/7zHgl8H9ixqu5N10thbP1rgG17tp/e13SV81+Nq7zuUVXfnCC8r9Jd0PX+nkjyKLrj8F+taK3fF90F35jn0t1u/wS6JNbysc1MsD8tMdY5d2GdA7sm2XaCZdAurJNs0lM23eNzDbBNi6/3vVrirIfuYq710Lp8gm7omu2qalO6Mf96/ydPAPZP8mhgI+DMVn4l8F/j6pGNq+qv6cY6vI27HteZ+nO68Rd/0FM26TGvqpvpxjp8Dt25zok9Cb2Z1HvSTJjQWWPBGsMmiXHriZa1JPmN09jvWMeciRrSezvuTNXYLg2c5053sVDnTlfSNfb1nk/cq6qOmOZ7/2CSWH9FNy/W2DY3rW7i4yXPBPM8SHLvJE+ju73nY1X13QnWeVqSB7SL81voxuQcu3XnOrpbk2bq+Ul2SnJP4K10Y9fdDvwvXa+zpybZgO6WpA173ncdsDw9MymPcwLw6iQ7JNmYNbdq3TbJ+hNqsZwEvCPJJu3WxtfQTX41HcfTJTU+k+QhrTfvRsCKnnU2oavEVgPrJ/l7ulnX12UTugHuf57kQcBf9yz7AvDQJPu0ngAHs3bC99+AQ5M8GO4cu+zZE+2kutvLzqAb5+fBLf7d6D7/8a2FH7qxfPZLskGSFXTjovbG+hu6k6V70v0utMRZ50zMOqe+Sjdm4meS/HGS9dtxeFmSl1Q3NvM3gXcm2SjJw+gmBZnO8flW+9x/2+qqZ9Ld8qolynpoYvNQD63LJnR3Ifw6ya50idlep9FdnL2VLvaxY/154A+TvKD9/26Q5JFJ/qjFewpweJJ7phuX+YDpBpRkqyQvp+u9eGjN7Lb0T9Ddkv8s1gyPATOo96TpMqFzFwvZGDZRjD+ZaFlr1L/PNPb7A7o7vNaqC1qd/hd0k3VB19j+5+uo66WB8dxpYgt47vQx4OlJnjx2XZduHPzJOuP0+jjwhCT7tmuq+yTZuZ3nfBh4X5Lfg26s5ySTDZe0pFjxzs1/JrmVrnXj74D30g0QPpEd6b7wfk53of6hqhrrWfJO4E3puti/bgb7/w+6GUevpeup8rfQTWZBN4HUR+i+rH/B2rdcj41ddWOSCybY7jFt22fTzbj8a+AVM4ir1yva/i+jO6H7RNv+lKrq13Tji32PLgnzM7qTi0fS9R6EbmbxL9FVjle0WKfqUfA6uouyW+kqh0/27PMGuhOXd9MldXeiG6fnN235Z4B3ASemu9X9YroxyibzF3Q9iL7UYvtWe35Qzzpvpmsdu5nuFrLei6zj2+e6uh2Hc6b4bFrcrHOmttTrnGfRJZk+SXdSejFdgvyrbfn+dHdC/IRuzNbDWmJ6narqt3RDhbyIrvfXc+iSUlp6rIemNut6aAp/A7y1Hf+/p7sYu1O73fwUuruePtFTfivd+KT70f3vX0tXr4xdRL6crofjtXTH9qPTiOWnSX5BN97qXsCzq2qmn/FUur+Ra9ut/GPxzrTekyZlQmdiC9wYdgJd/b4s3WTGf9+z3ROAF6eb52LDFv+5bYiOdcVbdOdTb0ry3JYo+n26On9LuvGkoftOujdwXPtMY8mf97aGdWkQPHea2ryfO7XONWMTB6+mO/7/H9PIg1bVj+nOb15Ld+1zIWuGG3oD3V0v57TzlK+y9nw8S1ZqyuGlpKWrndxdBTyvp2Kfy/aOo7s17KktYSNJd5rvOkeSpKUmyeV0Q0bcRpco/h5dgvPfWmKVJMcCV1XVm5K8GnglXU/im4F/r6q3tfX2pkte3ht4O3AyXSJlg7Gkbrrxg+8sS3IWXWJoD+BBdMPivbg1KpPkRXSJovXoGphfDry0qr6a5D7A54AHAz+qqke07X2sqj7SzhPeBPwlXaLoy8Arqurm8XG0fd353gmO0+btsz2ZLjH0YeDtVXVHkt3b+ybs6beu5enu/no3a3obfwp4fWvIJ8nL6JI8m9PdWfWyqrqqLSu6IcVWTbLfvdvnfzBwD7pGrmf33BlKkq3pfld7AfeiS5ydAPxjVf1you1KkubOBLM0Tru94Vy6sXX+P7pb1u9fk0/iMZNtb0DXO+C/qsreyJIWtM6RJElajJI8ia6X4xOq6sIBhyNJS55DZEh39Wi6GUNvAJ4O7DNfiZ7qZqZ+l8llST0WrM6RJElajKrqK3TDDOw26FgkSfZgliRJkiRJkiTNkj2YJUmSJEmSJEmzsv6gA1iXLbfcspYvXz7oMCTNwfnnn39DVS0bdBwzYd0jjTbrHUn9Zr0jqd+sdyQNwmR1z1AnmJcvX87KlSsHHYakOUhyxaBjmCnrHmm0We9I6jfrHUn9Zr0jaRAmq3umHCIjyXZJzkzyvSSXJHllK98iyelJfth+bt7Kk+QDSVYluSjJI3q2dUBb/4dJDpivDydJkiRJkiRJ6r/pjMF8G/DaqtqJbobWg5PsBBwCnFFVOwJntNcATwF2bI+DgCOhS0gDhwGPAnYFDhtLSkuSJA2SDeqSJEmSNDtTJpir6pqquqA9vxW4FNgG2Bs4rq12HLBPe743cHx1zgE2S3Jf4MnA6VV1U1XdDJwO7DmfH0aSJGmWbFCXJEmSpFmYTg/mOyVZDuwCnAtsVVXXtEXXAlu159sAV/a87apWNln5+H0clGRlkpWrV6+eSXiSFgl7EkrqNxvUJS0GSdZL8j9JPj/oWCSNlnVcgx2e5OokF7bHXj3vObRdg/0gyZMHF72kQZt2gjnJxsCngVdV1c96l1VVATUfAVXVUVW1oqpWLFs2UhOiSpo/9iSUNDD9aFBv+7FRXdJ8eyVdA5kkzdRk12AA76uqndvjNIC2bD/gwXSN6R9Kst4gApc0eNNKMCfZgC65/PGqOqUVX9d66tB+Xt/Krwa263n7tq1ssnJJWos9CSUNSr8a1Nv2bFSXNG+SbAs8FfjIoGORNHrWcQ02mb2BE6vqN1X1I2AVXaceSUvQ+lOtkCTA0cClVfXenkWnAgcAR7Sfn+spf3mSE+l6Dd5SVdck+TLwDz29B58EHDo/H2ON5Yd8Yb43uZbLj3jqgm5f0tr62ZOQrvcz22+//YxitN6RFod1Nai3c5npNqjvPq78rIWMeyILXS/NlfWatCD+GXg9sMlkK8zlfGcq1jvS4jHuGuwxdDmeFwIr6Xo530x3XXVOz9smHQaVeah3BlXHWHdI0zOdHsyPAV4APH7cmDtHAE9M8kPgCe01wGnAZXStVx8G/gagqm4C3gZ8uz3e2sokaUL2JJTUL9NoUIe7Nqi/sI0BvxutQR34MvCkJJu3RvUntTJJWjBJngZcX1Xnr2s9z3ckTWWCa7AjgT8AdgauAd4zk+1Z70hLw5Q9mKvqG0AmWbzHBOsXcPAk2zoGOGYmAUpamhZTT0JJI2GsQf27SS5sZW+ka0A/KcmBwBXAvm3ZacBedA3qvwReDF2DepKxBnWwQV1SfzwGeEbrCLQRcO8kH6uq5w84LkkjZKJrsKq6rmf5h4GxSUQdBlXSnaZMMEtSv43a0DySRp8N6pJGWVUdSjvHSbI78DqTy5JmYrJrsLEOPu3lnwMXt+enAp9I8l5ga7oJ18/rY8iShogJZknDyJ6EkiRJktQ/k12D7Z9kZ7rhCS8H/gqgqi5JchLwPeA24OCqur3PMUsaEiaYJQ0dexJKkiTNTlWdhUOCSZqhdVyDnbaO97wDeMeCBSVpZExnkj9JkiRJkiRJku7CBLMkSZIkSZIkaVZMMEuSJEmSJEmSZsUEsyRJkiRJkiRpVkwwS5IkSZIkSZJmxQSzJEmSJEmSJGlWTDBLkiRJkiRJkmbFBLMkSZIkSZIkaVZMMEuSJEmSJEmSZsUEsyRJkiRJkiRpVkwwS5IkSZIkSZJmxQSzJEmSJEmSJGlWTDBLkiRJkiRJkmbFBLMkSZIkSZIkaVZMMEuSJEmSJEmSZsUEsyRJkiRJkiRpVkwwS5IkSZIkSZJmxQSzJEmSJEmSJGlWTDBLkiRJkiRJkmbFBLMkSZIkSZIkaVZMMEuSJEmSJEmSZsUEsyRJkiRJ0hKWZLskZyb5XpJLkryylW+R5PQkP2w/N2/lSfKBJKuSXJTkEYP9BJIGyQSzJEmSJEnS0nYb8Nqq2gnYDTg4yU7AIcAZVbUjcEZ7DfAUYMf2OAg4sv8hSxoWJpglSZIkSZKWsKq6pqouaM9vBS4FtgH2Bo5rqx0H7NOe7w0cX51zgM2S3Le/UUsaFiaYJUmSJEmSBECS5cAuwLnAVlV1TVt0LbBVe74NcGXP265qZeO3dVCSlUlWrl69euGCljRQJpglSZIkSZJEko2BTwOvqqqf9S6rqgJqJturqqOqakVVrVi2bNk8RippmEyZYE5yTJLrk1zcU3Z4kquTXNgee/UsO7QN8v6DJE/uKd+zla1Kcsj4/UiSJEmSJGkwkmxAl1z+eFWd0oqvGxv6ov28vpVfDWzX8/ZtW5mkJWg6PZiPBfacoPx9VbVze5wG0AaA3w94cHvPh5Ksl2Q94F/pBoHfCdi/rStJkjQUbFSXJElLVZIARwOXVtV7exadChzQnh8AfK6n/IXp7Abc0jOUhqQlZsoEc1WdDdw0ze3tDZxYVb+pqh8Bq4Bd22NVVV1WVb8FTmzrStJdmOSRNCDHYqO6pBGUZKMk5yX5TpJLkrxl0DFJGjmPAV4APH7cNdcRwBOT/BB4QnsNcBpwGV3e58PA3wwgZklDYv05vPflSV4IrAReW1U30w3ofk7POr2DvI8f/P1RE200yUHAQQDbb7/9HMKTNMKOBT4IHD+u/H1V9U+9BeOSPFsDX03yh23xvwJPpKtzvp3k1Kr63kIGLml0VdXZbVKb6bizUR34UZKxRnVojeoAScYa1a17JC2k3wCPr6qft1vcv5Hki1V1zlRvlCSAqvoGkEkW7zHB+gUcvKBBSRoZs53k70jgD4CdgWuA98xXQA4AL8k7JyQNmZcnuajdXbF5K5ts5vRpzagOzqouaf5U5+ft5QbtMaOJuCRJkmZrVj2Yq+q6sedJPgx8vr1c1yDvDv4uaa4W5M4J8O4JSZM6EngbXaLmbXSN6i+Zjw1X1VHAUQArVqwwESRpTtoQPecDDwD+tarOnWAdz3eG2PJDvjDoENbp8iOeOugQ1snjJ0mDM6sezGMziDZ/DoyNk3oqsF+SDZPsAOwInAd8G9gxyQ5J7k53O/upsw9b0hK0YHdOgHdPSJpYVV1XVbdX1R104wuODYMxWaO6M6pLGohWV+1MV+/smuQhE6zj+Y4kSZp3U/ZgTnICsDuwZZKrgMOA3ZPsTNeb53LgrwCq6pIkJ9GNM3gbcHBV3d6283Lgy8B6wDFVdcl8fxhJi5d3TkgahCT37ZkRfXyj+ieSvJdu/PexRvXQGtXp6pz9gOf2N2pJS1lV/TTJmXQTkF481fqSJElzNWWCuar2n6D46HWs/w7gHROUn0Y3y6gkzZhJHkkLzUZ1SaMqyTLgdy25fA+6SY7fNeCwJEnSEjGrMZglaSGZ5JE0CDaqSxph9wWOa+Mw3w04qao+P8V7JEmS5oUJZklDxySPJEnS9FXVRcAug45DkiQtTbOa5E+SJEmSJEmSJBPMkiRJkiRJkqRZMcEsSZIkSZIkSZoVE8ySJEmSJEmSpFkxwSxJkiRJkiRJmhUTzJIkSZIkSZKkWTHBLEmSJEmSJEmaFRPMkiRJkiRJkqRZMcEsSZIkSZIkSZoVE8ySJEmSJEmSpFkxwSxJkiRJkiRJmhUTzJIkSZIkSZKkWTHBLEmSJEmSJEmaFRPMkiRJkiRJS1iSY5Jcn+TinrLDk1yd5ML22Ktn2aFJViX5QZInDyZqScPCBLMkSZIkSdLSdiyw5wTl76uqndvjNIAkOwH7AQ9u7/lQkvX6FqmkoWOCWZIkSZIkaQmrqrOBm6a5+t7AiVX1m6r6EbAK2HXBgpM09EwwS5IkSZIkaSIvT3JRG0Jj81a2DXBlzzpXtTJJS5QJZkmSJEmSJI13JPAHwM7ANcB7ZrqBJAclWZlk5erVq+c5PEnDwgSzJEmSJEmS1lJV11XV7VV1B/Bh1gyDcTWwXc+q27ayibZxVFWtqKoVy5YtW9iAJQ2MCWZJkiRJkiStJcl9e17+OXBxe34qsF+SDZPsAOwInNfv+CQNj/UHHYAkSZIkSZIGJ8kJwO7AlkmuAg4Ddk+yM1DA5cBfAVTVJUlOAr4H3AYcXFW3DyBsSUPCBLMkSZIkSdISVlX7T1B89DrWfwfwjoWLSNIocYgMSZIkSZIkSdKsmGCWJEmSJEmSJM2KCWZJkiRJkiRJ0qyYYJYkSZIkSZIkzYoJZkmSJEmSJEnSrEyZYE5yTJLrk1zcU7ZFktOT/LD93LyVJ8kHkqxKclGSR/S854C2/g+THLAwH0eSJEmSJEmS1C/T6cF8LLDnuLJDgDOqakfgjPYa4CnAju1xEHAkdAlp4DDgUcCuwGFjSWlJmoiNW5L6zXpH0qhKsl2SM5N8L8klSV456JgkSdLSMWWCuarOBm4aV7w3cFx7fhywT0/58dU5B9gsyX2BJwOnV9VNVXUzcDp3TVpLUq9jsXFLUn8di/WOpNF0G/DaqtoJ2A04OMlOA45JkiQtEbMdg3mrqrqmPb8W2Ko93wa4sme9q1rZZOV3keSgJCuTrFy9evUsw5M06mzcktRv1juSRlVVXVNVF7TntwKXMsn1liRJ0nyb8yR/VVVAzUMsY9s7qqpWVNWKZcuWzddmJS0OC9a4JUmTsFFd0khJshzYBTh3wKFIkqQlYrYJ5utaLx3az+tb+dXAdj3rbdvKJiuXpFmZ78YtEz2SpmKjuqRhl2Rj4NPAq6rqZxMs93xHkiTNu9kmmE8FxiatOQD4XE/5C9vEN7sBt7ReP18GnpRk8zYO4ZNamSTNxII1bpnokTQJG9UljYQkG9Allz9eVadMtI7nO5IkaSFMmWBOcgLwLeCBSa5KciBwBPDEJD8EntBeA5wGXAasAj4M/A1AVd0EvA34dnu8tZVJ0kzYuCWp36x3JA29JAGOBi6tqvcOOh5JkrS0rD/VClW1/ySL9phg3QIOnmQ7xwDHzCg6SUtWa9zaHdgyyVXAYXSNWSe1hq4rgH3b6qcBe9E1bv0SeDF0jVtJxhq3wMYtSetgvSNphD0GeAHw3SQXtrI3VtVpgwtJkiQtFVMmmCVpEGzcktRv1juSRlVVfQPIoOOQJElL02zHYJYkSZIkSZIkLXEmmCVJkiRJkiRJs2KCWZIkSZIkSZI0KyaYJUmSJEmSJEmzYoJZkiRJkiRJkjQrJpglSZIkSZIkSbNiglmSJEmSJGkJS3JMkuuTXNxTtkWS05P8sP3cvJUnyQeSrEpyUZJHDC5yScPABLMkSZIkSdLSdiyw57iyQ4AzqmpH4Iz2GuApwI7tcRBwZJ9ilDSkTDBLkiRJkiQtYVV1NnDTuOK9gePa8+OAfXrKj6/OOcBmSe7bl0D1/7d352GSleXdx78/QMSwCMhIlEVccMENcVxQoyhRUYm4BcENCQmaV0WjiVtMcEmMxrhrTFBQUAQRFzDyukRFVFQYkB2NI7KGHUFcXhW43z/Oaabo6e6Zqa6qU1X9/VxXX1PnOVXPuatOz1PVdz3nfqSxZIJZkiRJkiRJs21dVZe3t68Atm5vbwNc0nO/S9u21SQ5MMmKJCuuvvrq4UUqqVMmmCVJkiRJkjSvqiqg+njcIVW1vKqWL1u2bAiRSRoHJpglSZIkSZI025UzpS/af69q2y8Dtuu537Ztm6QlygSzJEmSJEmSZjse2K+9vR9wXE/7i9J4JHBDTykNSUvQBl0HIEmSJEmSpO4kOQrYDdgqyaXAwcA7gGOSHABcBOzd3v0E4KnASuA3wP4jD1jSWDHBLEmSJEmStIRV1b7z7Np9jvsW8LLhRiRpklgiQ5IkSZIkSZLUFxPMkiRJkiRJkqS+WCJDkiRJkiRJGiM7vP7LnRz3wnc8rZPjLrXnO22cwSxJkiRJkiRJ6osJZkmSJEmSJElSX0wwS5IkSZIkSZL6YoJZkiRJkiRJktQXE8ySJEmSJEmSpL6YYJYkSZIkSZIk9cUEsyRJkiRJkiSpLyaYJUmSJEmSJEl9McEsSZIkSZIkSeqLCWZJkiRJkiRJUl8WlWBOcmGSs5OckWRF27Zlkq8n+Wn77xZte5J8IMnKJGcl2WUQT0CSJGnY/MwjSZIkSXMbxAzmx1fVzlW1vN1+PfCNqtoR+Ea7DfAUYMf250DgIwM4tqQlyESPpI74mUfS2EpyWJKrkpzTdSySJGlpGUaJjL2Aw9vbhwPP6Gk/oho/ADZPcpchHF/S0mCiR1LX/MwjaZx8Atij6yAkSdLSs9gEcwFfS3JakgPbtq2r6vL29hXA1u3tbYBLeh57adt2G0kOTLIiyYqrr756keFJWkJM9EgapoF/5pGkQaqqk4Druo5DkiQtPRss8vGPqarLktwZ+HqSH/furKpKUuvSYVUdAhwCsHz58nV6rKQlYybRU8B/tuPGuiZ6Lu9po00YHQiw/fbbDzF0SRNq4J95HHckjZrjjiRJGoZFzWCuqsvaf68CvgA8HLhyZnZg++9V7d0vA7brefi2bZskravHVNUuNOUvXpbksb07q6poktBrraoOqarlVbV82bJlAwxV0jQYxmcexx1Jo+a4I0mShqHvBHOSjZNsOnMbeBJwDnA8sF97t/2A49rbxwMvahfceiRwQ89sQ0laa365JWmU/MwjSZIkSfNbTImMrYEvJJnp59NV9ZUkpwLHJDkAuAjYu73/CcBTgZXAb4D9F3FsSUtUm9xZr6pu7En0vJVViZ53sHqi5+VJjgYegYkeSevOzzySJEmSNI++E8xVdQHw4DnarwV2n6O9gJf1ezxJapnokTRSfuaRNAmSHAXsBmyV5FLg4Ko6tNuoJE2DJBcCNwI3AzdV1fIkWwKfAXYALgT2rqpfdBWjpG4tdpE/SRopEz2SJEmrq6p9u45B0lR7fFVd07P9euAbVfWOJK9vt1/XTWiSuraoRf4kSZIkSZK05OwFHN7ePhx4RnehSOqaCWZJkiRJkiTNp4CvJTktyYFt29Y9a9tcQVPKcDVJDkyyIsmKq6++ehSxSuqAJTIkSZIkSZI0n8dU1WVJ7gx8PcmPe3dWVSWpuR5YVYcAhwAsX758zvtImnzOYJYkSZIkSdKcquqy9t+rgC8ADweuTHIXgPbfq7qLUFLXTDBLkiRJkiRpNUk2TrLpzG3gScA5wPHAfu3d9gOO6yZCSePAEhmSJEmSJEmay9bAF5JAk0P6dFV9JcmpwDFJDgAuAvbuMEZJHTPBLEmSJEmSpNVU1QXAg+dovxbYffQRSRpHlsiQJEmSJEmSJPXFBLMkSZIkSZIkqS8mmCVJkiRJkiRJfTHBLEmSJEmSJEnqiwlmSZIkSZIkSVJfTDBLkiRJkiRJkvpiglmSJEmSJEmS1BcTzJIkSZIkSZKkvphgliRJkiRJkiT1xQSzJEmSJEmSJKkvJpglSZIkSZIkSX0xwSxJkiRJkiRJ6ssGXQcgSZIkjZMdXv/lrkNYowvf8bSuQ5AkSZIAZzBLkiRJkiRJkvpkglmSJEmSJEmS1BcTzJIkSZIkSZKkvphgliRJkiRJkiT1xUX+xsywF5VxQRhJkiRJkiRJg2KCWZIkSZIkSZJGZNgTTBcyjMmnlsiQJEmSJEmSJPXFGcyStMRZmkeSNGhdzspZG743SZIkDc7IZzAn2SPJT5KsTPL6UR9f0tLjuCNp1Bx3JI2a446kUXPckTRjpAnmJOsDHwaeAuwE7Jtkp1HGIGlpcdyRNGqOO5JGzXFH0qg57kjqNeoSGQ8HVlbVBQBJjgb2As4bcRwaEi+11xhy3Jly0zDuTMNz0G047kgaNccdSaPmuCPpVqNOMG8DXNKzfSnwiN47JDkQOLDd/FWSnww5pq2Aa9b2znnnECPpj/F3b52ewxgadvx3G2Lfa2ON4w6MfOyZ9N974+/epD8Hxx06+cyzGAM9Z2P4OzkKvoaLM+6vn+PO4I37OZ8EvoaLM+6vn+PO2uv7XE7w7/1Se84+33WwyOc859gzdov8VdUhwCGjOl6SFVW1fFTHGzTj796kP4dJj39QRjn2TPprbvzdm/TnMOnxD8qoP/Mshuds8XwNF8fXbzAcd5YWX8PF8fUbjHEYd5biuVxqz9nn271RL/J3GbBdz/a2bZskDYvjjqRRc9yRNGqOO5JGzXFH0q1GnWA+Fdgxyd2TbAjsAxw/4hgkLS2OO5JGzXFH0qg57kgaNccdSbcaaYmMqropycuBrwLrA4dV1bmjjGEOE3GJ2AKMv3uT/hwmPf4FOe4MhfF3b9Kfw6THv6AxHXcWa6rP2Yj4Gi6Or98CHHc0D1/DxfH1W8CEjTtL8Vwutefs8+1YqqrrGCRJkiRJkiRJE2jUJTIkSZIkSZIkSVPCBLMkSZIkSZIkqS8mmCVJkgRAkhOS7NB1HJIkSZImx5JOMCe5Z5J/SDKuheglTRnHHUlj7uPA15L8fZLbdR2MJEld8DO7JK2bJZdgTnLXJH+T5FTgXJrXYJ+Ow+pLkjsn2X7mp+t41iTJLgv9dB1fP5JskmSTruNYV0kOmLW9fpKDu4pn2jnudMdxZ3w47kyGqvossAuwGbAiyd8mefXMT8fhaYlIslGSVyX5UJKXJNmg65g0XNP4ft0V32/7N02f2QXtZ5dtuo5jVJLcMcl7k6xof96d5I5dxzVMST6Q5FFdxzEqSd6W5IlJNu46lrksmQ9rSQ4E9gW2AY4BDgCOq6q3dBpYH5I8HXg3cFfgKuBuwPnA/buMay28u/13I2A5cCYQ4EHACmDXjuJaZ0keCBwBbNls5mpgv6o6p9vI1truSZ5N8/9gS+ATwLc7jWgKOe6MBced8eG4Mzl+D/wauD2wKXBLt+FMniT/uMDuqqq3jSyYyXQ48AfgO8BTgJ2AV3YakYZtat6vx4Dvt+tomj6z6zY2pbkq6zrgM8Bnq+rKjmMapsOAc4C92+0X0lyZ9qzOIhq+04A3JbkP8AXg6Kpa0XFMw3QBzVj1gSQ30nxOOqmqjus2rEaqqusYRiLJ74HvA6+Z+YVLckFV3aPbyNZdkjOBJwD/XVUPSfJ44AVVdcAaHjoWknweOLiqzm63HwC8uaqe021kay/JycDfV9W32u3dgLdX1cR8e5bkucCHaZIIz6uq73Uc0tRx3BkfjjvjwXFn/CXZA3gPcDzw1qr6TcchTaQkr5mj+Y+AvwTuVFUTdxXCKCU5u6oe2N7eADilqpzFugRMw/v1OPD9dt1M02d2rS7Jg4DnAs8GLq2qP+04pKFIckZV7bymtmmUZEua87sPsH1V7dhxSEOV5I9pvkj4W2CLqtq045CAJTSDmebbyGcD725PxjHApNYW/ENVXZtkvSTrVdW3kryv66DWwX1mPjQCVNU5Se7XZUB92HgmyQNQVSeO62UKc0myI81MoM8B9wNemORHJhIGznFnfDjudMxxZ2L8PfDnVWXNyUWoqpnZmCTZlOZ3/y+Ao1k1U1Pz+8PMjaq6KUmXsWi0puH9ulO+3/Zlmj6za3VXAVcA1wJ37jiWYfptksdU1XcBkjwa+G3HMY3KvYD7suoq26mU5GM0V3VdSTN7+TnA6Z0G1WMpJZi/2s58+I8k29J8g3VlkvOBL1TVG7sNb51c39bfPAk4MslVNN9OT4qz2v8Yn2q3nw+c1WE8/bggyT8An2y3X0BzucKk+BLwsqr6Rpq/2l4NnMr4lzuYNI4748Nxp3uOOxOgqv6k6ximRTub5tU0483hwC5V9Ytuo5oYD07yy/Z2gDu026EpMbJZd6FpyKbh/bprvt+uu2n6zK5Wkv9DM8tzGfBZ4K+q6rxuoxqqvwYOb+suB7gO2K/bkIYryb8CzwR+RvMl/tuq6vpOgxquOwHrA9fTnN9rquqmTiPqsZRKZPyoqh4yR/uOwL5V9dYOwlonSbavqovbGWu/pVl04PnAHYEjq+raTgNcS0k2ohn8Zv6IPQn4SFX9rruo1k2SLYC3AI8Biubbo7dMyh+OSTarql/Oart3Vf1PVzFNI8ed8eG40z3HHS0lSd5FU/PwEODDVfWrjkOSJsI0vF93zffbdTcNn9m1uiRvB46pqjO6jmWY2qtKTwa+V1WXJdkMYPY4MG3aL9DeRPMecU3X8YxSe2XPk4G/Adavqm07DglYWgnmS2lqCs6pqubdNy6SnD5Tfy7J56rq2V3HtC6S7AVsW1UfbrdPofk2sYDXVtWxXca3NtoPvS+luQTjbOCwqvrDwo8aH0leW1X/2t7+86r6bM++t/vt/GA57nTPcad7jjtaipLcAvwOuIlmvLl1F87AlVYzDe/XXfP9tn/T8Jldt5VkfeDcqrpv17EMW5KXA49qf6BJNp8MfA84s6qmdrHm3jUbloIke9J8AftYYHPgB8B3quqwLuOasV7XAYzQ+sAmNCuJzv6ZlIVWegvQTeKCA6+lWTRoxobAQ4HdaGYqTILDaVa2PptmVfN3dRvOOtun5/YbZu3bY5SBLBGOO91z3Ome446WnKpar6ruUFWbVtVmPT+bmlyW5jQN79dd8/22f9PwmV09qupm4CdJtu86lmGrqg9V1fOqageaJPPnaf5uO5amlMI0Oz3Jw7oOYoT2oKm5/Oyqul9V7T8uyWVYWjWYL5+CS1tqntuTYsOquqRn+7tVdR1w3QQtVLVTrVrV/FDglI7jWVeZ5/Zc21o8x53uOe50z3FHkrQm0/B+3TXfb/s3DZ/ZtbotgHPbKyJuXTumqp7eXUjD0ZaLeCBNgvnRNAvB/RQ4osu4RuARwAuSXEhzjmeuFHtQp1ENWJJX0cxKf9U41VyebSklmKfhTXVmwZPexU5gci633KJ3o6pe3rO5bMSx9GvSVzVfKFk4icnDcTdxvyBzcNzpnuOOJGnaTcP7ddd8v+3fxH240lr5h64DGIUkXwc2A86gKZnw9qo6v9OgRufJXQcwItsC7wPum+RsmvInJwMnt1/GjoWlVIN5y3F64ZeiJEcCJ1bVR2e1vwTYrar27SaytZfkZlZ9+xngDsBvmJBkW0/8vbHTbm9UVbfrKrZp5LjTPced7jnuSJLWZBrer7vm+23//Mw+XeZYv+TQcZ71uVhJ/hN4EM2C7D8Avg98f5oXvktyZ+CNrDrH/zLtixoCJNmQpnTio4Bd25/rq2qnTgNrLZkEs7rXDgJfpFn05vS2+aHA7YFnVNWVHYUmaUo57kiSNP58v5Y0KEk+Q3MF4Hdo1i+5qKpe2W1Uw5dkM+CRNMnHR9Jc/XFOVe3XaWBDkOQrwGnAScCewKZV9eJOgxqBJHekSSo/uv13c+Dsqtq/y7hmmGDWyCV5AnD/dvPcqvpml/FImn6OO5IkjT/fryUtVpKze9Yv2QA4pap26TisoUtye+BhNMnHmSTzVTOvxTRJcmZVPbhn+/RpPsdJDqF5b7wR+CHNTPUfVNUvOg1slqVUg1ljov2g6IdFSSPjuCNJ0vjz/VrSAEz6+iXrJMl7aRLKOwI/oimR8R/AflV1fYehDVWSLVhVP3393u0pLHmzPc0VPT8FLgMuBa7vMqC5OINZkiRJkiRJE2/S1y9ZV0kOoln07YyqurnreEYhyYXALcy9QGdV1T1GG9Hwpfmm5P40XyY8CngAcB1Nve2Du4xthglmSZIkSZIkacIkWbA0RFWdvtB+TZYk27KqDMqewJ2qavNOg2qZYJYkSZIkSdJUSbI+sDU95WGr6uLuIhq8JN9qb24ELAfOpJnZ+yBgRVXt2lVsw7LUkurtLPWZmct/AE7u+Tm7qm7pMLxbWYNZkiRJkiRJUyPJK4CDgStpyikAFE3idWpU1eMBknwe2KWqzm63HwC8ucPQhund7b9zJtWBaUuq7wB8Fvibqrq841jm5QxmSZIkSZIkTY0kK4FHVNW1XccyCknOrar7r6ltmrRJ9YNnJ9Wr6jndRjY84zwr3xnMkiRJkiRJmiaXADd0HcQInZXkY8Cn2u3nA2d1GM8o3GcmuQxQVeckuV+XAQ3TuM/KdwazJEmSJEmSpkaSQ4H7AF8GfjfTXlXv6SyoIUqyEfDXwJ+0TScBH6mq383/qMmW5Cjg19w2qb5JVe3bXVTDM+6z8p3BLEmSJEmSpGlycfuzYfszlZLsBWxbVR8G3ptkX2AZsDNwKXBsh+EN2/40SfWD2u2TgI90F87QjfWsfGcwS5IkSZIkSRMmyfeAfarqknb7DOAJwCbAx6tq9w7DG4pZSXWSnEKTVC/gtVU1lUn1cZ+V7wxmSZIkSZIkTbwkxy+0v6qePqpYRmTDmeRy67tVdR1wXZKNuwpqyF4L7NOzvSHwUNqkOtM7a3usZ+WbYJYkSZIkSdI02JWmlMBRwA+BdBvO0G3Ru1FVL+/ZXDbiWEZlKSbVqaq3dB3DQkwwS5IkSZIkaRr8MfBEYF/geTTlBI6qqnM7jWp4fpjkr6rqo72NSV4CnNJRTMO2pJLqkzIr3xrMkiRJkiRJmipJbk+TaH4X8Jaq+lDHIQ1ckjsDX6SpyXt62/xQ4PbAM6rqyo5CG5okRwInzpNU362q9u0msuFIcjULzMqvqm93EddsJpglSZIkSZI0FdrE8tNokss7AMcDh1XVZV3GNUxJngDcv908t6q+2WU8w7TUkupJ1mfVrPwHMaaz8k0wS5IkSZIkaeIlOQJ4AHACcHRVndNxSBqSpZRUnzHOs/JNMEuSJEmSJGniJbkF+HW72ZvwClBVtdnoo5IWZxJm5ZtgliRJkiRJkqQxMymz8k0wS5IkSZIkSdKYmZRZ+SaYJUmSJEmSJEl9Wa/rACRJkiRJkiRJk8kEsyRJkiRJkiSpLyaYJUmSJEmSJEl9McEsSZIkSZIkSeqLCWZJkiRJkiRJUl9MMEuSJEmSJEmS+mKCWZIkSZIkSZLUFxPMkiRJkiRJkqS+mGCWJEmSJEmSJPXFBLMkSZIkSZIkqS8mmCVJkiRJkiRJfTHBLEmSJEmSJEnqiwlmSZIkSZIkSVJfTDBLkiRJkiRJkvpiglmSJEmSJEmS1BcTzJIkSZIkSZKkvphgliRJkiRJkiT1xQSzJEmSJEmSJKkvJpglSZIkSZIkSX0xwSxJkiRJkiRJ6osJZkmSJEmSJElSX0wwS5IkSZIkSZL6YoJZkiRJkiRJktQXE8ySJEmSJEmSpL6YYJYkSZIkSZIk9cUE8xAl+Y8k/zCgvrZP8qsk67fbJyb5y0H03fb3f5PsN6j+1uG4/5TkmiRXLLKfXyW5x6Dikqad49NaHXcg49Mc/e6W5NJB9imNimPHWh13SY8dSXZIUkk2aLcXPA+D/J2SJElSN0ww9ynJhUl+m+TGJNcnOTnJS5Pc+ppW1Uur6m1r2defLnSfqrq4qjapqpsHEPubk3xqVv9PqarDF9v3OsaxPfAaYKeq+uM59u/W/oHyhVntD27bT5xpa1+bCwYY28z5/VXPz10H0OeC51kaBMenxVvT+NTe541Jft6OD5cm+cyQY/q/PePRH5L8vmf7P4Z5bC0Njh2LN45jR89xH57khPbcXpfklCT7D/u4vechyYuTfHfW/rX6nZIkSdL4MsG8OH9WVZsCdwPeAbwOOHTQB5mZATKFtgeuraqrFrjP1cCuSe7U07Yf8D9DjazxZ+0fvjM//zuCY85rin8PNByOT4uz4PjUzsZ7IfCnVbUJsBz4xjADapM0m7THOxL4157x6aXDPLaWFMeOxRm7saM97q7AN4FvA/cC7gT8NfCUYR9bkiRJ088E8wBU1Q1VdTzwXGC/JA8ASPKJJP/U3t4qyX/1zBr5TpL1knyS5o+RL7UzWV7bc2nhAUkuBr45+3LD1j3b2Se/THJcki3bY612CeXMTKIkewBvBJ7bHu/Mdv+tl6W2cb0pyUVJrkpyRJI7tvtm4tgvycVpLgH9+/lemyR3bB9/ddvfm9r+/xT4OnDXNo5PzNPF74EvAvu0/a3fvs5HzjpOJblXe/upSc5rZ2BdluRve+63V5Iz2tfsZ+3rsdba53Noksvbvv8pqy7tvWeSbya5tn1djkyyebtvrvM873lqb785ybFJPpXkl8CLFzq+NBfHp6GNTw8DvlpVP2tf5yuq6pCevvdPcn47Dl2Q5CULxHHXJJ9r4/h5koPmu+88j/9yklfMajsryTPb25XkoDaOa5K8Kz0zUpP8RRvrL5J8Ncnd1uX4mk6OHVM3drwLOLyq3llV11TjtKrau6e/v0qysj2Xx6fnyq329Xlpkp+25/vDSdLuWz/Jv7Wv2wXA02bFeWKSv0xyP+A/aCYO/CrJ9e3+W3+nFhOHJEmSumOCeYCq6hTgUuBP5tj9mnbfMmBrmj+EqqpeCFzMqtmy/9rzmMcB9wOePM8hXwT8BXAX4CbgA2sR41eAtwOfaY/34Dnu9uL25/HAPYBNgA/Nus9jgPsAuwP/2P7RMJcPAnds+3lcG/P+VfXfNLNm/reN48ULhH1E+zhoXotzgIVmEx8KvKSdgfUAmhk7JHl429ffAZsDjwUuXKCfuXyC5rW+F/AQ4EnATL3IAP8C3JXmvG0HvBlgDed5IXsBx7bxHrmG40vzcnya02LGpx8AL0ryd0mWZ/Uveq4C9gQ2A/YH3ptkl9mdtIneLwFnAtu0Mb8qyXyv61wOB17Q0+eD276+3HOfZ9LMlNyFZlz5i/a+e9Gc72fRnP/vAEetw7E15Rw75jRRY0eSPwJ2pfk8MackT6D5DLM3zWt/EXD0rLvtSZMgf1B7v5lj/VW77yE048xz5jpGVZ0PvBT4fvv6bD7gOCRJktQRE8yD97/AlnO0/4Hmg/LdquoPVfWdqqo19PXmqvp1Vf12nv2frKpzqurXwD8Ae8/xh0o/ng+8p6ouqKpfAW8A9pk1w+gtVfXbqjqT5o+b1f6Ya2PZB3hDVd1YVRcC76a5NHStVdXJwJZJ7kPzR9wRa3jIH4CdkmxWVb+oqtPb9gOAw6rq61V1S1VdVlU/XqCfL7azY65P8sUkWwNPBV7VnpergPe2z5GqWtn2/buquhp4D80fnovx/ar6YlXdQvPH5rzHl9aC41NrseNTVX0KeAVNYuPbwFVJXtez/8tV9bN2luC3ga8xd4LuYcCyqnprVf2+mlryH2Xd/l8fD9w7yY7t9gtpEm2/77nPO6vquqq6GHgfsG/b/lLgX6rq/Kq6iSZJt3OcxazbcuxoTejYsQXNZ/7LFwjt+TSfkU6vqt/RvD67Jtmh5z7vqKrr23HkW8DObfvewPuq6pKquo4mQdyvxcQhSZKkjphgHrxtgOvmaH8XsBL4WnvJ4+vXoq9L1mH/RcDtgK3WKsqF3bXtr7fvDWhmJ83oXRn9NzQzgWbbqo1pdl/b9BHTJ4GX08w8+sIa7vtsmkTsRUm+nabuIDQzin+2Dsd8RlVt3v48g6Ye5e2Ay2cSz8B/AncGSLJ1kqPTlK74JfApFn8+es/xgseX1oLj0yqLHp+q6siq+lOaKwxeCrxtZvZgkqck+UF7iff1NGPSXM//bjSX01/f8//6jbOez5ri+H/AZ4AXtLMa96UZM3vNPh8zl5zfDXh/z7Gvo7kao59xWtPLsWOVSRw7fgHcQvNlwHxu8/q0SfhrZz2v+V6fu7L6eevXYuKQJElSR0wwD1CSh9F8AP7u7H3tLJfXVNU9gKcDr06y+8zuebpc0yyg7Xpub08zk+ga4NfAH/XEtT7N5atr2+//0vzh0tv3TcCVa3jcbNe0Mc3u67J17AeaZMn/AU6oqt8sdMeqOrWq9qJJvH4ROKbddQlwzz6OPeMS4HfAVj2J582q6v7t/rfTvLYPrKrNaC5Z760LOPt1X9N5mv2YNR1fmpfj02oGNj61Mzc/C5wFPCDJ7YHPAf8GbF3NZeAncNvxYMYlwM97/k9vXlWbVtVT1zGMw2lm/u0O/Kaqvj9r/+zzMVNm6BKakkK9x79De+WI5NixuokbO9rPTd+n+QJ+Prd5fZJsTLMQ4No8r8tZ/bzNZ53O0zrGIUmSpI6YYB6AJJsl2ZOmRtynqursOe6zZ5J7tQuR3ADcTDObBJo/bu7Rx6FfkGSntrbeW4Fjq+pm4H+AjZI8LcntgDcBt+953JXADulZ5GmWo4C/SXL3JJuwqq7hTesSXBvLMcA/J9m0veT61TQze9dJVf2cptzEvIvuACTZMMnzk9yxqv4A/JJVr/OhwP5Jdk+zGM82Se67DjFcTnOp6rvbc75emoX9ZspgbAr8CrghyTY0tZ57zT7PazpP63p8aTWOT3Nb7PiU5MXtc9i0/b/4FOD+wA+BDdvndDVwU7vvSfN0dQpwY5LXJblDmsWyHtAm9dbl+Xyf5py9m9VnLwP8XZItkmwHvJJmxjM0C269Icn92+d1xyR/vi7H1nRy7JjbBI8dr6VZLPjvktypjeXBSWbqGx9F8xlp5zbR/Xbgh20JkDU5BjgoybZJtgAWmsl+JbBtkg3n2b+YOCRJktQRE8yL86UkN9LMIvl7mpq7+89z3x2B/6ZJQH4f+Peq+la771+AN6W5xPFv1+H4n6RZ9O0KYCPgIGhWfqeZ7fsxmhkfv6ZZhGfGZ9t/r01yOqs7rO37JODnwP+jqRfYj1e0x7+AZvbTp9v+11lVfbeqFlrcb8YLgQvTlKl4Kc2svpmFivanqVt8A03tw3WtM/oimj8Az6O55PRYVl1y+haaBbRuoFlc6/OzHnub87wW52ldjy/1cnxas8WMT7+kuRz9YuB64F+Bv27HqRtpnu8xNP9Pn0dTJ3k1bbJqT5oaoj+nmR35MZoFxNbVEcADmTvRdRxwGnAGzfh0aHv8LwDvBI5ux8xzaBYp09Ll2LFmEzd2tFclPKH9uSDJdcAhNDOkqWaBwn+gmUF9Oc0VX2tbC/6jwFdp6lafzuqff3p9EzgXuCLJNXPEuZg4JEmS1JGseS0WSZI07pK8CDiwqh4zq72AHatqZTeRSZIkSZKmmTOYJUmacG05gf9DMyNRkiRJkqSRMcEsaewk2S7Jt5Kcl+TcJK9s27dM8vUkP23/3aJtT5IPJFmZ5Kwku/T0tV97/58m2a+r5yQNS5In09RsvZLmUn1JkiRJkkbGEhmSxk6SuwB3qarTk2xKUzv2GcCLgeuq6h1JXg9sUVWvS/JUmpqYTwUeAby/qh6RZEtgBbCcZuX604CHVtUvRv6kJEmSJEmSppAzmCWNnaq6vKpOb2/fCJwPbAPsBRze3u1wmqQzbfsR1fgBsHmbpH4y8PWquq5NKn8d2GN0z0SSJEmSJGm6bdB1AAvZaqutaocddug6DEmLcNppp11TVcv6fXySHYCHAD8Etq6qy9tdVwBbt7e3AS7pedilbdt87Qty7JEm22LHnS447kiTbRLHHUmSpEEZ6wTzDjvswIoVK7oOQ9IiJLloEY/dBPgc8Kqq+mWSW/dVVSUZWI2fJAcCBwJsv/32jj3SBFvMuNMVP/NIk20Sxx1JkqRBsUSGpLGU5HY0yeUjq+rzbfOVbemLmTrNV7XtlwHb9Tx827ZtvvbVVNUhVbW8qpYvW+YEJEmSJEmSpLVhglnS2EkzVflQ4Pyqek/PruOB/drb+wHH9bS/KI1HAje0pTS+CjwpyRZJtgCe1LZJkiRJkiRpAIZWIiPJ3wB/CRRwNrA/cBfgaOBOwGnAC6vq98OKQdLEejTwQuDsJGe0bW8E3gEck+QA4CJg73bfCcBTgZXAb2jGG6rquiRvA05t7/fWqrpuJM9AkiRJkiRpCRhKgjnJNsBBwE5V9dskxwD70CSA3ltVRyf5D+AA4CPDiEHS5Kqq7wKZZ/fuc9y/gJfN09dhwGGDi06SJEmSJEkzhlkiYwPgDkk2AP4IuBx4AnBsu/9w4BlDPL4kSZIkSZIkaYiGMoO5qi5L8m/AxcBvga/RlMS4vqpuau92KbDN7McmORA4EGD77bdfVBw7vP7Li3p8vy58x9M6Oa6k4VrXMcWxQNKgDfqzjeOUJEmSpMUaygzmdjGtvYC7A3cFNgb2WJvHVtUhVbW8qpYvW7ZsGOFJkiRJkiRJkgZgWCUy/hT4eVVdXVV/AD5Ps2jX5m3JDIBtgcuGdHxJkiRJkiRJ0pANK8F8MfDIJH+UJDSLcp0HfAt4Tnuf/YDjhnR8SZIkSZIkSdKQDSXBXFU/pFnM73Tg7PY4hwCvA16dZCVwJ+DQYRxfkiRJkiRJkjR8Q1nkD6CqDgYOntV8AfDwYR1TkiRJkiRJkjQ6wyqRIUmSJEmSJEmaciaYJUmSJEmSJEl9McEsSZIkSZIkSeqLCWZJkiRJkiRJUl9MMEuSJEmSJEmS+mKCWZIkSZIkSZLUFxPMkiRJkiRJkqS+mGCWJEmSJEmSJPXFBLMkSZIkSZIkqS8mmCVJkiRJkiRJfTHBLEmSJEmSJEnqiwlmSZIkSZIkSVJfTDBLkiRJkiRJkvpiglmSJEmSJEmS1BcTzJIkSZIkSZKkvphgliRJkiRJkiT1xQSzJEmSJEmSJKkvJpglSZKAJIcluSrJOT1tb05yWZIz2p+n9ux7Q5KVSX6S5Mk97Xu0bSuTvH7Uz0OSJEmSRskEsyRJUuMTwB5ztL+3qnZuf04ASLITsA9w//Yx/55k/STrAx8GngLsBOzb3leSJEmSptIGXQcgSZI0DqrqpCQ7rOXd9wKOrqrfAT9PshJ4eLtvZVVdAJDk6Pa+5w06XkmSJEkaB85gliRJWtjLk5zVltDYom3bBrik5z6Xtm3ztUuSJEnSVDLBLEmSNL+PAPcEdgYuB949qI6THJhkRZIVV1999aC6lSRJkqSRMsEsSZI0j6q6sqpurqpbgI+yqgzGZcB2PXfdtm2br32uvg+pquVVtXzZsmWDD16SJEmSRsAEs6Sx016GflWSc3ra3pzksiRntD9P7dn3hiQrk/wkyZN72vdo21Ymef2on4ekyZfkLj2bzwRmxqXjgX2S3D7J3YEdgVOAU4Edk9w9yYY0CwEeP8qYJUmSJGmUXORP0jj6BPAh4IhZ7e+tqn/rbUiyE00C5/7AXYH/TnLvdveHgSfS1EA9NcnxVeVCW5LmlOQoYDdgqySXAgcDuyXZGSjgQuAlAFV1bpJjaBbvuwl4WVXd3PbzcuCrwPrAYVV17mifiSRJkiSNjglmSWOnqk5KssNa3n0v4Oiq+h3w8yQrWXUJ+8qqugAgydHtfU0wS5pTVe07R/OhC9z/n4F/nqP9BOCEAYYmSZIkSWPLEhmSJsnLk5zVltDYom3bBrik5z6Xtm3ztUuSJEmSJGlATDBLmhQfAe4J7AxcDrx7kJ0nOTDJiiQrrr766kF2LUmSJEmSNLVMMEuaCFV1ZVXdXFW3AB9lVRmMy4Dteu66bds2X/t8/R9SVcuravmyZcsGG7wkSZIkSdKUGlqCOcnmSY5N8uMk5yfZNcmWSb6e5Kftv1usuSdJgiR36dl8JnBOe/t4YJ8kt09yd2BH4BTgVGDHJHdPsiHNQoDHjzJmSZIkSZKkaTfMGczvB75SVfcFHgycD7we+EZV7Qh8o92WpNtIchTwfeA+SS5NcgDwr0nOTnIW8HjgbwCq6lzgGJrF+74CvKyd6XwT8HLgqzTjzzHtfSVJkiRJkjQgGwyj0yR3BB4LvBigqn4P/D7JXsBu7d0OB04EXjeMGCRNrqrad47mQxe4/z8D/zxH+wnACQMMTZIkSZIkST2GNYP57sDVwMeT/CjJx5JsDGxdVZe397kC2Hr2A11oS5IkSZIkSZImw7ASzBsAuwAfqaqHAL9mVjmMqiqgZj/QhbYkSZIkSZIkaTIMK8F8KXBpVf2w3T6WJuF85cxCXe2/Vw3p+JIkSZIkSZKkIRtKgrmqrgAuSXKftml3mgW4jgf2a9v2A44bxvElSZIkSZIkScM3lEX+Wq8AjkyyIXABsD9NQvuYJAcAFwF7D/H4kiRJkiRJkqQhGlqCuarOAJbPsWv3YR1TkiRJkiRJkjQ6w6rBLEmSJEmSJEmaciaYJUmSJEmSJEl9McEsSZIkSZIkSeqLCWZJkiRJkiRJUl9MMEuSJEmSJEmS+mKCWZIkSZIkSZLUFxPMkiRJkiRJkqS+mGCWJEmSJEmSJPXFBLMkSZIkSZIkqS8mmCVJkiRJkiRJfTHBLEmSJEmSJEnqiwlmSZIkSZIkSVJfTDBLkiRJkiRJkvpiglmSJEmSJEmS1BcTzJIkSZIkSZKkvphgliRJkiRJkiT1xQSzJEmSJEmSJKkvJpglSZIkSZIkSX0xwSxJkiRJkiRJ6osJZkmSJEmSJElSX0wwS5IkAUkOS3JVknN62rZM8vUkP23/3aJtT5IPJFmZ5Kwku/Q8Zr/2/j9Nsl8Xz0WSJEmSRsUEsyRJUuMTwB6z2l4PfKOqdgS+0W4DPAXYsf05EPgINAlp4GDgEcDDgYNnktKSJEmSNI1MMEuSJAFVdRJw3azmvYDD29uHA8/oaT+iGj8ANk9yF+DJwNer6rqq+gXwdVZPWkuSJEnS1DDBLEmSNL+tq+ry9vYVwNbt7W2AS3rud2nbNl+7JEmSJE0lE8ySxpK1UCWNm6oqoAbVX5IDk6xIsuLqq68eVLeSJEmSNFImmCWNq09gLVRJ3buyLX1B++9VbftlwHY999u2bZuvfTVVdUhVLa+q5cuWLRt44JIkSZI0CiaYJY0la6FKGhPHAzNXP+wHHNfT/qL2CopHAje0pTS+CjwpyRbtF1pPatskSZIkaSpt0HUAkrQOrIUqaWiSHAXsBmyV5FKaKyDeARyT5ADgImDv9u4nAE8FVgK/AfYHqKrrkrwNOLW931uravaXZZIkSZI0NYaWYE6yPrACuKyq9kxyd+Bo4E7AacALq+r3wzq+pOlWVZVkoLVQacprsP322w+qW0kTpKr2nWfX7nPct4CXzdPPYcBhAwxNkiRJksbWMEtkvBI4v2f7ncB7q+pewC+AA4Z4bEnTyVqokiRJkiRJY2QoCeYk2wJPAz7Wbgd4AnBse5fe2qmStLashSpJkiRJkjRGhlUi433Aa4FN2+07AddX1U3t9rx1UL1MXRJYC1WSJEmSJGkSDDzBnGRP4KqqOi3Jbuv6+Ko6BDgEYPny5QOrryppslgLVZIkSZIkafwNYwbzo4GnJ3kqsBGwGfB+YPMkG7SzmOetgypJkiRJkiRJmgwDr8FcVW+oqm2ragdgH+CbVfV84FvAc9q79dZOlSRJkiRJkiRNoKEs8jeP1wGvTrKSpibzoSM8tiRJkiRJkiRpwIa1yB8AVXUicGJ7+wLg4cM8niRJkiRJkiRpdEY5g1mSJEmSJEmSNEVMMEuSJEmSJEmS+mKCWZIkSZIkSZLUFxPMkiRJkiRJkqS+mGCWJEmSJEmSJPXFBLMkSZIkSZIkqS8mmCVJkiRJkiRJfTHBLEmSJEmSJEnqiwlmSZIkSZIkSVJfTDBLkiRJkiRJkvpiglmSJEmSJEmS1BcTzJIkSZIkSZKkvphgliRJkiRJkiT1xQSzJEmSJEmSJKkvJpglSZIkSZIkSX0xwSxJkiRJkiRJ6osJZkmSJEmSJElSX0wwS5IkSZIkSZL6YoJZkiRJkiRJktQXE8ySJEmSJEmSpL6YYJYkSZIkSZIk9cUEsyRJkiRJkiSpLyaYJUmSJEmSJEl9McEsSZIkSZIkSeqLCWZJkiRJkiRJUl9MMEuSJK1BkguTnJ3kjCQr2rYtk3w9yU/bf7do25PkA0lWJjkryS7dRi9JkiRJw2OCWZIkae08vqp2rqrl7fbrgW9U1Y7AN9ptgKcAO7Y/BwIfGXmkkiRJkjQiJpglTRxnEkoaE3sBh7e3Dwee0dN+RDV+AGye5C4dxCdJkiRJQzeUBHOS7ZJ8K8l5Sc5N8sq2fc4EkCT1wZmEkkapgK8lOS3JgW3b1lV1eXv7CmDr9vY2wCU9j720bbuNJAcmWZFkxdVXXz2suCVJkiRpqIY1g/km4DVVtRPwSOBlSXZi/gSQJC2WMwklDdNjqmoXmi+tXpbksb07q6poktBrraoOqarlVbV82bJlAwxVkiRJkkZnKAnmqrq8qk5vb98InE8zc2e+BJAkrQtnEkoaqaq6rP33KuALwMOBK2e+sGr/vaq9+2XAdj0P37ZtkyRJkqSpM/QazEl2AB4C/JD5E0C99zfJI2lNnEkoaWSSbJxk05nbwJOAc4Djgf3au+0HHNfePh54UVsD/pHADT2ffyRJkiRpqmwwzM6TbAJ8DnhVVf0yya37qqqSrJYAqqpDgEMAli9fvk4JIklLQ+9MwiS3mUlYVZc7k1DSgG0NfKH9HLMB8Omq+kqSU4FjkhwAXATs3d7/BOCpwErgN8D+ow9ZkiRJkkZjaAnmJLejSS4fWVWfb5vnSwBJ0lppZw+uV1U39swkfCurZhK+g9VnEr48ydHAI3AmoaR1VFUXAA+eo/1aYPc52gt42QhCkyRJkqTODSXBnGaKz6HA+VX1np5d8yWAJGltOZNQkiRJkiRpTAxrBvOjgRcCZyc5o217I01iea4EkCStFWcSSpIkSZIkjY+hJJir6rtA5tm9WgJIkiRJkiRJkjR51us6AEmSJEmSJEnSZDLBLEmSJEmSJEnqiwlmSZIkSZIkSVJfTDBLkiRJkiRJkvpiglmSJEmSJEmS1BcTzJIkSZIkSZKkvphgliRJkiRJkiT1xQSzJEmSJEmSJKkvJpglSZIkSZIkSX0xwSxJkiRJkiRJ6osJZkmSJEmSJElSX0wwS5IkSZIkSZL6YoJZkiRJkiRJktQXE8ySJEmSJEmSpL6YYJYkSZIkSZIk9cUEsyRJkiRJkiSpLyaYJUmSJEmSJEl9McEsSZIkSZIkSerLBl0HIEmSpOmww+u/PND+LnzH0wbanyRJkqTBM8EsSWNiXRMzJl4kSZIkSVLXTDBLkiRpSXCGtSRJkjR41mCWJEmSJEmSJPXFBLMkSZIkSZIkqS8mmCVJkiRJkiRJfbEG8xQZdF3BtdVV/cGuni9Yc1GSJEmSJEkCZzBLkiRJkiRJkvpkglmSJEmSJEmS1BdLZEjSErGuZWUsBSNJkiRJktbEGcySJEmSJEmSpL6MfAZzkj2A9wPrAx+rqneMOgZJS4vjjqRRc9xRvwa9iLFXo0iSJGnYRppgTrI+8GHgicClwKlJjq+q80YZhzSpBv1H59qa5D9OHXdGxxIcUsNxR9PMBLgkSZJmG/UM5ocDK6vqAoAkRwN7Af7BJWlYHHemxLAT2KNIkE/6c/BLhLXmuCN1xAS4JEnS6KWqRnew5DnAHlX1l+32C4FHVNXLe+5zIHBgu3kf4CcjC/C2tgKu6ejYXfD5Tr+unvPdqmpZB8cF1m7cadsXM/YM+7W1/+nufxTHWGr9L4VxZ03G/X3O+BZv3GNcavF1Ou5IkiR1aeQ1mNekqg4BDuk6jiQrqmp513GMis93+i3F57wuFjP2DPu1tf/p7n8Ux7D/8TTMzzzj/poZ3+KNe4zGJ0mStHSsN+LjXQZs17O9bdsmScPiuCNp1Bx3JEmSJC0Zo04wnwrsmOTuSTYE9gGOH3EMkpYWxx1Jo+a4I0mSJGnJGGmJjKq6KcnLga8C6wOHVdW5o4xhHXRepmPEfL7Tbyk+51GNO8N+be1/uvsfxTHsf4TG5PPOuL9mxrd44x6j8UmSJC0RI13kT5IkSZIkSZI0PUZdIkOSJEmSJEmSNCVMMEuSJEmSJEmS+mKCWZIkSZIkSZLUFxPMWhLS2K7rOKS1lWT3JHfoOg5pLkkOSLJj13FIkiRJkrq35Bf5S7LLQvur6vRRxTJKSe4LbAP8sKp+1dO+R1V9pbvIhifJ2VX1wK7jGKUkXwKOAo6rql93HY/WXpLDgV2B64DvACcB362qXyyy3/sABwL3bZvOBz5aVT9ZTL+zjvF44BXAfXqO8aGqOnHc+2//z8z7xlhVT1/sMXqOtT6wNbBBT/8XD7D/RwE7zOr/iAH1/RbgT9r+T6P5/fxOVZ0xgL6H+vszjcb9s0ySD7Lw/6uDRhjObSTZcqH9VXXdqGJZG0lOAw4DPr3Y94NhSPIAYCdgo5m2QY07/Ury6oX2V9V7RhWLJEnStDLBnHyrvbkRsBw4EwjwIGBFVe3aVWzDkuQg4GU0f7TvDLyyqo5r951eVQv+oTqp2oTdh6rq1K5jGZUkjwOeCzwNOBU4Gvivqvp/nQamtZbkrsBzgL8F7lpVG6zhIQv1tSvweeA/gR/RjHUPAf4KeFZV/WAA8T4N+BDwVuD09hi7AG8CXl5VJ4x5/49baH9VfXsx/fcc5xXAwcCVwC2ruq8HDaj/TwL3BM4Abu7pf6CJvHaW/V/R/H5uU1XrL7K/oZ7fadXzWWYuVVVPGFkwc0iy30L7q+rwUcUyW5Kf0yS/M8fuqqp7jDikBSW5F7A/zXv7CuDjwNdqDD7QJzkY2I0mwXwC8BSaL0afMwZxQfOl1cOA49vtPwNOqaoXdBKYJEnSFFnyCeYZST4PHFxVZ7fbDwDe3PWH4mFIcjawa1X9KskOwLHAJ6vq/Ul+VFUP6TbC4UjyY+BewEXAr2n+mBxYQmectTMln0CTCNqjqjbrOKSJ1SZKXsltZ1d+YNAztJK8gGaG6AOBa4Dv0swQ/f4i+vy/wDtnzwRtk6qvr6qn9B/xrX2dSPOl1Zmz2h8EfLCqFkzgdt3/Go79map67oD6Wgk8oqquHUR/c/R/PrDTsJJOSd4EPBrYhObLipnfz8sX2e+JdHR+pUmSZD1gT+AjNF8ifRx4f5czrtvPlw8GflRVD06yNfCpqnpiVzH1SnIS8LSqurHd3hT4clU9ttvIJEmSJl/fM+Gm0H1mkssAVXVOkvt1GdAQrTdTFqOqLkyyG3Bskrsx9wyeafHkrgPoQjvD8M9oZjvtAnQ2U2zStcnlVwGv5razK9+VpKrqkwM83PuAnwH/AXyrqi4cQJ/3nKvMQFV9O8khA+gf4I9nJwfbY5zVJhvGvf+FDPKKlkuAGwbY32znAH8MLCrhu4BnATcBXwa+DXy/qn43gH67PL9TYRxLFMxIsgx4HavH1+kM6xntFxk7cNuyMp/vLKB5tHHuDzwV+BxwJPAY4Js0V6Z15bdVdUuSm5JsBlwFjNP6F1sDv+/Z/n3bJkmSpEUywbzKWUk+Bnyq3X4+cFaH8QzTlUl2nqmV2c5k3pOmpt/U1iiuqovmqnk6zZIcAzwc+ArNZeffrqpbFn6UFvDXwDNnJXu/meTZNOVHBpZgrqqtktwfeCzwz+2Caj+pqhcuotsbF9g3qBrdC/UziGMMu/+h6qkFegFwYpIvA7cmZgdYC3Qr4Lwkp8zqfyA1pKtqlzaB9GjgicAhSa6qqscssuuJPr9dm69EATAWCWaaROhnaMo2vRTYD7i604haSQ6jKY92Lj1la2jKCo2Ntgbz9cChNFeezPz//mGSR3cWWGNFks2Bj9LUZv8V0PdVN0NwBHBKki+028/AL90lSZIGwhIZrSQb0SSPZi6TOwn4yDTWqk2yLXBTVV0xx75HV9X3Oghr6IZd83QcJXky8N9VdfMa76w1SnJeVe20rvv6PNZM8u5xNKUytgJ+UFUL1jJdQ59X0STCV9sF7F1Vi57JleR6mvFzrmM8pqq2GPP+56tBH5r65XdZZP8HL7C7quqti+m/5zhzlpIYYA3pB9D8Xj6OZv2CS2hKZPzjIvu9niGe32k3ASUKTquqhyY5a+a9N8mpVfWwMYhtoGP4sCS5R1Vd0HUca9KWYNusqsZqskaSh9LM9gY4qap+1GU8kiRJ08IEc4+2lMD2VfWTrmMZtnYm77lVdd+uYxmVYdc8HUdJ/oimnMP2VXVgOwv2PlX1Xx2HNpFmkiPruq/PY51FM/PwuzR/BF86gD6HvtDWsBfJG0H/Cy2WRlU9fjH99xznz6vqs2tqW+QxtqZZ0AqahayuGmDf/0WTCP4ucGpV/WFA/Y5kkcVpleSUqnp4O8v18TRXLZw/Lu/1SX5QVY9M8lXgA8D/AsdW1T07Do0khwLvrqrzuo5lLj1XP8xpgFc/9C3JM4FvVtUN7fbmwG5V9cUu4+o115VsVXVxdxFJkiRNhyVRJmBtJHk68C5gQ+DuSXYG3jqoy4nHTVXdnOQnSbZfQh+sh13zdBx9nOYy1Ue125cBnwVMMPfnfm3id7YA9xjkgXpm9/1RVf1mQH3emkBOsknb9qtB9N1zjHkTgEk+Q1OvdzG2AE4eZLK016ASyGvhDTT/F9fU1pcke9O8p51I8/v5wSR/V1XHDqL/qtpzjmMOYhHEoZ7fJWDcSxT8U5I7Aq8BPghsBvxNtyHd6gjg+0muoCkrM24LAW/adQBr4eCqmik/QVVd31618cXuQlpl1pVsN9OeY5rSKJIkSVoEZzC32tk+TwBOrKqHtG1nV9XU1iRuV9N+CHAKPbUtpy2p3jPr5/7AfWgWpRpGzdOxk2RFVS1P8qOe3+szq+rBXcc2idqFMOdVVRcN8Fi70tTY3KSqtk/yYOAlVfV/FtnvX9MkMjdum34FvLOq/n1RAa/dsS+uqu0X2cexNIvt/QY4GfgeTULynAGEOPtYj2L1Bb8WVcs2yVNoFubam6YW7YzNgJ2q6uGL6b/nOGcCT5xJ1LaLq/33MP/vT9r5nXbjWqJgXLVXOb0aOJtVZbQGOq5Pu97SJz1tY/NZeileySZJkjQqzmBe5Q9VdUOS3rZpz77/Q9cBjMjMrJ+L258N2x+Y/nP8+7b0SwEkuSc9yXWts2fSJL1Or6qbhnys9wFPBo4HqKozkzx2wUesQZI30cxm322mhmeSewDvT7JlVf3T4kIevqp6DtyaPHtU+/OSJNvTlGp46iCOk+STwD2BM2hmukHz/2ixi6X9L7AC+HPgf9q2m2hm1A1yJud6s2YBXwusN8D+h2JU53eaJXkQPV+MJLlXVXW6UF2S11bVvyb5IHO871bVQR2ENdvVVXV810HMZ0JewxVJ3gN8uN1+Gc1M+nGxFK9kkyRJGgkTzKucm+R5wPptndqDaBJJU2up1LKsqrfA/DVPu4lqZA4GvgJsl+RImkXjXtxpRJNtW5rE733bxbS+RzNOnFxV1w36YFV1yawvvRa7WOMLgQf3Ll5aVRe05RTOBBadYF7DInm3W2z/M6rqwnZx1ju0PzO3B2U5zYziQX8JdR7wfJovuf6ibdueppzNIEvXfKWtc3tUu/1c4ITFdjpF53cqJTmM5nL/c+lZzBboNMEMnN/+u6LTKBb2oySfBr7Eba9y6vq1mzEJr+EraCYvzFyd8XWaJPO4uAA4McmSuZJNkiRpVCyR0WoXQ/t74Ek0fyh/FXhbbyJm2iR5JE0NxPvRJDvWB35dVZt1GtiQJDm9qnZZU9u0SXIn4JE0v9c/qKprOg5p4iXZkCYB+Siay/l3Ba6vqp0GeIxjgfcAHwIeAbwSWF5V+yyizx/Pt9jXQvvW8RhDXSQvyRtpXu9lwE+AH7Q/Z1XVYhPwvcf5LHBQVV0+qD7bft8LbAK8uqpubNs2A/4N+G1VvXKR/d8L2LqqvpfkWcBj2l3XA0dW1c8W2f9UnN9pleS8QY5DgzaKxS37leTjczRXVf3FHO1aQJJNaV67gdb4X6y2HvRqZiYiSJIkqX8mmJewJCuAfWgWlVoOvAi4d1W9odPABmxUNU/HyQKzDAGoqtNHFcs0ahep2pVmRviuwObA2VW1/wCPsRXwfuBPab4c+BrwysXUjkzyDeDtVfWNWe27A28a4QJ3fUvyY5qa8V+imT3+w6oa+CXPbSJ1Z5oa9b0z3RZVoz7JT2nG2ZrVvj7w46racZH9/xfwhqo6e1b7A2nO/Z8tpv9hG9X5nVZJDgXeXVXndR3LXMb1i972/987q+pvu4xjbSRZTjMh4m7ctj585wvVtePMEcCWbdM1wH7WUJckSZp+JphbSe4N/C2rL+j0hK5iGraeBeBuXZSldzG4adEujrYz8E5WlQCYqXl6YlX9oqPQhmYNswxrmn+vhynJITSLRd4I/JB2duWk/A4luT9wHPBdVtXFXE6TKN+rqs4d8PEGvkhe2++WrKrP+0iaGcFn0pQqmWsWYj/HeNxc7YstLZTkf6rq3uu6bx36P7WqHjbPvoEutjXJ53datb+3xwNX0HwxEpoxv9Pk4yR80Zvk+1W1a9dxrEmSnwB/xxguRpjkZODvq+pb7fZuNF9sParLuGa0i52+luZ9fKOZdj8TSZIkLZ41mFf5LPAfwMdYfJ3TSfGb9lL/M5P8K3A5E7AIVB9GVfN0bEzCTNQJtT1we+CnwGXApTSlBwYmyT8usLuq6m2L6P53NDW4703zBzbAScBHgYGWAxriInm09a7/K8lXgIcCjwVeQvP/eyAJyKr6dpKtgZlk7SmzFs3r13lJXjQ7EZvkBcCPB9D/5gvsG1gN40k/v1PsUJpa67dJPo6BmcUtn85tF327kcEubrkYZyQ5nubz4K9nGseoBvOMcV6McOOZ5DJAVZ2YZOMuA5rlSJovOPYEXgrsB1zdaUSSJElTwhnMrSSnVdVDu45jlJLcjWYW74Y0f+BtBnykqlZ2GtiADbvm6TiaWW2+vX2b+pZJ3l5Vb+wuusmWZtW9+7NqhuUDgOuA71fVnPUd17H/18zRvDFwAHCnqtpkEX2PrHxCkvMZwiJ5SZ5O87o/muY8nEuz2OL3aWa4DiRZ0C58+C7gRJpZoH8C/F1VHbvIfrehWXDtt9x2FvkdgGdW1WWL7P8o4JtV9dFZ7X8JPLGqnruY/nv6m+jzO63GeRZuW4bik1X1vK5jmcuk1GBuSxrtC3yDMVuMMMkXgNOBT7ZNLwAeWlXP7C6qVWY+68+6cm/eqz4kSZK09pZ8grm9FBfgIOAq4Avc9gP7dV3ENUxJ9gK2raoPt9s/BO5MM/vstYtNoIybYdc8HUe9NS1n17cch3qX0yDJtjRJsEfRzIa6U1VtPuBjbEqzuN8BwDE0tVX7nkU74vIJw1ok7/M0idlvAqdV1e/b9scAly92Ebue45xJk5C9qt1eBvx3VT14QP0/gVWzyM+bXRd7Ef1uTfM+9ntum8DekCaBfcWAjjOs8/tNmnP7DXrOr9ZOkn+nmcX+JcYs+QiQ5DvA7p7X/iX5FHBfmi9fZmapj0UiPMkWwFtYtbjod4A3j0sZqSQ/qKpHJvkq8AGamfXHVtU9Ow5NkiRp4lkio/kDvGhmqEFTh7nXPUYbzki8lmZxvxm3p7kMeROay4+nKsFM84fXat+kVNXNSab1G5bMc3uuba2lJAexaubyH2gWITsZOIzmkvRBHWdL4NU0pV0OB3YZ0B/omy+wb2DlE1pb0ZSDGOgieTTj1fGzZ2EDNwDvAwY1C3u9Wcn8axlgCaGqmkmkDlRVXQk8KsnjaWbXA3y5Pd4gDev8Hkfz/vSXwDFJPl1VZyyyz6XkDjTn40k9bUUza34c/Bz4XluKorcMxXu6C6nRfmn4QZovDqFJjr6yqi7tLqo5Payq7tN1EHNp36cO6jqOBfxTu0jva2jO9WbAqzqNSJIkaUqYYIbnApfMzMJKsh/wbOBC4M3dhTVUG1bVJT3b321nal83ZrXyBmXYNU/HUc1ze65trb0daOpz/s2gZ27OSPIu4FnAIcADq+pXA+x+RZK/mqd8wmnzPKZfbx5wfzPuPEdymao6O8kOAzzOV9pZbke1288FThhg/0PV1kFdaLHPxXrzMDqtqvcD729LOO0DfDzJHWjOw1FV9T/DOO40aK/KubaqZn9RPk5+1v6sB2zacSyzfRz4NPDn7fYL2rYndhbR3E5OslNVndd1IDOSfIkFPlsM4IungaiqmXU3bgAeD5DkVZ0FJEmSNEUskZGcDvxpVV2X5LHA0cArgJ2B+1XVc7qMbxiSrKyqe82z72fTdqngsGuejqMkN9PMDgvN8/zNzC5go6q6XVexaWFJbqGZgXgTt/2DPTSz8TdbRN8jKZ8w63gDXSRvDePXvPvWof97AVtX1feSPItVl3pfDxw5qBIc02BIiyDOdZyH0Fwl8KCqWn8Yx5gW41yDedwlOaOqdl5TW9fa+uf3pJkN/jtWvTc8qMOYHrfQ/qr69qhiWVdJLq6q7buOQ5IkadI5gxnW76mz/FzgkKr6HPC5JGd0F9ZQ/XCeWYwvAU7pKKahaRPIj5hV8/SEQdU8HUcmYSZXVQ2sDMMcfY+qfMJci+R9MMmiF8kDTh3yLOz3AW+AW+vWfr7t/4EMtgTHRBvi+Z3pfwPgKTSzmHdvj/PmQfQ95c5oy098ltuWoBiLEhltLfPX0rwXbzTTXlVP6CyoVa5tr2yauWphX5rSOONmj64DmG2cE8hrwbJhkiRJA+AM5uQcYOequinJj4EDq+qkmX1V9YCFe5g8Se4MfJFm5svpbfNDaWqbPqNNQklS34a1SN6wZ2GPciHESTbE8/tEmsTeU2m+8DwaOK6qfr3gAwVAko/P0TwWC8ABJPka8Bma9S5eCuwHXF1Vr+s0MKAty/JBYFeaq0dOplnI8uJOA5tH+1muN0nfWZxJzmbuEhkBbhnU4qjD4AxmSZKkwXAGczNT5dtJrqEpofAduPUy6Ru6DGxY2oTAo2bN6B3KLEZJS9ZQFskbwSzszRfYN+iFECfZsBZBfANNHdzXDGhhyyWlqvbvOoY1uFNVHZrkle2s128nObXroACq6iJgLGoFLyTJ04F3A3cFrgLuBpzPqs9zXdhzjrYA29FeEdKlJDcyfwLccV2SJGkAlnyCuar+Ock3gLsAX6tVU7rXo6nFPLXahIxJZUnDMNRF8oa4iN0oF0KcZEM5v2NSKmFiJdmWZhbuo9um7wCvrKpLu4vqNv7Q/nt5kqcB/wts2WE8t2pn4f8VzWKut34+HpfZ3z3eBjyS5oqBh7Rftr2gy4Da5Dxwa83059Eslvhz4HNdxTWjqsZtQUlJkqSps+RLZEiSBmfSF8kb9UKIk2bSz++0S/J1mhngn2ybXgA8v6qe2F1UqyTZkybpvR1NInwz4C1VdXyngQFJTqaJ7TTg5pn2dl2OsZFkRVUtb8vUPKSqbklyZpdlKJLcm6a0zb7ANbRlUKrqbl3F1CvJZlX1yyRzfZlRwC+r6uY59kmSJGktmWCWJA1Mkv8C3lBVZ89qfyDw9qqaiEXyZpXgONcSQo1pOb/TKskZVbXzmtpGLclGNDWX7wWcDRxaVTd1GdNs4/A6rY0k/w08A/gXYCuaMhkPq6pHdRjTLTTJ+QOqamXbdkFV3aOrmHol+a+q2jPJz2kSyrMX9tsE+GhVvXH00UmSJE0HE8ySpIFxkbzp5vkdb23Jr4+zqnTJvsD+VbV7d1FBks/QlMf4DvAU4KKqemWXMc2W5J+Ak6tqYKV8BinJ9lV1cZKNadYMWQ94PnBHmqsHru0wtmcA+9CUZvkKzeKcH6uqu3cV07pIsj5wTlXdr+tYJEmSJpUJZknSwCT5aVXtOM++lVV1r1HHpMHx/I63JHejKT2xK81MzZOBg6rq4o7juvXLhyQbAKdU1S5dxjRbuxDcxjTlcWZqRVdVbdZdVKskOX3mNUvyuap6dtcxzdYmv/ei+WLjCcARwBeq6msdx7Xg71pVnT6qWCRJkqbVkl/kT5I0UC6SN908v2OsXWzt6V3HMYeZhC1VdVMyu0JB9yZgIbjeF20sSk/MVlW/pqkB/ukkW9As9Pc6oNMEM/Du9t+NaGrqn0nzej4IWEHzhYwkSZIWwRnMkqSBcZG86eb5HU9J/nGB3VVVbxtZMHNIcjPw65lN4A7Ab9rb4zRLeGbhygK+U1Vf7DaiVWbNYD593GaAT4IknwcOnqkhn+QBwJur6jndRiZJkjT5TDBLkgbORfKmm+d3vCR5zRzNGwMHAHeqqk1GHNLESfLvNIsQztSvfi7ws6p6WXdRrdKTpO9N0MOYJenHWZJzq+r+a2qTJEnSujPBLEmSNCWSbAq8kia5fAzw7qq6qtuoxl+SHwP3q/aDcZL1aL48ceG3KZHkKJok/afapucDG1fV87qLSpIkaTqs13UAkiRJWpwkWyb5J+AsmjU2dqmq15lcXmsrge17trdr2zQ99gfOBQ6i+RLmIuC3nUYkSZI0JVzkT5IkaYIleRfwLOAQ4IFV9auOQ5oYSb5EU3N5U+D8JKe0ux4GnNpZYBq4qvp/SU4E7grsDWwOfK7LmCRJkqaFJTIkSZImWJJbgN8BN9EkS2/dhfV5F5TkcXM1A38C7GN93smX5N7Avu3PNcBngL+tqrt1GpgkSdIUMcEsSZKkJS/JQ4DnAX8O/Bz4fFV9sNuotFjtFzDfAQ6oqpVt2wVVdY9uI5MkSZoelsiQJEnSkjTP7NZU1eM7DUyD9CxgH+BbSb4CHE0zS12SJEkD4gxmSZIkLUnObl06kmwM7EXzZcITgCOAL1TV1zoNTJIkaQqs13UAkiRJUkeeBVxOM7v1o0l2x9mtU6mqfl1Vn66qPwO2BX4EvK7jsCRJkqaCM5glSZK0pDm7VZIkSeqfCWZJkiSplWQLmoX+nltVu3cdjyRJkjTuTDBLkiRJkiRJkvpiDWZJkiRJkiRJUl9MMEuSJEmSJEmS+mKCWZIkSZIkSZLUFxPMkiRJkiRJkqS+/H9w53HZ5/rVzgAAAABJRU5ErkJggg==\n",
+      "text/plain": [
+       "<Figure size 1440x2160 with 43 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "## visualizing categorical data\n",
+    "categorical_columns = X_train.select_dtypes('object').columns\n",
+    "\n",
+    "n_columns = 5\n",
+    "n_rows = len(categorical_columns) // n_columns + 1\n",
+    "\n",
+    "fig = plt.figure(figsize =(20,30))\n",
+    "\n",
+    "for idx, column in enumerate(categorical_columns):\n",
+    "    \n",
+    "    ax = plt.subplot(n_rows, n_columns, idx + 1)\n",
+    "    X_train[column].value_counts().plot(kind='bar')\n",
+    "    ax.set_title(f'Distribution of {column}')\n",
+    "\n",
+    "plt.tight_layout()\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 13,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAFfCAYAAABQjYuMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABT2ElEQVR4nO2dd7jlVNWH39/MiEPvTdoAon6INAFRkCIWmiJItYGggAKCqBQbiB0UEFCUOqAICiigIIpDExRkhl6lSpGmCIwgfX1/rH1mcs9NcpKcc+493Fnv8+S5yc7eyUpuTlb22mutLTMjCIIgCIoYN9oCBEEQBINNKIogCIKglFAUQRAEQSmhKIIgCIJSQlEEQRAEpYSiCIIgCEoJRTFgSDpYkmWWf0o6W9Lyoy1bXSTtJ2mDPp9jsqSpg3q8LuT4l6SDa7Z5r6R9eihDX++FpC0k3SbpBUn39fjYPb0XszqhKAaTp4C3p+ULwKrAFElzjqZQDdgP2KDP5/gGsNMAH28keS+wz2gLUQVJ44FTgRuAdwFb9vgUr5p78WpgwmgLEOTykpldldavknQ/8GdgU+DMJgeUNLuZ/a9XAg4KZnb3IB8vKGRxYB7gF2Z2xWgL04mx+vupSvQoXh1MS38nAUiaKOlQSQ9Iel7SDZI2zTaQdJ+kH0j6qqQHgadT+XhJB0r6e2r7oKTJbW23kDRV0nOSHknnek1m/8HJNLKapKskPSvpOknvzJ4fWBA4KGNG2yDv4iRtkPZvJOlcSc9IujOZD8ZLOiyd7yFJ+7a1HWIekTSfpBOSye45SfdLOj6zf0lJv5L0mKT/Sbpb0jdKjrdTku0tki5Kst0uaas2OSTpG+m4T0s6SdL2qe2kvOvOtF0v/Q+fkzRN0jty6myWzt86/lWS3pv9nwCfB5bJ3O/Jad/bJZ0n6eEk//WSPlImU9u5P5iu+TlJV0haMbPvV5IuzWlzsKRHs89NZt9OwANp89wk68Fp3zhJB0i6Kz2ff5e0Yw/vxaWSzmo7Xuv5WyltT0rbH5F0qqQngd+mfQtIOi5d23OS/iLpbVXv5auV6FG8OpiU/j6S/p4FrAUcBNwNbAucJ2kNM7s+0+7DwC3AZ5j5v/4p8HHgUOAyYAHgQ60GkrYFTk/1vgQsD3wH/6j4QubYcwCnAEckuQ4Cfi1pGTN7FjclXJJkPSG1ubXDdf40LT/CzVZnAacBSteyGfADSVea2dUFxzgceAfwuSTXUsB6mf2nArMDuwJPAssBb+ogF8AvgOOAw4C9gDMkLWdmD6b9++D361vAFcAW+D0uRdLrgN8DfwO2Bl6XrnmOtqrL4i+r7wOvAJsAv5e0npldid/jFRhqxnk8/V0GuBL4CfAcsA5wsqRXzOz0DiIug9/TrwL/A74O/EHSCmb2HHBikmNZM7s3XZOAHYGfm9mLOcc8H9gK+DX+TF0JtO7j0antIcC1wHuAkyT928x+14N7UYfvJxm3AV6W9FrgT8B8wBeBx4BPA39K9+ORogO96jGzWAZoAQ4G/oW/2CcAb8BfuE/j3fWNAAPWb2t3OXBmZvs+4GFgYqbsTantZwvOLeAfwMlt5TvjL4kFMzIa8K5MnVVT2caZsn8BB1e45g1S24MyZSumsoszZePwl//3MmWTgamZ7ZuBvUrO9V/g/SX724+3U5Jj50zZgsBLwO5pe3y61z9qO9YFqe2kkvMdCvwbmCNT9pHULvfepfswAfgDcFKm/PvAfR3utVLbn2bvbcm9MOAdmbJl2q59HHA/8PVMnXeldiuVHHtSqrN5puz1+It/x7a6pwLX9OJeAJcCZxU8fyu1yfabtnq7AC8AK2TKJuAfa4d1es5fzUuYngaTBYEX03IH/tW7nZk9DLwbf1leKWlCawGmAGu0HWeK+Vdfiw3T38kF530DsDTwq7ZjXwxMBFbK1H0B/9G1aPUWlqx8lcOZklm/K/29uFVgZq8A9wBLlBzjeuCLkj4j6Q0F+7+TTEpL15Dtjxk5/o1/TbaudSlgMeC8tjbt23msBVxk3gtr8Zv2Sslkdoqkh/AX9Yv4gG3eNba3nV/SUZL+wcznatcqbYHHzOwvrQ0z+wduCl0rbb8CnAx8PPUkwJXrVDO7ucLxs2yEK4rf5Dzbq8oHwLu6FzU5v2373fi135uRDbxn3v7bG1OE6WkweQp/KA1XCv+09PkCLIS/lPK69C+3bT/atr0g8IyZPV1w3oXS3wsK9i+VWZ+eXhIAmNkL6T0xsaBtFZ7MOd6TbXVe6HCOPXGzxdeAH0m6C/iqmZ2R9m+Hm4eOAOaTdAPweTObknu0HNly5Fgs/W03b1QxdywG3JgtMLNnJf23tS1pHK505sav6y7gGfw6F6lwjsnA2rhH16147/TTuHmsE48VlC2e2T4ZN01tKOka3JT5hZx2nVgI7509VbB/cUn/pLt7UYf2389C+H3M++2NaSeIUBSDyUtmVuS//gTwEPDBCsdpzyH/b2BOSfMUKIsn0t9dgety9t9b4Zyjipk9CXwW+KyklfGxjtMk3Whmt5rZQ8BO6eW7Fm5GO0/S0qmn0ISWbXrhtvL27aK2Q15wkuYA5soUvR5YDdjEzC7M1Ju908ElTQQ2B/Yws59kyqtaE/JevovgY18AmNl9kv6E9ySWxc1BncY+8ngC7yGsg/cs2nmMLu5F4jlgtray+Qvqtv9+ngCm4kq2necrnv9VSSiKVx9TcI+O/5rZ7TXbtsw4HweOydl/B66EJpnZ8Tn769Lp67+vmNmNkr6I2/zfRGYwPfWGrpL0deAvuO29qaJ4AH/hb4Hbylt8oELba4CdJc2RMT+1xxS0XoIzXkaSlsFfqNneSN79fi3+4s62nTvJVmUymkUkvaNlfkrmutXxXkSWE4GTgDcD5ySFXZeL8R7FvGZ2UV6FjEJoci/AB83Xayt7b069PKakuvebWV5Pa8wSiuLVx0X4y+giSd/Dv+zmwQeTJ5rZgUUNzewOScfhnkOL4APg8wFbm9n2ZvaKpM8DP5M0D+6N8wI+RvLBVO/Z/KPncjuwmaQL8UHkO8xseq2rrYmkK3Ab/834i/BTuGnib5Lmxe/dqcDf8Zfo5/GX/G1Nz2lmL0s6DDhM0uO4F88HgLekKnlfxy2OBPYAfifpcNzr6UDceaDF7fgL7geSvoqbXb6OK3Xa6i2a3E9vBv6VvvavAb4m6ekkywG4eWeeCpf3L+Dnkr7CTK+nxxg+znUO8GNciRQ+g2Wk5/MnuEfZofjX+0Rc+bzBzD5Jl/cCfzZ2kXQEPgaxIbBxRRFPBXYHLpX0fXy8bEG8Z/qImR3R5LpfFYz2aHosQxeS11OHOq/Ffxx34S/yR4ALgc0yde4Dvp/TdjzuxnlPavsgGW+RVGcTPMDvGdyefT3wTWBCmYz4i3nPzPZbgavScQzYoOB6NiDHS6b9eKnsUjJeKwz3UjoMuAmYjo8rXAK8M3Pfjsd7Ts/iL8HfAW8pOd5OSY652uQYcn9xb6Jv4uMS03EX10+ntvN1+H9ugH8NP5/u9Tq0eYwBa+IutP8D7kxytcs6Ef/Sfyydd3Iqfz3+NfwM7qG0X9H/sE2uyfjLeitcsT6PK8Fcbybg5+n44yo855No83rK3Md98A+g59P9vAz4eC/uRdp3IN4LnJ5kbvWu2r2eNs+Re17gh6l96/fza2Cd0X539HNRuvggCHqMpBOA95jZMqMtS79JHkD/wD86vjra8gS9JUxPQdADUlTvdvh4RysI7BPA/qMpV7+RNBuwCh4QuSAenxGMMUJRBEFveAZYF3fPnRP/ut4f+MFoCjUCvA43Az0G7GYzI9WDMUSYnoIgCIJSIjI7CIIgKCUURRAEQVDKmBujWGihhWzSpEmjLUYQBMGrimnTpv3LzHKzCYw5RTFp0iSmTh31mSyDIAheVaSkkbmE6SkIgiAoJRRFEARBUEooiiAIgqCUUBRBEARBKSOqKOQTzj8m6eZM2QLyidLvTH/nT+VKs3LdJelGSauPpKxBEASBM9I9iskMT+l7AD5l5wp4hssDUvkm+ATpK+AT6Rw7QjIGQRAEGUZUUZjZ5cycRa3FFsApaf0UZs7ctgVwqjlX4dNWLk4QBEEwogzCGMWiZvZwWn8EWDStL4HnfG/xYCoLgiAIRpCBCrgzM5NUO0uhpF1x8xRLL700jx/788ptF/70R+ueLgiCYJZiEHoUj7ZMSulvay7ah4ClMvWWZPh0hwCY2XFmtoaZrbHwwlXmsw+CIAiqMgiK4jxgx7S+I3BupvzjyftpbeCpjIkqCIIgGCFG1PQk6XR8fuCFJD0IHAR8F/iVpF3wyV62TdUvADbF54V+Fp8tLAiCIBhhKikKSe8EFjCzc9P2QsBRwIokl1Yze7HTccxsh4JdG+XUNWCPKvIFQRAE/aOq6elQYKXM9g/xl/tVwE7A13srVhAEQTAoVFUUbwSmAUiaA9gS2NvMdgf2wyeVD4IgCMYgVRXFbMBzaX0d3GR1ftr+OxCBcEEQBGOUqoPZt+OpNy4FPgL81cymp32vY3i09auOx35yeOW6i+y+bx8lCYIgGCyqKopDgDOTZ9K8eHqNFhsD1/VasCAIgmAwqKQozOw8Sf8HrAbcZGZ/z+z+K3BjP4QLgiAIRp/KcRRmdg9wT075cT2VKAiCIBgoKkdmS1pZ0i8l3S3p+db8EJK+JWmT/okYBEEQjCaVFEVSBNOAxYBTgddkdj8P7NV70YIgCIJBoKrp6TvAZDP7lKQJeOqNFtcDu/dasFcDDx6zc6V6S+55Up8lCYIg6B9VTU9vAn6Z1tvTgD8NLNAziYIgCIKBoqqieAxYrmDfm4H7eyNOEARBMGhUVRRnAIdIWjdTZpLeAOwPnNZzyYIgCIKBoOoYxVfxTLGX4dOVgs8bsRjwR+DbvRctCIIgGASqBtw9D2wuaSM8a+xCeNqOKWZ2UR/lC4IgCEaZWhMXmdkUfP6JIAiCYBah6sRFK3aqY2a3di9OEARBMGhU7VHczHC32HbGdylLEARBMIBUVRQb5pTND7wvLZ/tmURBEATBQFF1MPuygl3nSPomsC3wu55JFQRBEAwMlZMClnAJQ+enCIIgCMYQvVAUmwFP9uA4QRAEwQBS1evpVznFs+E5oFYAvtRLoYIgCILBoepg9sI5Zc8Bfwb2NbMLeidSEARBMEhUHczO83oKgiAIZgF6MUYRBEEQjGEKexSSDq1xHDOz/XsgTxAEQTBglJmetqlxHMPTjQdBEARjjEJFYWbLjqQgQRAEwWASYxRBEARBKbXSjKcZ7t4ATGzfZ2Y/7pVQQRAEweBQNeBuUXweihXx8QilXdmMsqEogiAIxiBVTU8/AJ4ClsKVxNuASfgUqXfivYyukPQ5SbdIulnS6ZImSlpW0tWS7pL0S0mzdXueIAiCoB5VFcX6uLJ4OG3LzO43s28DP6fL3oSkJfBU5WuY2Ur43BbbA98DjjCz1wP/AXbp5jxBEARBfaoqivmAx83sFeBpYJHMvr8A7+iBLBOA2SVNAObAldK7gLPS/lOAD/bgPEEQBEENqiqKe4HF0/otwEcy+94PPNGNEGb2EPB94H5cQTwFTAOeNLOXUrUHgSW6OU8QBEFQn6peT+cD7wV+BXwTOFfSg8CLwNJ0GWwnaX58Totl8ZTlZwIb12i/K7ArwNJLL92NKH3n+mPfX6neqp/+bZ8lCYIgqEbVpIAHZtZ/L+kdwJbA7MBFZvb7LuV4N3CvmT0OIOnXwDrAfJImpF7FksBDBfIdBxwHsMYaa3Sa2zsIgiCoQa04ihZmNhWY2kM57gfWljQH8D9go3T8S4CtgTOAHYFze3jOIAiCoAKVxigk3Sfpe5JW64cQZnY1Pmh9LXBTkus43KS1r6S7gAWBE/tx/iAIgqCYqj2KM4HtgC9Iuhv/wv+Vmd3cK0HM7CDgoLbie4C1enWOIAiCoD6VehRm9kUzmwSsC1wA7AzckILjvipphT7KGARBEIwitZICmtlfzWwfPEJ7A+BSYC/gtl4LFgRBEAwGTbPHzom7xS4DzAs83zOJgiAIgoGisqKQNLukbSWdDTyGDywbboZatE/yBUEQBKNM1eyxvwI2wdOLXwzsAfzGzJ7sn2hBEATBIFDV62lh4IvAWWb2rz7KEwRBEAwYVSOzN+y3IEEQBMFgElOhBkEQBKWEogiCIAhKCUURBEEQlBKKIgiCICglFEUQBEFQStU4iq+V7G5Nj3qDmV3WE6mCIAiCgaFqHMVeeLDdnGn7v8Bcaf2ZdJzXSroe2MTMHu2lkEEQBMHoUdX0tCk+l/V2wOxmNg8+u932qfzdwHp4YN4P+iBnEARBMEpU7VEcA3zXzM5sFZjZ88CvJM0NHG1mq0v6Jj6ndhAEQTBGqNqjWBl4pGDfw8D/pfXbgbm7FSoIgiAYHKoqir8De0uaLVso6bXA54A7UtFiQIxPBEEQjCGqmp72Bs4HHpR0EfA4Ph7xHnyAe9NUbzXg170WMgiCIBg9qiYFvDRNd/o5YA1gddwUNRk40sz+meod0Cc5gyAIglGiao+CpAy+2EdZgiAIggEkIrODIAiCUqpGZr8GH6fYClgSD74bgpkt0lvRgiAIgkGgqunpCGA34HfAJcALfZMoCIIgGCiqKoptgAPMLKKugyAIZjGqjlEIuLGfggRBEASDSVVFcTywQz8FCYIgCAaTqqanR4GPSLoEuAh4sm2/mdmxvRQsCIIgGAyqKooj09+lgfVz9hsQiiIIgmAMUjUyO+ItgiAIZlFCAQRBEASlFPYoJK0I3G1mz6f1Uszs1p5KFgRBEAwEZaanm4G1gb+ldSuop7RvfG9FC4IgCAaBMkWxIXBrZr2vSJoPOAFYCVc8O+PzXPwSmATcB2xrZv/ptyxBEATBTAoVhZldlrfeR34IXGhmW6cJkuYAvgRMMbPvSjoAOADYfwRkCYIgCBKVBrMlLSJp2cy2JO0q6UhJ7+9WCEnzAusBJwKY2Qtm9iSwBXBKqnYK8MFuzxUEQRDUo6rX02R80qIWhwA/BjYGfiNppy7lWBafNe9kSddJOkHSnMCiZvZwqvMIsGiX5wmCIAhqUlVRrA5cDCBpHLA78CUzexPwLWCfLuWYkM5xrJmtBjyDm5lmYGZGwYB66t1MlTT18ccf71KUIAiCIEtVRTEv8O+0/lZgAeC0tH0x8Pou5XgQeNDMrk7bZ+GK41FJiwOkv4/lNTaz48xsDTNbY+GFF+5SlCAIgiBLVUXxINCKpdgMuN3MHkrb8wLPdSOEmT0CPCDpjaloI9zj6jxgx1S2I3BuN+cJgiAI6lM119NJwKGS3o0rigMz+9YGbuuBLHsBpyWPp3uAT+CK7FeSdgH+AWzbg/MEQRAENaia6+k7kh4C1sRf6Cdldi+Axz90hZldD6yRs2ujbo8dBEEQNKdqjwIzOxU4Nad8955KFARBEAwUVeMo/k/S2pntOSR9W9I5kvbqn3hBEATBaFN1MPvHQDaw7lBgb2Ai8D1JX+y1YEEQBMFgUFVRrAT8FUDSa4CPAfuY2cZ4mo2d+yNeEARBMNpUVRRzAk+n9bXT9q/T9rXAMj2WKwiCIBgQqiqKe3EFAbAlcJ2ZtQLwFgKm91qwIAiCYDCo6vV0OHCspG2A1fAYhxYbADf2WK4gCIJgQKgaR3GipDvxOIoDzGxKZvcTwJF9kC0IgiAYAOrEUVwOXJ5TfnAvBQqCIAgGi5gzOwiCICgl5swOgiAIShmYObODIAiCwWSQ5swOgiAIBpDKg9ktJE0AZmsvN7NneyJREARBMFBUTQo4r6QfS3oYn6Roes4SBEEQjEGq9igmA+sDxwN3AS/0S6AgCIJgsKiqKDYCdjOz0/spTBAEQTB4VFUU9wMxBjFKXHLCZpXqbfjJ8/ssSRAEsyJVkwLuB3xF0tL9FCYIgiAYPKrmerpA0ruBuyTdBzyZU2et3ooWBEEQDAKVFIWk7wP7ANcQg9lBEASzFFXHKD4JfNnMvtNPYYIgCILBo+oYxbPAtH4KEgRBEAwmVRXFD4FdJamfwgRBEASDR1XT00LA24A7JF3K8MFsM7P9eyhXEARBMCBUVRRbAy8BrwHek7PfgFAUQRAEY5Cq7rHL9luQIAiCYDCpOkYRBEEQzKKEogiCIAhKCUURBEEQlBKKIgiCICilUFFIWk/SXCMpTBAEQTB4lPUoLgFWBJB0j6RV+i2MpPGSrpP0u7S9rKSrJd0l6ZeShk3BGgRBEPSXMkUxHZg/rU8iZ57sPrA3cFtm+3vAEWb2euA/wC4jIEMQBEGQoSyO4i/ACZKuTtvfkfREQV0zs+26EUTSksBmwLeAfVO6kHcBH05VTgEOBo7t5jxBEARBPcoUxc7Al4E34ZHX8wPj+yjLkfgESXOn7QWBJ83spbT9ILBEH88fBEEQ5FCoKMzsEWAvAEmvAJ82s7/1QwhJmwOPmdk0SRs0aL8rsCvA0kvHJHxBEAS9pGoKj3670a4DfEDSpsBEYB48Y+18kiakXsWSwEMF8h0HHAewxhprWJ9lDYIgmKWorAAkzSdpf0m/lXRl+rufpPm6FcLMDjSzJc1sErA9cLGZfQT3vNo6VdsROLfbcwVBEAT1qKQoJC0P3AQcAswJ3J/+HgLcmPb3g/3xge278DGLE/t0niAIgqCAqmnGj8DnoFjbzGaYfyQtAVwAHA5s0QuBzOxS4NK0fg+wVi+OGwRBEDSjqulpA+BrWSUBkLYPATbssVxBEATBgFBVURjFrrHj0v4gCIJgDFJVUVwCfEPSMtnCtH0IMKXXggVBEASDQdUxin2Ai4E7JV0LPAosArwVeADYty/SBUEQBKNOpR6Fmd2HR2h/FrgFnzv7VmBP4P/S/iAIgmAMUrVHgZm9APwkLUEQBMEsQkxcFARBEJQSiiIIgiAoJRRFEARBUEooiiAIgqCUqrmeCufPljSXpPV6K1YQBEEwKNQJuFuxYN8b0/4gCIJgDFJVUahk31zAsz2QJQiCIBhACuMokjlpg0zRJyVt3FZtIj7P9U29Fy0IgiAYBMoC7t5GmgoVT/q3DfBSW50XgNuBL/ZetCAIgmAQKJsz+zDgMABJ9wIfNLMbRkqwIAiCYDCoOmf2sv0WJAiCIBhMKud6kjQRWA9YEh+byGJmdmwvBQuCIAgGg0qKQtK6wNnAwgVVDAhFEQRBMAap6h57FHAPsBrwWjMb17YUzX4XBEEQvMqpanp6I7BVDGYHQRDMelTtUdwILNZPQYIgCILBpKqi+DTwOUnr91OYIAiCYPCoanq6CJgDuFjSC8D09gpmtkgvBQuCIAgGg6qK4ke4Z1MQBEEwi1E14O7gPssRBEEQDCiVA+4AJM0PrAQsBfzezP6TAvFeMLNX+iFgEARBMLpUnbhogqRDgQeBy4CfAa20HmcDB/VHvCAIgmC0qer19C3gU8CewHIMnZ/iXOD9PZYrCIIgGBCqmp4+DhxgZidLao/CvhtXHkEQBMEYpGqPYj5cIeQxGxApPIIgCMYoVRXFzcAWBfs2Aa7tjThBEATBoFHV9PRN4GxJswNn4jEVq0raEtgN+ECf5AuCIAhGmUo9CjM7F/gw8G7g9/hg9gnATsDHzOwP3QghaSlJl0i6VdItkvZO5QtIukjSnenv/N2cJwiCIKhPVdMTZvYrM5sEvAlYF1gRWNrMftUDOV4CPm9mKwJrA3tIWhE4AJhiZisAU9J2EARBMILUCrgDMLO/A3/vpRBm9jDwcFqfLuk2YAl8XGSDVO0U4FJg/16eOwiCICinasDdSZLOKNh3uqTjeyWQpEn4BElXA4smJQLwCLBor84TBEEQVKOq6ek9eAR2HmcD7+uFMJLmSsfbx8yezu4zM6MgMaGkXSVNlTT18ccf74UoQRAEQaKqolgYeKJg33+ArlOMS3oNriROM7Nfp+JHJS2e9i8OPJbX1syOM7M1zGyNhRcumtY7CIIgaEJVRfEPYL2CfevhOaAaI0nAicBtZnZ4Ztd5wI5pfUc8XUgQBEEwglRVFJOB/SXtkcxDSJpL0meA/XBX2W5YB/gY8C5J16dlU+C7wHsk3Ym75n63y/MEQRAENanq9fQ9YHngaOAoSc8Ac+LxFMel/Y0xsysYmmgwy0bdHDsIgiDojqoTF70CfFLSYcCGwILAv4GLk7tsEARBMEbpqCjSxERPAduZ2TnAHf0WKgiCIBgcOioKM3tO0mN49HTwKuE3J21Sqd6WO/++z5IEQfBqp+pg9k+BzyYX1iAIgmAWoupg9nz4XNn3SZoCPMrQ4Dczs0itEQRBMAapqig+BDyf1t+Zs9+IHExBEARjkqpeT8v2W5AgCIJgMKmcZjwIgiCYNamsKCStLOmXku6W9Lyk1VP5tyRVc7EJgiAIXnVUTTO+CTANWAw4Fch6Pz0P7NV70YIgCIJBoGqP4jvAZDNbH/hW277rgVV7KFMQBEEwQFRVFG8CfpnW2+eEeBpYoGcSBUEQBANFVUXxGLBcwb43A/f3RpwgCIJg0KiqKM4ADpG0bqbMJL0Bj584reeSBUEQBANB1YC7rwIrApcDrTmsz8UHt/8IfLv3ogVBEASDQNWAu+eBzSVthM8PsRA+NeoUM7uoj/IFQRAEo0ypopA0O7ApMAnvSUwxsykjIFcQBEEwIBQqCknLAX/ClUSLpyVta2Z/7LdgQRAEwWBQNph9KPAKngRwDty76To85XgQBEEwi1CmKN4OfMXMrjSz58zsNmA3YGlJi4+MeEEQBMFoU6YoFgfuaSu7GxDu7RQEQRDMAnSKo2iPwg6CIAhmMTq5x/5BUt5c2VPay81skd6JFQRBEAwKZYri6yMmRRAEQTCwFCoKMwtFEQRBEMQMd0EQBEE5VXM9BbMAk095b6V6O+04M97yh794X6U2e3/4DwB8+cyNK8vzrW0uBGDj8zat3ObCD1wAwKbnfKlS/Qs+GGnKgqAT0aMIgiAISglFEQRBEJQSiiIIgiAoJRRFEARBUEoMZgdBYrNfH16p3vlb7TuzzdnHV2vzoU/NWN/8rGoTQv5u64/MWH//Wb+p1Oa3W285Y/2DZ1WbKuacrd9TqV4w6xI9iiAIgqCUgVcUkjaWdIekuyQdMNryBEEQzGoMtKKQNB74EbAJPmf3DpJWHF2pgiAIZi0GfYxiLeAuM7sHQNIZwBbAraMqVRCMQT509t8q1z37Q2sBsP2v763c5oytlq0tUzAYDLqiWAJ4ILP9IPC2UZIlCIIecPhvHqlUb98tZ057c/bZ/6rU5kMfWmjG+qU/f7xSmw0+uvCM9ZuOe6xSm7fsOjNZ9sOHPlypzeL7zZzv7ZHDb67UZrF9VwLg0aOuqFQfYNHPrgvAY8ecX7nNIntuVrpfZoM75YSkrYGNzeyTaftjwNvMbM+2ersCu6bNNwJ3FBxyIaDaE9esfrQZuTaDKle0GVy5ok15/WXMbOHcPWY2sAs+HesfMtsHAgd2cbyp/awfbUauzaDKFW0GV65o0+wcZjbYg9nANcAKkpaVNBuwPXDeKMsUBEEwSzHQYxRm9pKkPYE/AOOBk8zsllEWKwiCYJZioBUFgJldAFzQo8Md1+f60Wbk2gyqXNFmcOWKNs3OMdiD2UEQBMHoM+hjFEEQBMEoE4oiGIKkbaqUjWUkzS7pjaMtRxAMCmPS9CTpo/i1/ayt/GPAy2b2i4J2Aj4CLGdmh0haGljMzApDViW9xcxu6qH4RedZOq/czO4vadPkeq41s9U7laXyfdvL2mSrlo61ApIWBj4FTCIztmZmO5e0eQNwLLComa0kaWXgA2b2zZI27we+D8xmZstKWhU4xMw+UFB/HmBhM7u7rXxlM7sxp/6I3bMiJL3HzApTy6Z7vT+eNmdiRrZ3FdRfFPg28Doz2ySl2Xm7mZ2YU3crM/t1Wp/fzP5TU/Z3MPwZODWn3rfN7EtpvfR629q9D1gSmGJm92XKdzazk0rarQNcb2bPpPfP6sAPzewfJW1WAL7D8Pu8XBVZM8f5mpkdUrCv9u8mj7Hao9gLyMvL/Gvg8yXtfozHbuyQtqfjuabK+LGkv0n6jKR5qwooaVFJJ0r6fdpeUdIuJU3OB36X/k4B7gF+30k2Kl6PpE0kHQ0sIemozDIZeKng+HOnZQ3g03gk/RLA7vgPJe880yU9nbNMl/R0ybWcC8wL/Am/B62ljOPx2JsXAdKLe/sObQ7GU8c8mdpcD+TmnpC0LXA7cLakWyStmdk9ueD4I3nPihj2Am/jNOA2/Lq/DtyHu6oXMRn3THxd2v47sE9B3a9k1qd0kGMIkn6GK/F1gTXTskZB9ezk7N+rePxvA18G3gJMkbRXZvee+a1mcCzwrKRV8HfM3cAwBdbGyandS8CGqf7Pq8jaxidL9jX53QynSfDFoC/AtSX7buzUDrguU3ZDhfO1vgzuAn4BvKdCm98D27aOj2v7m2pc4+rACVXuQ5XrAVYBdgL+AeyYWbYC5u9wnsuBuTPbcwOX9/h/en2DNtfkXH/pcYCrctrkPjPA9cDiaX0tXGls2d5+NO4ZHm+Ut/wWeKZD22nt1926l93e57Y6pfcop+1tJCtIhbrX5q13aHMTMCGtz4d7Wx5R8f/Z+q19Ddilynkz9/mm9rKcuk8XLNOBl0rOUft3k7cMvHtsQ2aXNKeZPZMtlDQ3MFtJuxdTxlpL9RcGXul0MjO7U9JXgKnAUcBqyezzJUvd7BwWMrNfSTowHeMlSS93vLKZ57xWUqe8V5Wvx8xuAG6Q9HMzK+pBFLEo8EJm+4VU1hFJizC0211kSvudpE3N3aWr8i9JyzPz+rcGOiXmuUXSh4HxyTTwWeAvBXXHm9nDSe6/SdowyblU65wl9PuevRP4KPDf9ua4UivjxfT3YUmbAf8EFiip/4ykBZl5n9cGniqoO7uk1XBrxsS0rsy1XFtynpuBxej8PwRYJJn5lFmfgeWb+Ca0nn0zezKZIY+TdCbl7w2A6em3/FFgPUnjgNd0aPN8qndnihd7CJiroO6TwJpm9mj7DkkPDK8+gya/m2GMVUVxInCWpN0t2QglTcLNLmXd7qNwk9Uikr4FbM3QrvIwkt37E8BmwEXA+9NL/HXAX3FzVx51flzttu1xeI/in2Wy1bkeSTdlZBm238xWLjnPqcDfJLXMfR8ETikTTNIHgB/g5orHgGXwL8Y3t9WbnuQS8CVJz+MvMrlYNk/JafbA/cbfJOkh4F58zKaMvXDzw/N47/APQNGYxnRJy1sanzCzhyVtAJzTfh059O2eJa4CnjWzy3KOU5QLrcU3kxn188DRwDzA50rq74v3VpaXdCWwMP6s5fEIcHjOOvj/edg4iKTfpn1zA7dK+hv+//FG+eNHx6f67etl3C1p/dY9M7OXgV0kfRP4UIe22wEfxnsTj8jHAw/r0GZvYA78Y+QbuPlpx4K6p+L/72GKAn9Oh9Dl72YYY3IwG0DS7rh9ei785kwHvmtmxxbUHwesDTwBbJTaTDGz2zqc5zLgBOAsM/tf276PWduAembf6viPcCX8S2lhYGvLGQBN9Q/KbL6E243PNrPnOsj3pirXI2mZsuNYyaBcav9W3HYMbkK5rkP9G/CXwp/MbLX0Nf5RMysbp2mEpDmBcWY2vUO98UmeDSsedxXcjHNXW/lrgG3NrHTO00G+Z3WRNAFPyCngDjN7sUOTOsdev2x/njJseJ7Z0/H+l7NvCTN7qKBdrecmp/0cZvZsk7YjRi/sV4O8kAYPK9a9ruE5Zgfe2KDdBPxrcCXgNRXqzwPMU+P4C+QsHc+Tab8Q1W3C4/Ev3aVbS4f6U9PfG/CXOJSMBwHrAHOm9Y/iX6KdzrEg3qu6FpgG/BBYsEObKcC8I/Rs9vWedSHXG9J9uDltrwx8paT+RLxX8WvgbHwge2JB3TVxz7vW9sfxAdejgAU6yPW9KmWp/FPACmldwEl4j/1GYLU+3LPazw3uaHIrcH/aXgX4ca/lqlLW8Ti9vmGDsgCr4R4E16blOOD1ad+Egjbfx7uYlV6Oqc378bTm96btVYHzKrTbA5gvsz0/8JmCuvvg9st/p+XvwPZp31Il57gPeBlPK/zvtP5Quh9vbau7NnBp+rGvhvdyHsFNHBt3uJa90jluST/EmyhxGkht/oT39o4GTsdf4n8pqX9j+sGvAlyX7t9lHc5xEfBV3HtnWdzs9qcObc4F7sdNlEe1lj48n32/Z13Idhk+jnFdpuzmkvq/Svdrw7QcD5xZUPdakkIA1sPNpx/CTS9ndZBr2OBw0T1Lz+9r0vqH8Q+FBYF3A3/uwz2r/dwAVwNLVb3PNeWZmK73Bvzd0vpQnATcXvt4vb5hg7CkB+8uYGf8a2jltH49rsVzNSpunnoFH1hseRQ83eFc03D3s+w/u6P3EjneCOT0aICDcO+L5TJly+HeK/vjMwAWneN44H2Z7fcCP8WVwtVtdaem/dsA/wHWTuVvypOrre1ddPhSz2kzJ/5FPQG3y3627Bg08yoZ9qPr9L9hqMfXjKUPz2jf71kXstXyFgNurVKWym/IrP8IOLjTOXA34puAZ3Cl2lruBU4raHN9Zv0XwN7tz1KP71nt56b1G6Sml2VFefZO9+d53JX+3rTcAOxZ+3i9vmGDsKSHaFJO+STgOeDbPTxXZXfKtnY3kem5pBfALTn17iSnG4+bu/6LB5AVniPv3qS/17eVX59Zv61t33VF50j7L6Ggl9bD+3wZPub0d9zzZVyFl/7heNzEuLRsC3y/T/LVMj+OxD3rQrbfA8szUzlvDfy+pP7PSR8WafttwKkFdW9mpgvq7cB62X0FbeZNv93T8QHd1lJoqsJ7LovjX9aPAm/O7LutoM1WmfVSl/Ae/V/OAt6RZH0N8AXgjF7KBuzVC1nHqtfTBMtEVbYws/sk/cNSxGY7ktbLKzezy0vOVcedMsuFwC8l/TRt75bK2nnZcgaszex/kh4ys7L5OR6WtD9wRtreDng0Db61u8lmt9sH86zkHOBfLJdKOp+h3iiFUcYZrwxw18PX4APDRd4YTbxKPoWb7VoOBeNxb7PdKPD8kHQvOddrJdGyykRzA8uqQzR3YiTuWVPZ6nqLvRX4i6SWm+7SwB0tTzob6jF3OnCZpH/hz9mfk5yvp8Drz8yeSvt2SHVb7sFzSZrL8t2Dv4b3ksfjpuBbUtv18Xufx1eY6aU4hYIAyDzULMp6d9x8uARuEv4jfu97JpuZHS1ppRy5OgUDDmGsKooXJS3d/gAlz57nC9oAfDGzPhG3004jx2UvQ9ad8nTcnfIbFWTcH1cOn07bF+HeU+08JGkjMxsSxSrpXfjDVcaHcdPVOWn7ylQ2Hv+6zrKKPMpXuK97K+JXZB6wAu5Py2x09jcHwMxmuCummJMtcJNYUf0hrpTpf1v6sGfPUYNspO9E3BRXFkMAM6O5L03nvV5SbjR3hr7fsyaypY+Iz5jZu6t6izE0CroUM/uWpCn41/4fLX324j2+vYpbzlB6h1PBPdjMfpd+73Pb0DQhU/GPjtxTFKxX4WT8t3YEPk7zCUoyX6T7/EMz6+Su3ZVsyVtyA1xRXABsAlxB56jxofS7ezUaC+6T/nc80vgtafkEPuj8wRrHWQp3QR3Na3kzbs+ejP+Q9sL97e8CVhzte90m61zAXF20vy6n7Ir0dzrDI1I7jR+dDWxK8hDqQq7caNnM/kbmx37ds25la7WpIcMPRuJZxO3rC7auBX8hn9jD49+OO3K8FVdAq+Ff7qsDq1d5RqgQZZ3ZfwWeU6xvsuEm7nHMzACxKHBR3XszJnsUZnZOMiF8nplfKbfgvu031DjUg8D/5e3IBAEVyVDWtW8lETsY/yqawMxAmCFdVTO7JXUdP8zML6fLgd2scwzFwsB+qV3H5G5NSfL9jPTlncwKH7eS2QglbZXZHId/yeeZ2NZNf5v0Do7FPxCOTtG1J5tZabBZim9pl6vT76S2+bGf96xb2YDrJJ0HnIkPIANgxVkGbgOOT7EUJwOnm5uLes2LZvZvSeMkjTOzSyQd2cPj1w4GzFAnyrrFPcCV6V5n73Oe+bGpbP8zs1ckvSRPYPkY/gFcizGpKGBGSoqP12kjT4qX7Qqvig805fH9xsI5J+LRrtNwt9VCkkIozFxZwmnAL4HNcXvojsDjDY7TieOAfc3sEoAUnXw8PlBXxPsz660Awi3KTpK664syNAtmUcoPzOxPwJ9SlPEOaf2BJNvPLT8o7Ac5crWb6dppYn4ckXvWULaJuDt19uVjFGQZMLMTgBPkqdk/AdyYIrSPb11fj3hS0lz4h9Jpkh4j84LNImkdM7tS0mvNrMzcPAMz26AL2famepR1i7vTMo6ZkeO5H59dyDZV0nz4szUNd4D5a92DjNnI7CZIyv5jXwLuM7Mr+3Suq82sU66mbs8xzczeKulGSwOKkq4xszU7ta15nhvMbJVOZV2eYy/cBvwoMwfezcpTiyBPk/JR4GO4z/5peDT0W7p8MeSda54kUyeb/ojcs6ayFbRf08wKM8gmJb45riiWwmMr1sUH24dl7JX0PTPbv1NZ2/458QHwcfjg+ry4e+y/c+q2nv3cFPlF1wg8YD4ehqSP4672/8DdeJ/IaTMRHwd5vK18Edw02qnH136s95vZmb2QLecYk/CA3dzsD6X0yr43FhYyvtZlZTbT9ndjznIT1TLOfhf32nk7Fe2gDa6nZZ/+A56LajXg7pL644FLGpznN3hg26S0fAX4TUn9LfCB9SfS8kdg3bRv3oI2leMOgMkZuW7F3WoXb6sztegZwCPghTsXXAu8t8P51kz/9/vScgNtAY2jcc+aypZpuyL+dXxX3v0iuZnjA7h34jE6a7XVuaPg2JWD5wral2YNwHNdHYd/WBzVvhTJRM1gwHSOrXLKtwSOrXAd4/FxtJ/hJqWi8zSRbQIzOwNL4W7OjaLSazcYy0vBw3tdQd1lcpZJeNbOCyqc65Kc5eIOber6w2+Of3WtlI4/Df9iKWvTJBXB/AxNlXEkBb7euJfXVNysMU9a3oXbzbejOA36JVSMO2Cm//+GDZ6B1qDf+/CX+Zvznou2NjcC78xsr9vppTcS96yJbOkZPjC1m4ZHj0/qcJ8/QUqvklNn3pxrqRs8VztrAK5Itmd42vwdKQiEo1kwYOGANTlxUZl96+OK9QHc6eIRYI5Oz2VV2XDX8Cdwz7pP4c49Z+AOPfvX/V2MyTGKtrGGYZjZZ9vq74APFi+bBpZazI3f7LxjzEiSJ0+V/GHclfJe/B9fitVMINbQH/4/NtMHfcN0nHU6nOq/wE2SLmLoANtn2yu2dbs/mylfhOGxGC0+C6xjQ7vKF6fre5DiLKV14g7mSP+Tp9oGp1ttylJZt1wPN8WDxm5JrqhlvGxmf84c/wpJuanaR/ie1ZXtr7gSOgP4kHn6/HstJyYpMV7S/Hj6itdKem12p5k9YcMHtX+BB/R9BzggUz7dis0nxwBfwj96LgY2MbOr5AkvTycn/sjM/gWcIek2q+7AMl5SK9X4RsCumX1F78o5So6X6x4r6UH8BX4s8AUzm57uc1liwLqy7YMHTc6NOxssY2b/kjQHPglVpcmcyk4wFphas/5f8Bz3CzF0MHM6/rUzDPk0mzuk5V/4oLGqKgDVmD4ycTD1ffWPZnhgTl5Zll9TnBq9naPwH2l7/XXwdCCfHtYCf4HklP1bHgz5k4Jz1Yk7WAL/P+a94Dt5r0yT9Ec8N9SB8jlM2oMT27lMHjh5ejr+drhSWx2GKaaRvGd1ZXsUv3eL4tmM76Q82PJNeK8Dht9rw1PNtMs8I3guKZml8PfQgpImFSjxCWb2RwBJh5jZVelYt3fW4fxT0peoNhVo7WBA4DFJa1nb9MJpTKHIceQs3IV/O+BlSefSOai1rmwvmMeP/EfSXUlxYmbPSnohp34ps8RgdvKUwMzaJ3Hp5piv4P+sXSylmZZ0j1Wc71Y+BerJwJfNbJXkWnidmb2loP5VZra2pOvMbLVUNmOQuq3u23HvmX1w+3GLefAZ2IYNmMojuL9vnoO/Eq0Bw4J9t5jZsEAoSVcDu7Z/5clTdh9nPRjgz96jBm1b3m73mE9esyCwhJUMAEq6pOSQZhl35JG+Z3VkS/XnxWc13AGfuXE+PF/YsHnWu7zPh+Amq7uZ+ZIcJk+qO2NAun1wutNgtaS/4L/TId6FZpbb65fPC9MKBnwmlb0Bj3UZpsQkrYUP3E9mptJcA/e43N7Mri44j/BAuB3w3uu8wC642Tr3PVVHNkm3p2OPw1OsfBhX5sI9/nLd/osYqz0KYJivuiQ9TomvevpHHI3HTsxGSvlg+SkStsJtoJdIuhDvrteJ5qw7w10df/jZcB/uCQydsOVpiieUWQr/mt7Dqnt61e5247Et50k6maE/rB1x76QhSDrSzPZRQdxKB9Nbbcx9zpcEPpy+Vi8zs992aPbuGgq27/esC9laX/wnAycnc9i2wBHyTAe1/e9L2A5Y3syqfN12kzVgDivxpGqn1VtpK/t7Sf2/JWWxBx7gCx6z9TYze6yknZHGJuXzl7wPf7H/GLdsdCvbwxTHXTxSJFch7YMWY2nBX6QbZrY3oDyV9VTg9Xga6/H4F893OpxjTlxb/xa36R9LBy+Z1O5SPMq0NSC4NiVps/EXzLdw++I1+KxruTn/M22WqXm/Vk/37ET8RVTqjUVKR51TviYl8z/jpo1D8LGcs3HPjcWKZEp/189bCtp0vP8lsn0XH9DfOS0X0SGJJD5+chjwfxWO3/d71lS2us8SsFMXxzsbWKQbmSqe55vApv0+Tw/lnX20ZchbxrTpSTV91SVNNbM1NDTu4Dqr2L1ONtdtgO3MbKMOdVenxgx3TUjd0i8w3D5baKOXB36djXumdDIJNOp210HSH83svWn9QDP7TrfH7HC+G4FVzeyVtD0eNwkWxmukcYztmZnf5yQ8C+jTOXX7fs+ayjaSSFoDHwS/mc7TmnZznun4x1xXU4HO6ox1RfEb3P2wlT30o7gP+ZYF9S/HJzY5Ae+ePYx/NeUqloYyzUhWqBrTR8q9kLYxsyfT9vz4D/59JW1uAH7CcPvstJy6i+ADwMvhSeEqeYqkdnvgCg+8232MlXS769A2JlM5eKqL890IbGBp8FjSAsClZYqirf36uGfPfPig5Tds+FSpfb1n3cg2Uki6BXcPvYmMs4D1aFrToMeMdpemnwtDfdWvxVP6FuZyx2MhJuKDvgfhdr3X91imazPrlRMOkp8wb1hZ2/7SpGRtde/FXe4qz+43Qv/Da/PWax6j0D89p+4OuO/9ZDz54r14DzGvbmtehfHAB/C4i+vwaUEXxceD/j5K962RbKn+52qcp1b9TLtratR9bYPjr962rEbJbJBtbbfCPb6eomICyibPWsPns7FsXT1P/T7BICz4gG6lDJ00nP+6hizX5a1XaDeNzJzKSal1CgQ7GPgM7imxQGspqLvwKP1vSn8kwJPAefgYUGt9xtKh7TtoMCdxul8fwHMrFY4DMHN86R58XOcdOXV6No0q3qPsWNatbMDfaspVq35qczgeS9ExM0HmWn5W4/iX5Cw34DEFq3Zoexc1x3SaPGsN21SSjeGKcshS9/811k1Pb8Hzri+Qiv6FR2XeXFB/RlCbmS2rakFtdWUqdPXr0G5jPF3AZbip6p24y+QfStrcm1NsVtGFt59Iegdu4pvLzJZOrp67mdln2uqtX3YcKzFVJLfSrXGF0jJf3WxmKxW1SXW2wiOYDU9z/puCeteZ2WryyXN65npdItew56XoGepGNklH4JMi/ZKhQZe5gYp166c2l+QUm+WPhd2Mxxx9g6FzxrQaVY37aY2NHG5m65XUudLMOgWmtrep/aw1bFNJtrpu0Z0Y0+6xuA20PUPncRRn6DyY+kFtdSlz9TMrGGQzswvTAHhropp9LAXRFGFmvZa9FElzWHl0aZYjcJfA88Cz/SpnhsEyRVAFM3tAQ4OySl1FJf0Y93w7PRXtJundZpY389jCkvZN7fLOXTZb3TbWlvwtryyVb4L72i8h6ajMrnnw5JV5NJYNjyMB97Ka0YTiQMW69bF6mQl2x5MAzsfQDLqt81RWFGY2VSmuqoSpkn6JT/iVHWgvPU/dZ61hm0qy1by/HRnrimJOy6Q5NrNL5Rkoi3jRzJ5q+8f1tMtlZuO7aP4ynt9mIrCiJKxkmtbkn/1pPIkYuAL8qZUMmmfaVn7pZ3sHQGHvoJ0mP6yaPJBks3Qv9sZND2W8C+/aG4CkU/DB5jzG49dcdzY08HxK7Uohrww8AdxU3ByWdUSYTnH6jsay1X3JNHkpSdobj9eYjqfAXh04wFIEdtvxrwCuSF6JRZkLqp53UTr/pucBnsUj5WeIQblCavKsNWlTSTYNnbtkGHV6YTD2FcU9kr7KUK+ne0rqN53/uu9I+iT+IC0JXI/3LP5KeTqKY3GTwI/T9sdS2SdLztPkpV+pd9BGkx9JXerMSdziLnzO51Yur6VSWR4Pm9khBftyadI7MPdAu0HSL6oo+aayZWR8LZ6ZdBJD3apzj1e3fmJnM/uhpPfh8UQfw3+nwxRF5qX3n7wXYN5LT/n53hbArQl7l8iFmX2ibH8BTZ612m1qyNbe8xpyGGr0wmDsK4qdga/jN8XwUP68HC8tspO8/AJPz/3NPstYlb3xoKyrzGxDeUK0b3dos6YNde29OLnMltHkpd+kd9Dkh1Wrp5NMc1XnJG4xN3CbpL/hz8xaeHe/dT+y41VNehJNegct3ifpGwyfFTHPXNlEthbn4l410yifY75pfaBW8sUmL732fG+GT8a0rxW4IUvaz8wOLVAyWE5izMy+2s9anTZ1ZWuo7AoZk4pCnqFzd9zWfBPw+bIvMUl7mtkx5gmzfmFmXx4pWWvwnJk9Jwn5rF23y2cUK+NlScub2d0AkpajP3bT2r2Duj+sJj2dti/2Fk/hcyucW9Dsa1VlwrN41qJh76DFkbh75E0t01gvZcuwpJlt3Mf6UCP5YpOXnpmdUrcN7oEE9ZOKNnrWarZpJJuk3Oe5bm9zTCoK3P/9RbwHsQmeu2mfkvo746mMwbu/fQ3qasiD8ikNzwEukvQfZppHivgCnkvmHvwLbhk8QreMJiah2r2DBj+sJj2diXiG05bd/0N4XMQqkjY0s31y2jxuZrdmCyRtYGaXtle0CrOKlVCnd9DiAeDmCkqiW9n+IuktZnZTn+qDJ8BbFU+++Kw8+WJHhSBpM4bPAd/IxJbD1sDvzOwUSTvWVDZNnrU6bZrKlp0qdiI+R019E6/V9Kd9NSz4F1drfQKd4w2yQV3Xjbb8Fa5vfdx0MVtJnfG4KeO1wMpp6Ri4hCckOw1POf0Ynnmy0sxyNa/hOHzu473Scik+uHkecGRO/avb/z90mEkQn+VsfNuz8Nd0b24taHMzsB/JKw1Ps/LXPlz/Xel/UjnAETc9XogPeu/bWvog263AC/gkNzeSZnPsYf1GM6/hWQZOxRXmQek8J/bwuhsHdzZ81iq36Ua2tuO8Fs80UKvdWO1RzOjSm2dl7VR/Pklb4rlw5mkfMLOaHgK9RJ5Cop3Wl9tcFE+s9LKkHczsCArm1ChoV9vW2tDEszI+Gc/L6RjH4j3AdZl5fVma9HTmx+9RK1//nHjA4cuSimzpb8MndfkLPl5xGj5XRK+p3DvI8C18YqmJdJ6Toxs26Vd9SZ/C7+9/U4/qi3jWhNUknWRmZRPqvMPMVpbnYvu6pB/gkyCVna+yG3KXNHnWmrTpljlwh5hajFVF0YpVgKHxCkXd+8vwL3Twr9zs4FltD4EeMy3JkKftjJzJYTJcKekY6gVCNXnpN+l21/2RNBn8PhS4XtKl+P1bD/h2cpH+U0GbF/GJYWZP13WvpQSBRaQPi+8Bi6TzVDEj7QdcIOkyOs/Y1+J11iFYsBvZJF2AO3GcYxWC9OrWT+xD85nXWjMAPivpdfjg9OIdzlfHDXnJ9Pwrsz4DKxnMptmzVqdNI9kkZZN7jseTj9Y21Y3pyOxZHdWIfs20OY78l/6CuD15n5w2VzG0dzCBTO/AzFbMabML8BXc5DTjR4IHuh1sZsMicJsgaXHccwk8v9A/O9S/Affi+QZuhvsJPlvYNiVt7sLnIq9s+00Duf9leFK8r5e0ORT4k+XEGvRCNklb4JlmN8L/L6cD51vBnBF166c219nMKOQhmZzVIVOz3NX96HS+H+EvwBPM7Ks5dVtuyNviH0ot5gFWNLO1ctrsWHRu6DxAXvdZq9OmqWySlslsvgQ8aj6dai1CUbyK0NDUEn82s3MK6u1pZsek9TdbwURNBW2bvPTvwOdYeCptz4vn/3lj2Y+/zg+rYU+nlWV3BYYOfpYFKa5hZlPbyj5mZj8radMk5UPHVCI5bWqnzG4o2xx4r3p7PBfT74FfmNlF3dZXj2Zek8duTLThc3K39q+CD5YfwlBPtunAJebThBYdu5G5qu6z1qRNVdnU4/T8oSheJWh4aontgLstJ7WEGuaTSvVrv/Sb9g7q/Ega9nRygxTzelSS3mVmF6f1Zc3s3sy+rcrGqST9EFiMGikfmvQOmtBEtrb2K+NehCtbhawCneoX9HJnYDlR3u1jhjltyu7za6ymG3Leb6bT76jOs9Zlm0qyqcfp+cfqGMVYpE5qiSx1A69q21rN7MRkr271Dr6U6R0UKYm6keZ1B7+hXpDi95npFn02Q12kv0L5OFWTlA+fBr6QxmOq9g7WAa43s2ckfTTJeKSl+U16JZs8zcW2eA9hcXyipZ16UT9PEVTg/W3r2alpO93nym7IapZTq0WTgNjKbRrI1tMeQCiKDJL2AE6zoZMD7WBmPy5tODLUSS3R2IuryUs/8Rw+0dNE4PWSXt+h2133h9XEQ6ROkKIK1vO2h2DNAsLm7lxrGMfiDgKr4PNon4DH/azfC9nkHkk74JNpnQ180cwKU9jUrd+U7DWkL+U69/tIqgcpdhM13yQgtk6burItJ88moMz6DKxmRuxQFEP5lJn9qLVhZv9JP4ZBUBR1Ukt068VV66XfoHcA9X9YTbxK6gQpWsF63jYA6iLlQ8PewUtmZvJB5GOSUt+lh7K9HZ8jYop18PRqWL8X1P1SrhOk2E3UfJOA2MptGsi2RWb9+xXqlxJjFBnkrmQrZ8w74/HAoTePrmSgLuZlqHmeJnbTm5jZO1i11Tsws0Lbsnya2k/g7pLvAv4DvMbMNi1pU9urJNN2fWBe4ELL8cqR9CSuVIXP9dFSjALWNbP5c9psbma/U4FHipV4ycinXF0FN6lNxnsH25pZ4f9Z7kp7IX7f1sMDIm8ws7f0UrZBpsGY25q4B1tlN2RJm6c2daLms+1Ln7Vu2nQrW1NCUWSQdBj+D/hpKtoNeMDMPj96Us1E7uq2gpn9SdLs+HSX03t8jiYv/WvMbE1J1wNvM7PnJd1SVcHW+JHUGfweD9xiZm+qIUMheYpY0mQz2ymt71jn5dt64clz8TyUegedBkwXw72ErjGzP0taGp/f+9ReytZP5HOqFGI5MT6SfsvMnsR6zFTirTaFZhQ1c0O+i+rmqtrPWtM2TWTrFWF6Gsr++LzRn07bF+FfeqNOMoHtiqdKXh7/4v8J3SV/y6OJrbVWt7v9R1KlN1TXvJXGLu6QtHQHc06rfpMe2cqZ9b1xb5+qTJd0IJ76fj1J4/CU8IWY2SP4FKJIWgj/iBmmJHogWz/5Qck+I///mTWdlLXPo3aQIjWj5us+a03bNJGtV4SiyJDsrD8BfiJPnbGkJS+bAWAP3OxyNYCZ3SlpkbIG6UX/fKeyNmrbWs1sy7R6sNz9cV7cRFJUv8mPpIlXyfz4HCN/Y2hkes+mtu2C7fDewS5m9kjqHRyWV1HS2sB38XQt38AHsBcCxkn6uJkV3usmSFoeeDD1DDfAlc6plpw8uqlvDbyeujSrXiDpvVbPDblJ1HyTZ61Jm1qyqUcpTML0lCENlH4AV6DTcBvwX8ysk8dD35F0tZm9TTPnQm4lO1y5pE1tf/C2uh1NQl10oS8HVgMq/UiamLeKzEk9HM95DDgDtxNvl9az5ylL+ZA9zkLAv4u+EiVNBb6E/y+OAzYxs6uSsjzd8mNbGsuW7vEa+EREF+CR6m8uGj+qWz/TbiVgRYaaEot6SI1QsyDFJuaq2s9awza1ZOv2HdAiehRDmdfMnk5mjlPN7KA06DgIXCbpS3jeqvcAn2GoP/kMki17iVR3NWa6d86DJwXLpYlJqIsu9LC0Cx1o0tOprRBqfoFl3YUrzRPQsHcwofVFLOkQM7sKIJkFi05VW7YMr5gn09wSONrMjpZ0XQ/rI+kgYANcUVyAJxa8As8O2zOsmRtybXNVk2et4QdLJdnUXUzIcKzHKYpfzQuupRfHE86tmcoK0yWPsGwCPoVHJp+V1nNTVAM7ApeQ0hVklvOArTqc51xg6ZqyXZ7ONSWd4zzgvD7ei/XpkGY91VsbTzT3XzwN9svA0x3aDEvhnFfWtn+bKmWpfCoe/LYN7um1dip/EwUp7ilJMd1L2TL7r8bjI24Glk1lN/eqftp/Ex7nc0PaXhS4qA/Xsg4wZ1r/KD7GU/p8467Y7635TDZ51pq0qSQb7lG3I/4xtWNm2QqYv861mVkoivaHDk/J/eO0vRxw9gDINR64vUG7DzVoU/uln17cw5YObSr/SLq4/ql42pPr0jE+AXynoO4meMK5R4GjMstkPIVJ2XkqKxc8dqK1flvbvusK2rwMPJ3+Ly+l9db2i72SLbN/xXTtO6TtZYH9e1U/1flb+jsN/8pVp/9xw2u5MR17lfQc7AFc1qHNdNys87/Mfe70Aq/8rHXZppZsuMt5rd9N3hKmpwzm5oUzM9v34DmFRhVrbt6ZIulw3KUQ3Jf8ECtIpJaoaxLCmnWhj8FTPpyJ27c/Dryh4PhNrx8zu0vSeHOnhJOTSeTAnKq1o3Ibdu+zgWn/a9uXO0ZhFXIs9Ui21vluBT6b2b6XkvTfdesnpiZT4vH4/f4v7sXW02uhRpBiRv4m5qo6z1rjNg1kazKT4jBCUdBdhO0I0sRD4kTcHLBt2v4YPotcYUxEk5d+srsfjU85Oxv+dfRMp4ex5o+kyfU/K2k2PKL7UDzafFyBLE2icpukfGjNlSJmzpNC2p5Y0KYJjdNRSFoBj7huH2jOnfukbv20rzXX+U8kXQjMY2ZF44HdpNao7YasZlHzlZ+1bto0kO1IehB3EV5PgKT3m9lvNcBRrA09JK43s1U7lbXtr/3ST145w3oHZlb4ZZS8nt6Nx6k8gv9IdrLM/ARt9Ztc/zK4KWk2/IUyL25WLMqR1SjyVQ0ylI4UTWSTdAU+1egRePqXTwDjzOxrvaif2kwxs406lfXgWioHKWbaNImab/KsNWlTSza5u/pG1m2KlV7Yr2IZzAXvyq+b2V6HDvM/09DWmv7emCm7rkObZfCvz3nwl8zhwOsH4J41mct683S/nqCiTXsEr6e2bMC09Pem9rJu66f/+QLADXgvcYG0TKLzGEVX9xn3Luv4fyWNe+DzWOySLRvtpa5s9Gie9TA9AWrLrNiOjWKAlqQrzGzd5A+e7f5VsTXuDpwqn1MC3Msmt9eUxerbWmt3oc2s5dr6HFDon96iTk8n2aOXtJTgUdLV+BSQAPuZ2Vklp2oS+Xoko5BWoSJHUl+255OJ5k5Je+JTz87Vo/q74fm9XofPld3iaXzcqowjqXgtDd2QW1Q2VzV51rp8Puua0nozz/poa8hBWIDH8Yf2i/jAb2XvnRGQbZkeHGMe3AYMsE+HupenB+pU3BXvcyQXxjIZqdg7wLNa7pHZvhq4Jy1bl5yjjgfTlcBSme3r8QmOlsYznZZdS+0vMNz1eNxoPie9lC3dg7nwdCkn49mG1+5V/dRmr35eCw3ckDNtF0v/93em7aWBj/fqWevy+awsW9pf6qZcdYkxCmYEmr0H9wVfGTgfj3itPIVov9DQ2erONrOuvLAk3W9mS5fsr203rXn+K4HtzeyBtH09nq9qTuBkK7BRS5pqZmtIutFSNLqKZ9y7xszWzGwfY2Z7pvWrzGztEvmaROXWzlA6UgyqbKkHujszPfIuBX5qJWMQda4lOxYn6TbLTLFa9NwUnLNT1HztZ62b57OObKlOT2ZSDNMT7n6Jf0VeKJ+LdwfgUklftzT39CiSDb0t9CJpeLxhWA2TUMMu9GwtJZG4wsz+DfxbPrdEEXXMW0NSgrd+hImFKadJErnedO/7Q2XZ6ppguzTZ/hg3mbTmevkYPjHTJ0va1LnPtd2QG5qrmjxrtdt0YUqrPZNiHqEoEklBbIYriUl4ANFvRlOmhBWs9+J4M2j40t8P93Zq8VrcDDEnboLIa9P0Jf4xXDHsifd0lqI4xuVqSZ8ys+OzhZJ2w3NLldEkiVwT5TJS1JHt7fgYzem4SbD0o6JBfSRNMLOX8MwHWQ+3iyXd0KF5nWtp4oZ8DDNzal1MW04t8hNdNnnWmrRpIhvWMCYk70Cz/ILb468FvgmsNNrytMlWFpVbFMk8PVPv6bY2LxW0aWJrvaZt+5jM+lUFbU7DZxJsL98NN/f14p4tAvwFt2n/IC2X4l5gi3Zo2yQqt3bKhxF8firLho/9bIynJL8u/R7e3Kv6qU3La+daYPlM+XJ0jrLu632mWdR87WetYZvasqV9tVOY5C0xRgFIeoWZQVx1PYvGBA1trXeZ2esLjne3mS2fU74IntjveWZ6vbwV74180Mwebavf2ENE0ruAVnbZW8zs4qK63aAGGUpHiqayZUywhwEdTbBV62tm9uN34XEA96Rdk4BPmNklvb6WqrSNBw7JsNq+ndO29rNWp01T2ZrEhOQeJxRFAI1f+qcBl1p+F3oDM9uh5HyVfiRNB7+bomZRuWOGHBPsecBJZvZQj+o/SJp8CZgd75WA95z/Z6M4yC7pZfyDUUm2Z1u7gIlmVhrRPYiyqcFMinnEGEXQoond9HPAOZI+TE7voOxkSTFU+cJvOvjdlGNx+/YqwOfxL7Cf4a7SuQyycqkjm6RTgZXwtN9fN7ObOxy7Vv3EeNyVtn08YwJQak/v9322Bjm1RoouZKudwiSP6FEEQH2TUFvbvpl4mvR0ujxfk7mse9K97wd1ZKtrgm1ism3yNdvkWgJHDVKY5BE9igAAM3sMeEfbS//8Ki/9Gr2DJnTjwdSEJl9gtTOUjiCVZTOzTknsuqqf6OgZVcIg3+eBxOrNs15IKIpgCH1+6TehsXmrIZXnss7Qk+59nxg02boZUxq0axlYuoi7yD9emJ6CVwMj5cHUds6Oka+pXk+69/1gkGWry1i6ln6jBvOslx4vFEUQlH+B4bl0Kn2BVVUuo8Egy1aXsXQt/UA9SmHSoomNMQjGIscA38ajXC8GPmlmi+G5iL6T10DS2pIulfRrSatJuhmfKOpRSRuPlOCvNtnqMpauZQSpncKkjOhRBAHNvsB63b3vJYMsW13G0rWMFL2OCYnB7CBwmnyBTbCUE0rSIWZ2FYCZ3S5149zTEwZZtrqMpWsZEXodExKKIgicJknketq97zGDLFtdxtK1vCoJ01MQNGQspnwYRMbStbxaCUURBEEQlBJeT0EQBEEpoSiCIAiCUkJRBEEQBKWEoghmOSQdLMlylj/18BxrSTq4V8cLgtEk3GODWZWn8Gk828t6xVrAQcDBPTxmEIwKoSiCWZWXWoFbrwYkzW5m7TEEQTAihOkpCNqQ9ElJt0h6XtI/JO3Xtv/tks6T9LCkZyRdL+kjmf07AUen9ZZZ69K0PTmlpMgeb1Kqs3mmzCTtK+lISY8DN6XyiZIOlfRAku8GSZu2He8DkqYl2f4j6WpJMblP0JjoUQSzLJLan/+XgS/gyQEPBS7F5774hqRnzeyYVG8Z4ErgJ8BzwDrAyZJeMbPTgfOBH+BTqb49tWlFetfhi8DlwMeY+VF3FjPNWncD2wLnSVrDzK6XtHyq88PUfmK6hgUanD8IgFAUwazLgsCLbWVb4C/gb5rZ11PZRZLmAL4i6Vgze9nMzmg1kCcbuhxYEvgUnqTucUn3AXRp3nrYzLbLnGsjYDN8DobLUvEfJb0B+DKwDbAaMN3Mvpg5zgVdyBAEYXoKZlmeAtZsWwTMCZwpaUJrwdOOL4orAyTNL+koSf/Alc2LwK7AG3osY/sL/t3AI8CVbfJNAdZIdW4C5pV0iqT3SpqzxzIFsyDRowhmVV4ys/axgjem1VsK2iwF/AOYDKyNT3B0K25W+jTeI+klj7ZtLwQsxvCeELjZDDO7Qz6n9AG4onlR0m+Avc3s8R7LF8wihKIIgpk8kf5uzvCXNMAdkiam/XuY2U9aO+TzN1fhOWC2trL5C+q2J2J7AniIDnOFm9n5wPmS5sVNVUfig+vbV5QxCIYQiiIIZvJXPI3169LLdhjp5TsOeD5TNjfwAYa+2F9I+yaa2XOZ8geBSW3l760o3xR8gPy/ZnZ7p8pm9hTwi+Tx9PZO9YOgiFAUQZAwsydTNPUPJS2DD1KPw8ceNjSzLc3sKUnXAF9Lc1a8gpt5ngLmyRyu9SLfW9LFwNNmdgdwDnAIcIKkyfjg884VRbwI+AM+wP493EQ2D7Aqnm77QEm74UrhQuCfwAr4IPepNW9HEMwgBrODIIOZHYoPTG8CnIvPof0R4M+Zah8G7sFfvj8Ezmb4i/jPwGHA3sDVwE/T8W/GFcPbgfOA9YFPVJTNgK2Ak4B9cKXx03SsK1K1G4GFgcOBPwJfAY4H9q9yjiDII+ajCIIgCEqJHkUQBEFQSiiKIAiCoJRQFEEQBEEpoSiCIAiCUkJRBEEQBKWEogiCIAhKCUURBEEQlBKKIgiCICglFEUQBEFQyv8DhWQ9UR34kpUAAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "## visualize missing data ratio\n",
+    "X_train_na = (X_train.isnull().sum() / len(X_train)) * 100\n",
+    "X_train_na = X_train_na.drop(X_train_na[X_train_na == 0].index).sort_values(ascending=False)[:30]\n",
+    "missing_data = pd.DataFrame({'Missing Ratio': X_train_na})\n",
+    "missing_data.head(20)\n",
+    "\n",
+    "f, ax = plt.subplots()\n",
+    "plt.xticks(rotation=\"vertical\")\n",
+    "sns.barplot(x=X_train_na.index, y=X_train_na)\n",
+    "plt.xlabel('Features', fontsize=15)\n",
+    "plt.ylabel('Percent of missing values', fontsize=15)\n",
+    "plt.title('Percent missing data by feature', fontsize=15)\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 14,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa0AAAFECAYAAACUHWF9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAB76klEQVR4nO2dd7wdRfnGv09uKgkp9ACB0JEaQihKkSKKBUFBMCJNEUVA0B9gQ5oKiiiiIApIU4RIL0bpoZckEBJaaAklEAIBQkL6ve/vj5mTu/fkzOyec25N5pvPfnJ2Z2dmT7k7OzPPPK/MjEQikUgkugLdOvoCEolEIpEoSmq0EolEItFlSI1WIpFIJLoMqdFKJBKJRJchNVqJRCKR6DKkRiuRSCQSXYbUaCUSiUSiaiRdJmmGpGcC6ZL0J0kvS5ooaXhr1JsarUQikUjUwhXA3pH0zwMb+e0o4KLWqLTdGi1JJumfmf3ukt6VdLvfX13S7ZKelvScpNGBcn4u6Vnfck+QtENOvadLOjGQtrGk0ZJekvSkpH/769itdF2JRCKRWBozewB4P3LKvsBV5ngMGChpcL31dq+3gCr4GNhCUh8zmwfsBUzLpJ8J3GVm5wNI2qq8AEmfBL4EDDezBZJWAXrWcjGSegP/AX5kZrf5Y7sBq9ZSXiKRSCRasBbwRmb/TX/s7XoKbc9GC2A08EXgemAkcA2wi08bDNxZOtHMJlbIPxh4z8wW+HPeKyVImgqMMLP3JI0AzjWz3Xzy1pIeBVYBzjGzS4BvAI+WGixf3hhf1m6ZcrcHzgd6A/OAI8xssqTNgctxjWY3YH/gLeDfwNpAA/BLMxsV+0AWvfdq0Edr8Pqxnjd8cuDGwbTP2sBg2ksNi6LlrtPUI5gWTnHMVThtuhbn5A7zvi2Mps9omhdMW2jhev/SJ/6Oblu4UjBtUGM0K+81hNPmKW6fttWCcFqfpqZo3rG9wwMoX2r8OJj2cLd+0XJf6xb+HLdcFL+VPN8j/GHNIv67GGzh59LYUNHCnM94PuH0hcQ/41Us/H4/Vjxvr8hVL4pcE8DZU/8V+QvLJ3a/Kafnqht8FzesV+JiM7u4nvpbg/ae07oW+Lrv5WwFPJ5JuxD4u6T7/BDgmhXy3wkMkfSipL9I+nTBercC9gA+CZzqy94CGF8g7wvALma2DXAqcJY//j3gfDMbBozAPUXsDbxlZlub2RbA/wpeXyKRSLQ9TY2FNzO72MxGZLZqG6xpwJDM/tq0HF2riXZttHzvaSiulzW6LO0OYH3gEmBT4ClJq5adMwfYFtf6vwuMknR4gapvMbN5vmd2H7B9FZc9ALjOK2TOAzb3xx8Ffibpx8C6fshzErCXpN9K2sXMZlVRTyKRSLQtjYuLb/VzK3CoVxHuCMwys7qGBqFj1IO3AufihgZbYGbvm9m/zOwQYCywa4VzGs1sjJmdBhyLG5YDWEzz++ldnq3C/rO4BjCPXwL3+Z7TPqWyzexfwJdxQ4ajJe1hZi8Cw3GN168knVqpQElHSRonadylVy31MSQSiUSbYNZUeMtD0jW4h/dNJL0p6duSvifpe/6U0cCrwMu4zsj3W+M9tPecFsBlwIdmNqls7mgP4DEzmytpRWAD4PVsRkmbAE1m9pI/NAx4zb+eimuE/ktzQ1ZiX0lnA32B3YCfAB8AP5X0RTP7jy9/V5ZWwwyguUt7eOZa1gdeNbM/SVoH2ErSC8D7ZvZPSR8CR1b6AHw3+2Kobow5kUgk6iJnPrQazGxkTroBx7RahZ5272mZ2Ztm9qcKSdsC4yRNxLXel5rZ2LJz+gFXekn8RGAz4HSfdgZwvqRxQPms70TcsOBjOHHEW34470vAcV7y/hzuSeDdsrznAGdLeoqWjfyBwDOSJuDmx64CtgSe8MdOA36V+4EkEolEe2FNxbdOilIQyI5llf4bB7+At1+N6zjmHP2tYNrYB9YIpt3cJ/6D3G5RWK31cc5jzoYLw2PhKygut3uuR69gWkPOz3TPQTOCaQPXD0vx/jZhSDAtj4NXjQ/P3/t2eEnK1O556sFw+qs941/CDgvnB9Pu6RX+jA9Z8b1gGsD7H6wQTHuooW80757dwtO7/VaMSCWBez5YLZi26uLwb3lSr7jQrr+F03vn3LM3WRS+5qcinzHA3IiqcUGONvDMqVfXpR5c+NqTxdWD6w6vq662oiOGBxOJRCLREXTiHlRRUqOVSCQSywnWOqrADiU1WolEIrG80IpCjI6iyxvmSppTxbmHBxYtl9JLfoi/aZ2rSyQSiU7EMiDE6PKNVpUcDgQbLZwf4ovA1yRVnISUFDHnSSQSiU5MFY4YnZVlcnhQ0jDgr8AKwCvAt4A9cXZLV0uaB3zSy96zjMT5DB6Ns3x6xJc3FRiFa9TOkfQ+TmLfy5d/hJnN8YuJ9wH6+LzftRx5Zsw/MKYOBOh30WXBtCnDKq5rBmDFpVYEtGR65FexOMcbbUb3cObBi+N5e0SSZ+Q8KsSUbYtfrP3ZLPZ+Z0xfMZq3V+Sr7xdRrgF81BBOb8rRdL3erXxtfTOLIr54r747MFpu/4hn5Qfd4t/tm/PC6sLe8/pE8w6MlP1O9/B32y3ntxrzyeyW8xlP7R5WCPbK0efF6s3zHqybTtyDKsqy2tO6CvixmW2Fc6c4zcyuB8YBB5vZsPIGy/shfga4DefWUb5wbqaZDQfuBk4BPuP3xwE/8udcYGbbefeMPrh1YIlEItE5aF8bpzZhmWu0JA0ABprZ/f7QlVSwg6rAl3B2TfOAG4D9yoYCS27tO+IWNT/sFxEfBqzr03aX9LikSTiD3s1JJBKJzkJTU/Gtk7JMDg/WyEhgZz8UCLAyruG5y++XYjoIF/erRU/M99T+gguP8oak01naA7F07lF4y/8tB23Juv3WacW3kUgkEpUx67xzVUVZ5npa3ln9A0mlOF2HAKVe12xgqYkISf1xcb3WMbOhZjYU55lVyVvrMWAnSRv6vH0lbUxzA/WepH7AAZFrXGL5nxqsRCLRbiwD6sFloae1gqQ3M/t/wA3Z/VXSCjiX4SN82hX+eLkQ4yvAvaXgkp5bcKKLFjOuZvauD4dyTSbtFDN7UdIlwDPAdJxLfSKRSHQeOvGwX1GS92AH8+ch3wx+AZtEfPwApvQIP3N8a8KZwbTvj/hxtNzzvhau1xbEox4vmDw7mPbG8wOjef/dLaww++qicGRigE33Cacvnhn24pv8cDgyMcAtPcNKvJ8fEI4CDHDfP8OKxgfDxQJwyp5hH8BX7gqXC/CwhVWND3YLL2s8d7XwdwfQLeKX2H+HuPdgt77hN9z0cfj7AXju3+Ho0j27h4e7flN51coShhGO1Nw757a4KFL0gjoUgAtyoi3/qs7IxfPH31z44npvu1/yHkwkEolEB9IYf+jsCqRGK5FIJJYXloHhwdRoJRKJxPJCJxZYFKVd1IOS1pZ0iw+2+Iqk8yWFgza1Xr1z/P9DJT0TOGdjSaP9tT0p6d+SVm+Fug+XdEG95SQSiUSrsQys02rzRst7+N0I3GxmGwEb4yIQ/7oVyq6rp+jXVv0HuMjMNvIOF38BVq332hKJRKLTsQw0Wu0xPLgHMN/MLgcws0ZJPwSmSDoNuBf4tpk9CyBpDHAi8DzwZ1wo+x7A6WZ2i5ebfxXX8DVI+iJOnj7In3eKmd1S8Nq+ATxqZreVDpjZGH8dvYGLcH6Fi4Efmdl9vv4v43wNNwBuMrOTfZ4jgJ8CHwJPA/GQrMBLET+35/vEhT4xD8GYQvAv434bLXe9jb8cTPu/fsOieR+LPEesEfHEAxhs4WeoP+RE+p09OmxO2GPppXlL2L5HXIk3KFLtcdfH/3z6RyRomy2O5z3gzvD72bAhHhl3tYgieKXIAMev3o0rKfsSvqb//uvVaN4NeoefA/vkPHsO6xH2JnxbYaXrLo1h1SHA3Doe2WdFPBwHNcUL/ijipTgwJ2+9WBJiFGJzYHz2gJl9JOl1YEOcPdKBwGmSBgODzWycpLNwa6e+JWkg8ISku30Rw4GtzOx939v6ii9zFeAxSbfmGdV6tii/tgzHuEu1LSVtCtzpFxEDDAO2wTVKkyX9GdewnQFsC8wC7gOeKnANiUQi0T6kOa1W4d80u0ccCFzvX38W+In39xuDc5wo2UfcZWbv+9cCzpI0EWdmuxZQ95wUsDPwTwAzewF4DTe0CXCPmc0ys/nAczjvwR2AMWb2rpktpNmrMJFIJDoHrTw8KGlvSZMlvSzpJxXS15F0n6SnJE2U9IV630J7NFrP4XofS/C2SesAL5vZNGCmpK2Ag2i+2QvY3zuyDzOzdczseZ+WXdV5MG4OalszGwa8Q8DzrwLPll9bQbLDfo1U2WOVdJSkcZLGPTP7lRqqTyQSiRpoRRsnbyh+IfB5nIn4SEmblZ12CvBvM9sG+DpOM1AX7dFo3YOzWjoUlrzR3wNXmNlcf84o4GRggJlN9MfuAI4rBWOUtE2g/AHADDNbJGl3mh3Xi/Av4FN+Xgxfz66StgAexDWI+GHBdYDJkbIeBz4taWVJPYCvhU7Meg9useIGVVxuIpFI1EHr9rS2x3U8XvWjS9cC+5adY0B//3oA8Fa9b6HNGy0/t/QVXDTgl3CRgecDP8ucdj2uFf535tgvccKKiZKe9fuVuBoY4cOBHAq8UMW1zcOFJDnOS96fA74PvIt7Iujmyx0FHF7mTVhe1tvA6cCjwMM4IUkikUh0HqroaWVHhPx2VFlpawFvZPbf9MeynA580/vDjgaOq/ctJO/BDubcdcLegyvnRBGIRRg+7sCwL96mf38pWu6UF28Npi08f6lh6xa8fm3Y227Bwvgo6vUKe8FtsCj+fPXZdcIPcO9PD/viXWf9g2kAL1n4czxyflzF11vhL3B07/gyxf/below7ZVxcZXf5T3CqrkPbGEwbZem8OcPsOai8NP35679TDTvoquvDaYtnhEX2b7wxCrBtJkW/hy/M39CtNwTBoRnBt6LfHcA/SNK18U5jn2xIM+L29h7cN5//lj4ht/niydE65J0ALC3mR3p9w8BdjCzYzPn/AjXzvxe0ieBvwNbmNWuCEmOGIlEIrG80LrqwWnAkMz+2v5Ylm8DewOY2aN+KdEqwIxaK+0M6sFEIpFItAetO6c1FthI0nre4ejrQPkwzevAngCSPoETyb1bz1tIPa1EIpFYXmjFnpaZLZZ0LE401wBcZmbPSjoTGGdmtwL/B1ziDSUMpw2oa04q2tOS4yFJn88c+5qk/9VTaVkdUyVN8hr++yVVo/6rt+7dJN2e2e8h6cnM/n6SzC8uDpUxRtKICseT92AikehctPI6LTMbbWYbm9kGZvZrf+xU32BhZs+Z2U5mtrVfunRnvW8h2mj5FvF7wB8k9ZYLI38Wzi2iaiJegbub2Va4RcSn1FJ2K7EzTvlXYiTwkP8/kUgkujatuE6ro8gdHjSzZyTdBvwY6Itzifi5X8uU9QQcCvzDnwNwrJk9Imk3nFz9A2BTml0lKvEo8AMASasCf6XZBeMEM3tY0unAesD6Pu2HwI64BW7TgH38mq09gXP9exwLHG1mCyTtDfwRmItrkLLsDfzX198P14jtDtwGnOaP9wEuB7bGyeuXGKPV4j0Yc0f7OGfGcXEkQmoswnCef2BMIdjz+N9E8065+GfBtNndwt51APN7hf9QVmyKjyi882bYX/CjhWGF2bActdb83mHfu9VWCCslAZ5ZEFYmLiJ+U4jdMz5aHFceDugR/pw/IKweXHdhXDE3s3u4XHvy0WjeBVPDfwrzP4zfhhZG/PhWiHyOm/cbEkwDiNpZ5mj0YhGGe1jtAr+YKrFVWByPht4VKPoJnYEzl/08biLtXjPbHndD/52kvjg1yF7eKf0g4E+Z/MOB480s1mCBazRu9q/PB84zs+2A/YFLM+dtgDPi/TKuEb3PzLYE5gFf9AqVK4CD/PHuwNH++CXAPjgnjDXK6t8d19sDt0juf2b2Is6xo6SPPRqYa2afwDVk2wJ438QzgJ1wjV35yvBEIpHoWMyKb52UQkIMM/tY0ihgDs4fcB9JJ/rkkifgW8AFkobhrI2yDdQTZjYlUsV9klby5f/CH/sMsJk3xADo73s/AP/1valJuAnA0hzbJGAosAkwxTc4AFfihjTH+OMvAUj6J3CUf70W8H7GpWMkruEEt9J7JM5cd1d8g2xmE73nIWS8B315o4j3KhOJRKJ96cQhR4pSjXqwyW8lT8AWlkZ+2O4d3LBZN5zrRYnwCk3H7rghtatxvZUf+TJ29Ka02XrAD7uZWZOkRRk1SlOV7ynL3jgVDL4B3QPYUpLhGkaTdFKNZbfAryw/CuDAQdvzqX4btUaxiUQiEWcZaLRqGUANeQIOAN72K50PgUjwnQqY2WLgBOBQ32jcScbyw/fgijIZGCppQ79/CHA/bg5qqKSS4V9WYLFkPgvnOv8PM1vXzIaa2RBgCrAL8ABuqBQ/r7eVz1OT92BqsBKJRLuxDAgxamm0Qp6AfwEOk/Q0TnCR17taCu/fdw1uKO8HOE/Bid4T8HtVlDMfOAK4zg8hNgF/9cePAv7jpe0zYImJ74Y+BAm4xuymsmJv8McvAvpJeh44Ex+PK3kPJhKJTk9jY/Gtk5K8BwFJOwPfNLPCDWNrcfa6Ye/BbebHlT4zuodHQr+wxRvBtGNeGBQt9/SeYYXZlI/iXn17PXtWMO2F7Y6P5r2hKVz2kMa4Iuvz64S9+mLcO7Xc37Ml43uGv4OT1nwnmveRKWsG017uGX8/uy2aG0ybnROR99WI9+BL3cM3o280husEUOSSFyyOD6wMXuOjYFq3hvg9aPwb4fB4iyIXdVPP+PvZirAnZb+cjsb7EQPBATnqwVk5itUYp752dX3eg5efXNx78Ihz6qqrrUiOGICZPcTS8vdEIpFYtlgG5rRSo5VIJBLLC514rqooqdFKJBKJ5QTLWaTfFUiNViKRSCwvLAPDg+0SmkRSo6QJkp6W9KSkT7VCmcMkfSGzf7ikd309EyRdJenLkuJRC5cu9+eSnvWqxQmSdvDHx0ianCn/gAp5fy3pDUlxf59EIpHoCJYB9WB79bTmmdkwAEmfA84GPl1nmcOAEbgQziVGZaNmesJheMvwkTW/BAz3PoWrAFmjt4PNbFykiNuAC4B4aOAM0xVWp62QEz118OJwV/+N5wcG09bo1jta7oKF4aexPP/AmEJw07HnB9MAPhoR9i387owHo3k/2G/rYNrit8MqshunhVVtAENYIZj2wiurRvN+4cRwZOOrzw8rNAGebAjXO71nfIjnzRbr+lvSK/Kcer/C/o0Ae3X/MJj29oKwRyMA08PK0P594hadAy3so/muwj6MvRR/Ju8R6XT0zemQ9G2qXVg3K3LX7ZlnelgvqadVE/1x5rlIGizpAd9zeUbSLv74HEm/8z2euyVt73s6r/reU0/cGqmDfN6DKlWUDQ8i6QpJf5L0iC9nqZ4SMBh4z8xKjhvvmVk4jnsZZvaYX6+VSCQSnY9WDk3SEbRXo9XHNy4v4IxvSwuSvwHc4XthWwMT/PG+OFPezYHZwK+AvYCvAGea2ULgVFzPapiZjfL5So3YBO+4Xs5gnJntl4BKduV3AkMkvSjpL5LKe4NXZ8pfuepPIZFIJDqSZcAwt70arXm+cdkUZ5d0lbeBGgsc4X0LtzSz2f78hbQ0wb3fzBbRbIgbotSIDTOzyyuk32xmTWb2HLDUikUzm4NzbT8KFxJ6lKTDM6ccnCl/ZrG3vjSSjpI0TtK4Z2a/UmsxiUQiUR2pp1U9ZvYosAqwqpk9gHNNnwZcIelQf1q5Ce4Sg1zqm4fLDp5XHDw2s0YzG2NmpwHH4sKitCpZ78EtVtwgP0MikUi0Bk1WfOuktLvkXS50fQMuRtW6wJtmdomkXri4W1cVLGo2EJ85rv7aNgGaSqFLcGKP11qzjkQikegwOrEqsCjt1Wj1kTTBvxZwmJk1ykU1PknSIlwsrUMrZ6/IfcBPfLlnt9J19gP+LGkgsBh4GR9CpAiSzsHN060g6U3gUjM7vdaLea5HWH0G0CPyMHRvROU3OCc66vVLwpYtTSy6MMDzEf/AmDoQ4Lfjwr6FTw6Lfw3X37RSJDWctmqPuHJtZQt/jg/1jispP/79vGDaokh0YYCXGsKq0h45CrNVo/Gww0zrFr+hPbRoYDDt+T5xn8xBFlYX9locVkoCrBW5S02NhB/eOFInwHvdwr/l7jmDUPMiX8HcOrwF1cZzSdaJh/2K0i6Nllnlv3wzuxIXoLH8eL/M69MrpZnZ+8B2ZVmvKDv3itIxMzs8VEfm2Hig4hoyM9ut0vGyc04GTs47L5FIJDqEVh72k7Q3LlhuA+4hfSmBm6QDcREwDHjazL5RT53JESORSCSWF1rRe9CHdLoQp+x+Exgr6VYvdCudsxHwU2AnM/tA0mr11tsR67QSiUQi0RG0rhBje+BlM3vVL0O6Fti37JzvABea2QcAZjaj3reQelqJRCKxvLC4VYUYawHZwH1vAjuUnbMxgKSHcUOIp5vZ/6iDdu9ptYcPYVnaEleMzLExkkbklLmqpMclPVVy6sikfckff1rSc5K+64+fLmlaZgFypQXMiUQi0TFYU+Etu57Ub4VFaRm6AxsBu+Eiv1/ihW410xE9rfbyIayXPYFJZnZk9qCkHsDFwPZm9qaX6g/NnHKemZ1btJL3LexB12Dxr2dGRID21UVh5dofIoorgM8uCqsHV8wZNpjVEJZV5fkHxhSCd024OJr3/QO+FUyb+UY4Qu2UxoHRcvtGotBuvzDs8QdwwLxngmlf7r1lNO/RjeHfxbURX0KA3edFPCl7hH9TWzXFI/3+t0dYjffp+Tk+f4TnUhblqCEf6x1+P5tEIibH/j4AekW+2zwlZUPkmmPlAlFt58wcv9G6qUKIYWYX4+51IaYBQzL7a/tjWd4EHvfmEFMkvYhrxMYWvpAyOnpOq918CEP48n/te02PSVpd0jDgHGBfX2b2r3VFXGM/E8DMFpjZ5Lo/iUQikWhjrKmp8FaAscBGktbz9+Gvs7RB+c24XhbegHxj4NV63kNHNFrt5UNYlL7AY2a2NfAA8B0zm1BW5pJui5fa3wq8JukaSQdLLeykf5gZHvxcldeSSCQSbUcrCjHMbDHONegO4Hng32b2rKQzJX3Zn3YHzkjiOdza2pPqscCDjh8e/CTOh3ALXKt9mR9+u9k3HLC0D+ECM1skKc+HsETo0y8dXwjc7l+PxzWI8QLNjpS0JfAZ4ESf53CfnDs86MeGjwLYYaVhbNRvvbwqE4lEon5aeZ2WmY2mbFrGzE7NvDbgR35rFTp0eLCdfAhnAoPKjq0EvFeh/MaCZWJmk8zsPFyDVZU/YdZ7MDVYiUSi3VgGgkB2aKNVwYfwHTO7BDdsOLyKomI+hGOBnSSt4escAfSipVSzmmvu5+2nSgwj+RMmEokugDVZ4a2z0hHDg23uQ5id1zKzdyQdD4z2c09zgJG+p1YLAk6W9DdgHvAxzUODVTOjKazy23PQnGje9z8Iq8g22SesbJs9Oi6r+uw64biX77wZ9yheY0g4EnAsujDE/QNj6kCAla6/LJjWf9K9wbTHDr0+Wu52DeFr2my7d6N5H35l3WDa9R/HfSX79g1/94vmxz31Xu4Z/rOe0RC+Ge1AOEIwwCH9Pg6mLe4Tf/5daUhYmdh9YI6X4oOrBNMaFFZZjuse/52vZ+Gox2tFVIkQf9rvlnO/fyui3u3T1v2ITtwYFaXdG6129CHMnncLcEsgLVv+9cD1/vUVlHkZ+uOzgYprwuoxx00kEok2JxnmJhKJRKLLkHpaiUQikegypEYrkUgkEl0Fa+z6w4Md7YhRFZIukzRDUtgfp/nc3UK+ht6P8N3MIuCr/PErJB1QoOxNvCvHBEnPS7o4U+esTLl3V/seE4lEos1oXZf3DqGr9bSuAC4Aripw7m44peAjgfRRZnZskUolNZhZduHCn3CLiG/x6VkjuQfN7EtFygVYaOGIrwPXDyujABa/GH7mWDwzrB7sEVwd4Hh/etir76OFYcUVwBqRtMVvx73tYhGGY/6BEFcIdt9yj2DaQrs2Wm7MR67XJgOjeT+aEE7rlvO42Kdf+Lv/cH5c5de/Kfxn3T3imbfKkLhataFn+Eb2yuSVo3lXXjf83atn/MOIpS6OROGO+QNCPPJ3LA2gb+SmPq9bnvdgLL2tIxd33saoKF2qp+UXIL9fflzSD7zb+kRJ10oaCnyPZkulXcrz5CFpqqTfSnoS+FpZ8mCcEWTpuiZVW34ikUi0O6mn1Wn4CbCemS2QNNDMPpT0V2BOxFLpIEk7+9fnm9nlFc6ZaWaVFjmfB9wr6RHgTuByM/vQp+2SWYd2nZn9uqZ3lEgkEq1N15/SWmYarYnA1ZJuxrkKF6HI8GBF810zu1zSHcDeuEid35VUWjmbOzyY9R7ceOCmrNl37YKXnEgkErVji7t+q9WlhgcjfBG4EGf9NFZSazXGQQsAM3vLzC4zs32BxcAWRQvNeg+mBiuRSLQbTVVsnZQu32h5a6YhZnYf8GNgANCPuB9hvXXu7d3o8Z6GK7N08LNEIpHoVCTvwXZG0jU4VeAqkt4ETsMpCf8paQDOF/BPfk7rNuB6SfsCx5lZPGxudXwWOF9SSaJ3kplN9wbAVfGXPuE4pn+bsHqNlwe7PxxWa23fIx759joL/2CHKf5jvnfqWsG0G6eFfQkBVu2xIJiWF2E45iEYUwjmRUS+YPipwbRu64bfK8Cvur0ZTFtTcQVgrxXDqtIL9ot7DzZOeSeYNuqO8G9qwJ6rRsu9+5Lw7WJ69/jz70cTBgfTPmiI+/x91D2stltzcdiNfNPGeLnTGsLdibmKKwBXiKhKP8gxH+wTydvmHZxO3IMqSpdqtMxsZCBp5/IDZvYisFWgnCuo7Ct4eOb10Mh1VIwPY2ZjgDGhfIlEItGRdOYeVFG6VKOVSCQSiTpIPa1EIpFIdBUiXgZdhtRoJRKJxHJCzVEEOxFVqQclxX1e6kDSft7R4gVJzxTxAIyUNbSSP6E/Pi/jDThB0jqS4pEAly7nS5KekvS0d+L4rj9+uqRpmbJ/U+t7SCQSiVZnGZC8d4qell+Yey6wl5lNkbQecLekKWY2vpWre8XMhpUdK9xAeqn7xcD2ZvampF7A0Mwp50VcOJbitoVhv708Fkd8ym7p2TuYNihnLvYlC0eond87rlxbRHj8YQhx1eLKleODAtA3oriCeIThmH9gTB0IcOyTZwbTrt/qF9G8G/YM+yX2znlevPjV8Pq92VPCijmATRaHFYLTI5GLb/573FfylV7hvB8pfk2TI3eaHjl3yD4Rf8H3GsJpq8UvKeoB2C3Ht7AeFkT+bmPKwtagtXtakvYGzgcagEvNrOKDuqT9cQF2tzOzcfXUWfc6LUnDJD3me0k3SRokaTVJ43361pJM0jp+/xVJ5XevE4GzzGwKgP//LOD/fJ4xkkb416tImupfD5X0oKQn/VbR1T3n+pf0yrz7+42S/ifpJUnnVMiyIq6xn+mvdYGZTa623kQikWhvrKn4loekBpypw+eBzYCRkjarcN6KwPHA463xHlpjcfFVwI/NbCtgEnCamc0AekvqD+wCjMN58q0LzDCz8kVEmwPlPapxuA8ixgxc72w4cBDOfT2PDTLDdxdWSB/my9oS5084JJtoZu8DtwKvSbpG0sF+gXOJH2bK/1yB60kkEol2wRpVeCvA9sDLZvaqmS0ErsXZ2pXzS+C3QDj0RBXU1Wj5Bb0Dzex+f+hKYFf/+hFgJ79/lv9/F6A1F/n2AC6RNAm4jvxGDvzwoN+OqZB+j5nNMrP5wHPAuuUnmNmRwJ7AE7he4mWZ5PMy5d9R6QIkHSVpnKRxj895qcAlJxKJRP20Zk8LWAt4I7P/pj+2BEnDcY5F/2mt99CWNk4P4BqpdYFbgK1xi4ArNVrPAduWHdsW19sC5+1XutbsZM0PgXd82SOA+KB8MbK2DI0E5v3MbJKZnQfsBexfTQVZ78Ed+m1U+5UmEolEFViTCm/Zh2u/HVVNXX4E6g/4aZ7Woq5Gy8xmAR9k4lUdApR6XQ8C3wReMrMmXBysLwAPVSjqXOCnPg4W/v8TgN/59Kk0N2pZ0cQA4G1f/iG4ycA2RVI/SbtlDg0DXmvrehOJRKJequlpZR+u/VbueTYNyE6frE1LD9YVcUbiY7wOYUfg1pI+oVaqVQ+u4D3/SvwBOAz4qxdXvAocAWBmUyUJ1+MC11itbWYflBdqZhMk/Ri4LaPG2z0jcDgX+Ldv6bPdzL8AN0g6FPgfEVf2VkTAyZL+BszzdR5ea2GDIgqnz63xdjTvjOlhP+BNvx5WKB13ffxrP3Jer2DaaivEVz2sPDic/sIrcW+7h3qHnzm2XxgfDt9su3eDabEIw3n+gTGF4AETfxnN+942YWXiGw1xaduPvxceNJg3Zmo0b6/1wgrP0beEIwx/+R9LuaG1YO751wTTXh4fj1y8yS5L/dkXZvKDg4JpA/qFfxfXLQjnA4iIIXOVh4MiIT769Ij3BeZEpotmdMupuE6sddWJY4GNvNp7GvB14BvNddksYJXSvqQxwIn1qgerarTMgtrTHQPnD8m8Pgs3txUq+0bgRgC/vulXkj5nZgvN7AVa+gie4vO8VHb8x/74VCqECql0PHus3JOwUlwsM5uN6zFWeg+nh95fIpFIdDStKXk3s8WSjgXuwI1yXWZmz0o6ExhnZre2Xm3NdIp1WuWY2U86+hoSiURiWaOpmCqwMGY2GhhddqziEIOZ7dYadXbKRiuRSCQSrY81te3i5fYgNVqJRCKxnLAsNFqtInmX1OgX0z5dqzNFhTKHSao4dyRpN0mzMot4784p64qSl2HWXaPsnDGSJvvyni8i75R0QtbdQ23ozZhIJBL1YlZ866y0Vk9rXsnPz7tAnA18us4yh+HWXo0OpD9YSShRJweb2ThJKwGvSLrCr/QOcQLwTyAcJjiRSCQ6CctCT6sthgf7Ax8ASBoMjPLHugNHm9mDvkdyEU6F9zbwM+AcYB1cQ/A/4Eygj6SdgbPNbFSsUr+263Yz28Lvnwj0q1HR1w8nZW/0ZV0EbAf0Aa43s9Mk/QBYE7hP0ntmtrs/99fAl3By+H3NLBz7HHgvsrLs3rfDIcoBekUeh97+Z1gm1L93/DGqt8Kmt88s6B/N22NKOP0LJ4al9AAf/35eMO2AeUuZ9rfg4VeWMi5ZwkcTwvl+1e3NcCJx09uYpB3ge0+FzXYP3XapwNctOPtv4ZvLItaM5p36Qvhz3DCi8x5/5P3BNICd5seXB8SYcf8awbTY7xhgUcS89rmPwybMb/eIPW/CEAsvK5iTMwb1Yc/wCbO6xd9P90jy4Ka2XWraypL3DqG1HDH6+GG1F4BLcV5T4DT7d/he2NbABH+8L3CvmW0OzAZ+hXOW+Apwpu/dnAqM8nZIlRqsXTLDgz9vpfdxtaSJwGTgl2ZWWjTxczMbgZPXf1rSVmb2J+At3Hqy3TPv6zEz2xq3Pu07rXRdiUQiUTeNjSq8dVbaYnjwk8BVkrbALT67TC6cx81mNsGfvxDXmwJnsrvAzBZ5D8GhBetsMTxYctOok9Lw4KrAI5L+Z2avAQf6Oa7uwGCcx+HECvkXArf71+NxDXEikUh0ClJPqwJm9ihuFfSqZvYAzih3GnCFd64AWGS2ZEygCe/35+2Yam1Is/6E0NKjsCrM7F3gSWAHv9r7RGBP72T/n0jZ2fcV9C3Meno9kQxzE4lEO1GN92BnpdUbLUmb4lZHz/ShSN4xs0tww4bDqyhqNs67qijvAKtJWtlbQdUs0vCKwG2AV3DzcR8DsyStjosdU+s1Ai09vbZPhrmJRKKdSOrBZvpImuBfCzjMzBq9sexJkhYBc4BDK2evyH3AT3y5uUIMP7x4Ji5cyDTgharegeNqSfOAXsAVpajJkp7y5b0BPJw5/2Lgf5LeysxrJRKJRKekM/egiiLrzE3qcsCpQw8OfgE5IiT6RcanY8abGyyOK5Re7x5WHi6KhAoHWMnCZa+c4wW6KPL39FTDgnAisIGFlYmx4YTXtSha7kqR57r5OWHi37Cwiu+q8X+I5v3xiJ8F0/L+YmPfwSyFrzlv2GVIY7jclxvCilOAFSOl98yZZxkUudFObwi/n1455faMqBJjZroA/SJf/Uc5H+R8hQuP/xrh9NeurqvVmbTePoVv+FtOua1TtnDJESORSCSWE5aFPkpqtBKJRGI5oWkZUA+mRiuRSCSWE5LkvQPJ+B2WtqGRcw+XdIF/fbp3yyg/53RJ00qLpCVd5MNFx65hP0mbZfYr+homEolEZ2BZUA922UYLv6A5s01thTLP84ukNwO2JN8/cT9/biKRSHR6mkyFt87KMjU8KGkqMMLM3vM9nnNrDDzWE7eAuOSh+B3gKH/8ZeAQnKHvl3G2TqcA+/u8X5P0F2Ag8G0zezBW0VYRUVy3nMedjxrCP6yj9novmHbAnXH14LVbh1VveZFPX4qEXX+yIewTB/BSRIF2dGPcR65v37DBfp9+4by9Voyr3i5+de1g2o+/F/aug7h/YEwdCPDbccEg39y2xSnRvMPXmBFMe/btVYJpu+z3frTcCbeEfSUP2Tn8ewNomh/+4cybHv89Pv3qasG0bbuF9XaXxK0u2dj6BNNmdov/0BdEBmHmRBSaAP2CAeBhQURZ2Bo0NnXlfoqjK7+DPpmhwZtaqcwf+nVhbwMvZmynbjSz7byn4PO4xugR4FbgJN/Te8Wf293MtscZ/57WSteVSCQSdWNVbJ2VrtxoZYcHv9JKZZaGB1cD+kr6uj++haQHvTfiwcDmkTJu9P+Pp7iPYiKRSLQ5y8LwYFdutCqR9R+sx3twEc7Qd1d/6ArgWDPbEjgjp+zSgF8h78G75r5c62UmEolEVZip8NZZWdYaranAtv71/pHzokgSsBPOexCcv+Db3q3+4MypdXsP7rXChrVeZiKRSFRFUxVbZ2VZa7TOAM6XNA4fwLFKSnNaz+BMf//ij/8CeBznO5j1NLwW5634lKQNar7qRCKRaAcMFd6KIGlvSZMlvSzpJxXSfyTpOUkTJd3jTdTrInkPdjD/WX1k8At4vldcVRXzvtzLZgfTLukWl1UdsSisyPpocVwxF3tCe7BPXKya5+UXI+aJ+GHE0e2CI8MKMoAzLg0/+5y8yVvRvL+bHI4wvDBnqnuX+eHnyX2e+VU074St/y+YNqpHeGT7+yvOjJY7dcbAYFr3HNVbr4gX5qzG+G9qevfw76ZfY/g3c0fvuJPfKvQIpg3KUdl9EFEXDoioAyH+W12Q01acObU+78F7Vz+w8A1/j3f+Ha1LUgPwIi5u4Ju4+Ikjzey5zDm7A4+b2VxJRwO7mdlBNV28Z1nraSUSiUQiQCv3tLYHXjazV320+WuBfVvUZ3afmc31u48B4TUkBUmNViKRSCwntPKc1lq4cE0l3vTHQnwb+G+Vl7wUy9Ti4kQikUiEKTpXBU7ljDNVKHGxmV1cS72SvgmMIN9lKJeqeloZv7+nJT0p6VNV5q/o+9eeeL9A8xGWS8d2k3R7leWsLulfkl6VNF7So5Jaa71YIpFItDrV9LSyKme/lTdY04Ahmf21/bEWSPoM8HPgy2YWD4xXgGqHB0sLercGfgqcXe8FAEhqzx7fSOAh/39NeEn8zcADZra+mW0LfJ0K47Xt/N4SiUQiSCMqvBVgLLCRpPUk9cTdA2/NniBpG+BvuAYr7C9WBfXcUPvjvfkAJJ0EHIgLVX+TmZ3mj/8cOAyYgRv/LIWwHwNMAHYGrvFS83P9NY0FjjazBZL2DByfClwDfB63qPgoXCO6IfA7M/tr+QVL6ufr2x24jZY2S/0l/cfnvw/4vi9zAzM7yec/HNfFvQlYmK3DzF4D/pw576tAP5x0PtglHts7/Nyw54L5wTSA17uFlWAPN4SXj62Woxi9PCyqYkCPuKJx6OLw+3mT+PtZNaLm2n1e/Jpf7hn+KfdvCqc1TnknWu4mi1cPpvVaL648nPpC2MNxC/pG88b8A2PqQIBhT/8+nBjJu8b3N4mWe+dZHwTTns+JXLzZ4rBidVH8J8XsyKP1KhEPwM2a4irZaRFFY54HYEwhODdHGToosnB3lmpZqVOcmOK4WsxssaRjgTtw97nLzOxZSWcC48zsVuB3uPvgde5Zn9fN7Mv11Ftto9XHNy69gcHAHgCSPgtshFOTCLhV0q7Ax7jWd5iv60l8o+XpaWYjJPUGXgL2NLMXJV0FHC3przg3ihbHgT/6/K+b2TBJ5/nzdvLX9gywVKOFU7b8z5c1U9K2Zla6nu1xju2v4dwwvgrcADwKnOTPOQj4NTDcv5cYw4GtzCzuQppIJBLtRFMVc1pFMLPRwOiyY6dmXn+mVSuk9uHBTYG9gav8UNln/fYU7ma+Ka4R2wXX65prZh9R1nUERvn/NwGmmNmLfv9KnIVS6HiJUnmTcGsBZpvZu8ACSQMrXP9InCwT/392iPAJL91sxPXgdvZlvSppR0kr+/f1cHmhki7083xjM4fvSg1WIpHoTCwLhrk1Dw+a2aOSVgFWxfWuzjazv2XPkXRCTjEf11q/pzSp15R5Xdpv8d4krYTrGW4pyXDdWfPDmrD091TavxY37PkCrgE2Sc+SsYkys2P8ZzEukz/43rKqnC+ttD3b9ktWTolEou3pzPZMRal5nZZX3zUAM3Fjmt/yc0ZIWkvSasADwH6S+khaEdgnUNxkYKik0t37EOD+yPFaOAD4h5mta2ZDzWwIMAXXGwTY3k8odsMNAz7kj9+EG1bM9tLuBXr7Fd4l4sGiMmRVOanBSiQS7UWTVHjrrNQ6pwWud3WYH067U9IngEf9ZNsc4Jtm9qSkUcDTOCHG2AplYmbzJR2Bm6wrCS7+6gUXSx2v8ppLjAR+W3bsBn98lC/7ApqFGDf5a/tA0vPAZmb2hD9mkvYDzpN0MvAurmf14xqvLZFIJNqctpV5tA/Je7CDGbf2fsEv4PaGuMJsUUTh9PIS55SlWUlxr7cPLR4lOMZaCivqPs75k+lPWEa24eK4xOyN7uHPYs3G8FNjQ87Pf3rkhI1zPqaJvSIeczmzBruHhYfcFxctctCisEozpix85VPHRss9Z2F4MCFvyKZ/5Pl4cc5nsSAyqLVC5Dcz2OLP5LMiEYbn5AykrRh5x/1zvAd7RN7uopwOzsmv/bOuLtA1ax5c+IY/8q36fA7birSGKJFIJJYTWls92BGkRiuRSCSWE5aFcbXUaCUSicRyQmsuLu4oqlYPSlrZ+w9OkDRd0rTMfs+yc0+QtEJmf6qkST4g2P2tERAscI0d7i8oaYykEdVeeyKRSLQVy2XkYjOb6RcYD8Mp+c4r7fuYKllOYGkp+O5mthUwBjil+ksuRPIXTCQSiTIaVXzrrLTKzbaSPyDwXWBN4D5J75nZ7mXZHgV+4PMPxVknPQZ8ypdxOXAGsBpwsJk9IenTwPk+vwG7mrUM0dtR/oKS9vbXvDVuIXKOxsvxcLd+wbRDVnw3mvfVdwcG0763Tjhy8a/eXSla7i5N4Wtad2FcATi4Z1i1eL/CfogQ94LbqilcLsAOkejEqwyZE0wbsOeq0XJv/ntYafnlf+wczTv+yPCSwrynxV32C5upfOKR+MxEzEMwphDc4JELouX+cLvjg2nPze8fzTti5feCaQsXxJWhz88eGExbJfK9P9Kr9tvbWjnKw/6RrkheL2VepEGYrriHY7105h5UUVojCGRvnO/fQWa2Ja7hOtrM/gS8hetZlTdY4Gygbs7sbwj8HmeVtCnwDVzjcyLwM3/OicAxvpe3C1BJGLzEXxCYKWnbTNr2wHE4j8ENaPYXzA75HYRbRLw5xfwFDzCzT+Ma6rlm9glcQ7ltNGcikUi0M8vl8GAFGoj7A5Zzn6RpOHf2azLHp5jZJDNrAp4F7jG3iGwSMNSf8zDwB0k/AAaaWaXHko7yF9wV+CeAmU0EJkY+g0QikWh3TMW3zkprNFrVsjuwLi4syRmZ4+XegVlfwe4AZvYb4Ejc0NvDWaEFtPAXvNSHLjkJONDPT0G+v+D+eH9BXMM5fMmJZscAe+K8FkvU5J0o6ShJ4ySNe2TOS7UUkUgkElWTelqORsL+gLOBpSYyfA/pBOBQ39AUQtIGvjf2W9y816Zlp3Skv+ADuCFNJG0BbBU6Mes9+Kl+G+W860QikWgdGqvYOiut0WjNB0r+gJNwjXRJvHAx8D9J95VnMrO3cUN0x1RR1wmSnpE0EVgE/LcsfSTeMzBDyV8Qmv0Fn8c1Zkv8Bf2xdbP+gsB+wKclTZH0BG7oM+QveBHQz/sUnknLuGGJRCLR4TSp+NZZSd6DHcyPhn49+AWMXLQglARAU2Tgee11Pwym/f7t1aLl7jo//CzzUUP8OWfLhrBqsUf3+PPbQ4sGBtOmd4v/Tg9ZMaxO67dK+HN87IU1o+U+3Sv8GR+z1ZvRvA+NXSuY9nqP+Oe4deS7X5wz4fBiz7Di8YmGsC/hDxX/vW069vxg2t+3OTWYBrBbn7AaclFO6OKZc8MRut/rFn6vE+OBi4lYQ7LFgvjv7YPI38G0iA8mQEPESml+jmfF6a/V5wd43jrfLHzD/+Hr9fkcthVpfVEikUgsJ3TmuaqipEYrkUgklhOWhXG11GglEonEckJnnqsqSptK3uvx7mvj61rN+yCukTl2oaSfFsjb6H0Wn5b0pKRP+eNDJT3jXw+T9IW2eweJRCJRPa2tHpS0t6TJkl6W9JMK6b0kjfLpj3v3o7pos0arGu++SBlt0hM0sxnAb3DWU0gajpPFn1ug/nneZ3Fr4KfA2RXOGQakRiuRSHQqmrDCWx6SGoALcUYRmwEjJW1Wdtq3gQ/MbEPgPJaOHl81bTk8uAdx776hwD+AUnjeY83sEUm7Ab8EPsCtw9pY0s3AEJxl1PlmdrEv49s4CfqHwNPAAjM7VtKqONn9Or7sE8ys3OXiYuAwSbsDZ/n6F5V7CgKfjrzH/v46l+Cd7s8E+kjaGTjbzEaFCthyUfgreKgh/vV8EFHUnbRD2JPtv/96NVrur//9vWCaPfloNO/Ec8MegW8viNsxPt8n7Lv26YiiEWBxn3D6K5NXDqZN7x4v9yOFnzlfHh8uN4+XG+Iec4fsHFZDTrxvlWje5yNlx95tnn/gwxGF4LefOjOad8HvTgym2cdhRSPAR9eHf+erNIXDR98w7/VouYf0Dq+RvKt3/PsZEEmLqQMBukcU2209fNfKQoztgZfN7FUASdfi1rs+lzlnX+B0//p64AJJsjpk623ZaOV5980A9jKz+ZI2wq3ZKoXyGA5sYWZT/P63zOx9SX2AsZJuAHoBv/DnzsYtBn7an38+zn3+IUnrAHcAn8hWbmZNfuHwvcCtZvZAJnk4sFXGoilLH0kTcA3oYFzjnC13oaRTgRFmFo9fnkgkEu1IKwsx1gLeyOy/CewQOsfMFkuaBawMhJ/Kcmg3IYakC3EGuAvNbDugB67VHYYbQt04c/oTmQYL4AeZubAhwEbAGsD9pYZF0nWZMj4DbNbs3kR/Sf3MrIXdt5lN8PNQfym73LsCDRb44UFf5yeBq7wDRiKRSHRqqulpSToKFwWjxMWlUa6OpC0brWdxXn6A8+6TtAowzh/6IfAOLpRHN5yzRoklnn5+uPAzwCfNbK6kMbheToxuwI5mFh93cFSy2irkKWhmj/r3FI9vUUb2x3DogO3ZrW+yckokEm1PNcOPvoGKNVLTcJ2IEmv7Y5XOedNrBAYAM4tfxdK0pXowz7tvAPC2d3U/BDd/VIkBuIm8ud4gd0d/fCzOYmmQ/zD2z+S5ExeCBHBqvrreSQB/PQ0s/SVU9FwskfUeTA1WIpFoLxqxwlsBxgIbeT/Xnjih3a1l59wKHOZfHwDcW898FrRho1XAu+8vOCHE0zjBRah38z+gu/f0+w0uUCRmNg0noHgCF0pkKjDL5/kBMELSREnPAWFlQfX08ZL3CcAo4DAf6iTLfbjhyQmSDmrFuhOJRKJmWtPl3RufH4vTDDwP/NvMnpV0pqQv+9P+Dqws6WXgR8BSsvhqadM5LW+K+/VA2ku0dEL/sT8+BhiTOW8BTlJZiX+Z2cW+p3UTPqikmb2Hc3Evco27le1fgQtqGTq/Yo/QzKYCW/jX7wPbFan/+R5hddo3CUfcBXhzXt9gWre+4RHUDXrHRzMXXX1tMG3B1Lg/3eA1eoQTp8fVaYMsrC7skfNntNKQsGpx5XXDaR9NGBwtd3LkL2STXT4IJwIz7l8jmLZizvNi0/zw++0VifAMsNnisOle7P3EogsDLFoY9giMqQMBep10bjCt8fVnonl1w5XBtPmRCMNb9477Ssa+gfWaIr9j4oKGD7vFf6srWLjmmWpbo6UiUvZqMLPRwOiyY6dmXs8HvtaadXZEPK3W5HTf43kG59p+c4deTSKRSHRirIqts9KlbZzMLP54l0gkEoklJMPcRCKRSHQZCgosOjXtOjzYWb0Is0j6o6RpPrpxIpFILDO0phCjo2i3G3Nn9iLMlN8N+ApuBXdF+6a2voZEIpFoK6yKf52V9rwBd3YvQoDdcIuiRwEjcdJ1JJ0ObACsD7wu6QeVypO0Pc5CqjcwDzjCzCbHPpRZhD3O+q0YV+r1nhdW2zVF/Nz65LS7i2eEVYvzP4zn7dYQ/rH37xN/P70WrxBMW5Tn5zYwnK6e4WezDxriUXPzVIsxekWWo/SMKMgA5k0PX9esxnC0XoBYIODFkZvRwgXxz2Lx4nB6nn9gTCHYsE7cUMYikZp7R/zIV1DOdxv5anvk3LNjyb1yIksvjiTHr7h+OnMPqijt2Wh1ai9Cz0hf7y3AWZJ6mFnJeXYzYGczmyfpX4HyXgB28R5bn8GtI9t/6WoSiUSi/WltyXtH0GFDXZ3Ni9Cv6P4C8CMzmy3pceBzwO3+lFvNbF6sPJx7x5W+0TX/nhKJRKJT0PWbrPZttDq7F+HngIHAJN8YrYAb4is1WlnHjorlSboAuM/MvuKHO8dUqijrPbjLSsP5xIrr51x+IpFI1E9seLir0J4Kuc7uRTgSONLMhprZUGA9YC9JlSZaQuUNoNkw8vDA9bfwHkwNViKRaC+WBSFGuzVandmL0DdMewP/yVzvx8BDwD4VriFU3jnA2ZKeIq2BSyQSnYxlQfKuOg13OxWleaqMF+FlZnZTR19XjNPXPTj4BazVGFchDWwMf3fraF4w7e4e8QjCuy8Mj6IubIo/53yo8DTeQAtHUwZ4vXvYM++ZiEcjwD7zw2XHrviZ7vGR5bcjasjPLwp/xgDvNYbfz6s94zqxDRaGVaXvdY8/D02LJE9VWMH5ufnxKdiVIt9fD8XvI4qkx9SBANs/c04w7fzh4WjKk7rFv58NLfzdvx+JWA2wTSTi+KycrkAs4nhe5JBfvHZ1XbGNjxi6f+Eb/uVTb2jjOMq1sawtoE1ehIlEIhFgWehpLVNDWMmLMJFIJMI0LgMja8tUo5VIJBKJMMvCOq1WGx6UtLakWyS9JOkVSef7tU9thqTDJb3rgy0+J+k7rVDm6ZJye2ySviVpkhdjPCNpX3/8Ci80meC3H9R7TYlEItEaJPWgx/sK3gjcbGYb4Rb19gN+3Rrl5zDKzIbhLJjOkrR6kUxSjsdLPO/awM9xDhlb4WT3EzOnnGRmw/z2p1rrSSQSidYkzWk1swcw38wuBzCzRkk/BKZIOg04EGdEOwBYC/inmZ0BIOmbOAl5T+Bx4Ps+/xyc/dKXcIt89zWzd0IXYGYzJL0CrCtpC+Bc//7GAkeb2QJJU3G+gnsB50j6ECeTbwDeM7M9fXGb+UXL6wB/rNDwrIaziprj655Tel0tsaeGVRfHfzrvdA/n3jAS3fZthZVpADMt3EFeIefnvEhhwdG7OR3vqd3DT3ebRHzvABq0MJi2OOLzt+biuErsvYZw3gH94n57z30c9lKc3hD/HLftFlbqzW+MP2uuEglQMKN7+HNchbi6c0a38Pe3SlP484d4hOGYfyDEFYLHP3lmMO3EET+Llrsooo1bvzF+a5wb+Qp653RSekY0gu/k/G3WSxoebGZzYHz2gJl9BLwObOgPbY9b8LsV8DVJIyR9AjgI2Mn3lhqBg/35fYHHzGxr4AEgOvQnaX2coe2bwBXAQWa2Ja7hyi5onmlmw4F7gEuA/X0d2ZDQm+IcMrYHTpOW0nE/jXPvmCLpcknla7l+lxke3DJ23YlEItFeLAvDg+0pxLjLzGYCSLoR5zu4GNgWZ3oL0AdnnAuwkGYLpfG43lElDpK0M7AA+C6wKjDFzF706VcCxwB/9Puj/P874sKkTAEoeRZ6/mNmC4AFkmYAq+MaQ/y5jZL2BrYD9gTOk7StmZ3uTznJzK4v8qEkEolEe7EsqAdbq6f1HK7xWYKk/rjhtZf9ofJPy3Br6a7MzP9skrnxL7Lmlc+NhBvYUT7vDgUXEoecNrJkV2BWrNscT5jZ2bi4YIXd3CUdJWmcpHHj5rycnyGRSCRagSas8NZZaa1G6x5gBUmHwhKRw++BK8xsrj9nL0kr+XAi++Gslu4BDpC0ms+3kqR167yWycBQSaVhyUOA+yuc9xiwq6T1SnUXrUDSmpKGZw4NA14rmj/rPTii34b5GRKJRKIVaC8hhr+X3+XV5HdJGlThnGFy0euf9Srsg4qU3SqNlu8RfQU3V/US8CLOpT07E/oEcANOZXeDmY0zs+eAU4A7JU0E7gIG13kt84EjgOskTcJ9/n+tcN67OKf1G73f4ajycyL0AM6V9IJ34DgIOL6e604kEom2ph3ntH4C3OPV5Pf4/XLmAoea2eY479c/ShqYV3C7eA9KOhwYYWbHtnllXYxThn4j+AXkRUCNPXFMjIyC7tLUL1rur2aPD6Zt3m9INO/qDX2Dab0iqjaAjS3uiRjj9Yh6sCGi1tq0Me631yvy5zE94ksI8LbCarw1LF7vFIWViT1znjU3awp7Hi6I/KTynq7nRvwDb5gXH+beuveawbS8CMOLIjfQgZGQdeeOOyta7s9H/DyYNj/n0xixKFzvaxEVLMAchcvukxPR+vQ6vQe/sM4XCt/wR78+uua6JE0GdjOztyUNBsaY2SY5eZ4GDjCzl2LnLWveg4lEIpEIYGaFt+zcu9+OqqKq1c3sbf96Ok7MFkTS9rhlT6/kFdwu6kEzuwInQ08kEolEB9FYxbCfmV0MXBxKl3Q3LmJ8OS26sGZmitj8+57YP4DDfDzFKMl7MJFIJJYTWlMVaGafCaVJekfS4Mzw4IzAef1xcQx/bmaPFam30wwPSuot6QlJT3s1yRmZtC9JesqnPSfpu61Q3xhJk32ZD0uKjrcWLHOqpFXqLSeRSCTagmqGB+vkVuAw//ow4JbyE7w37U3AVdWsa+00jRZubdQe3p1iGLC3pB29G8XFwD4+bRtgTCvVebAv80rgd0UyyAWYTCQSiS5HO67T+g1umdNLwGf8Pt4J6VJ/zoHArsDhGQehYXkFd8rIxZJWwIW6Pxp4CXgBWNfM5pWd9zXgNNwC4FlmtqtXKn4ZWAHYALjJzE6uUMcY4EQzGydpU5zh7+bAOcDncYuff2VmoyTtBvwS+ABn8fQJ4Lc4mWYTcImZ/dl7G14J7IOTxX/NzF6IvdcTh44MfgFDmuKqqrk1anvynIJjg8o5wigWR66pR07e97qFa85TUq4QUQjG6p0RqROgR6TcmLIQoFskb95XFys6pj6DuNou9n7yWCHyHcQUmhB/Os77XcyJqBZj/oF5CsBfjwv7eZ8SURYC9Iq8o0hgYoCI3jH/c/zJa/+sSz2429qfKXzDH/Pm3Z0ycnGn6jX4RcnjcX6FF5rZ4/74rcBrku7BWTtd4yfsTgU+Z2bTyvT9w3A9sgXAZEl/NrM3IlXvA0wCvurzbg2sgrOXesCfMxzYwsymSDoaGAoMM7PFZQuT3zOz4ZK+D5wIHFnbp5FIJBKtS7JxamXMrNEb564NbO/d2jGzI3Eef0/gGoLLfJaHgSvk4mhlOxD3mNksv9D4OSDksnG1Xxy8ky93Z1yD2Ogd5e/H+QsCPFHyKcR1d/9mZov99WV9C2/0/4/HNWyJRCLRKUg2Tm2EmX0I3Icbfisdm2Rm5+GMc/f3x76Hc9QYAoyXtLI/Pdc70HOw9y3cL6cnBsU8C7N1B+vNrn+YODt5DyYSifYhNVqtiKRVS0N83p9wL+AFSf38nFKJYXifP0kbmNnjZnYq8C6u8aqHB3Gu8Q2SVsVNEj5R4by7gO+WRBnV+BZCS+/BrVZM3oOJRKJ9aEf1YJvRmea0BgNX+nmtbsC/zex2SSsCJ0v6Gy4Y5MfA4T7P7yRthJvXvgcX52pYHddwE/BJX44BJ5vZdC/UyHIpLjrzREmLcHG5Lqij3kQikWhzOnMPqiidUj24PPGDoQcFv4DNF8f96RZGtD0xFV8e0yJRj/MY2hjWJvbNWev+UUTWmHdNG0UiG8fUadNy5JAxBeBqOR/TnMg4Rt6y/5kRVePApvgAyYKI2m6Gwhe9ViS6MMAmC8LXdFfv+IexXlP4t5ynwnylIRzNNxZh+KWGeCTmPpGBpl9FlIUAZ4w4JZjWPUfp2i+SHlNKQv3eg9utuWvhG/7Ytx5I6sFEIpFIdByN+S5JnZ7UaCUSicRywrIwspYarUQikVhOWBbmtDqNerAIkhq91cczkq7zzhnVlnG4pKBoQtLNkgoZNyYSiURXoh2DQLYZXarRAub5dVVbAAuB77Vm4V5yvy0wQNL6gXNS7zSRSHRJmswKb52VrnwDfhDYyq+RugxYHxe++Sgzmxg6nlPmV4HbgHeArwNnAUi6ApiPs4Z6WNKFwIXAqr7s75jZC5L2wS127gnMxC1efidW4SoRxdYmixYE0wCmdg9HqJ0R+WZn5XjX9Y9ET40p0wDejxiv9W2Ki5HmRZLr8bbr2xS+ppifXh6DFsc/xw97hq+qf858+IJIlOcPcvwSB0S+vxUjn1TeNX3QEM47IJ41+tyed3vcZlH4xzw38sXHogsDvByRlcbUgQCnjftVMO2XI34RzTs9ouBs6+G7ztyDKkpX62kBS3o7n8f5BZ4BPGVmWwE/A67yp4WOxxgJXOO3kWVpawOfMrMf4VznjzOzbXH2T3/x5zwE7Ghm2wDXAksZ9SYSiURH0WhNhbfOSlfrafXxXoHgelp/Bx6n2dbpXkkr+8BiOweOV0TS6sBGwEM+0uYiSVuY2TP+lOvMrFFSP+BTwHXSkqf0UpdnbWCUD3rWE5hCIpFIdBI687BfUbpaT6s0pzXMzI4zs4WtWPaBwCBgig8xMpSWva2S92A34MPMdQwzs0/4tD8DF5jZlsB3gd6VKsp6D46bk7wHE4lE+5CEGJ2DB4GDAbxH4Xtm9lHkeIiRwN5mNtTMhuIEGV8vP8mXMcXH8kKOrX3yAGCaf31Yed5MGUu8B0f0S96DiUSifVgWhBjLQqN1OrCtpIm46JiH5RxfCklDceFLlkjdfRiSWZJ2qJDlYODbkp4GngX2zdR5naTxwHs1v6NEIpFoA5aFnlbyHuxgfhyJXLxGTuTimGfbzIiKr0+OYu6jSN68qKyDImX3z/HqmxJRc+XVu27EbDH2KcYUZHms2Rj/HN9qCJc9IEdJGVMIxtSdAHMjN5xYhOd+eerByJewIEeEGVPF5UWlHhj5rHpHvr7pkc8fXOygWol9fb8Y98to3t9sG1cXxvhFnd6D6668VeEf/GszJybvwUQikUh0HMtCJyU1WolEIrGckGycEolEItFlaK8gkJJWknSXpJf8/4Mi5/aX9GbMXi9LarQSiURiOaEd1YM/Ae4xs41wAXp/Ejn3l8ADRQteZhotSSbpn5n97pLelXR7FWWsIOlqSZO8Ke9DfjFxLM+cwPErJB1Q/B0kEolE29KO6sF9gSv96yuB/SqdJGlbYHXgzqIFL0tzWh8DW0jqY2bzgL1oXjNVlOOBd/ziYCRtAsTDn9ZJr8hzw9wcn7+5NWp7YupAyFfqxZgVueZZdfza4i5y8FYkAnGPiGIuT0m5IPLHOyfn848FRZ6f8932iygEF+XcUGIKzphAMOb9CHH/x+45T+YrRN5PXpTtmGqxZ+Sa5tThsZmnaIz5B+apA38yPqwuHLntCdG89dKO9kyrm9nb/vV0XMPUAkndgN8D3wQ+U7TgZaan5RkNfNG/LvkIAkvGWG+WNFHSY5K2qpB/MJmGzswmm9kCn/9Hvvf1jKQTyjP6RcYXSJos6W5gtVZ8X4lEIlE31cxpZZ17/HZUtixJd2fuidlt37I6jcq+yN8HRpvZm9W8h2WppwXOpPZUPyS4Fc7lfRefVjLQ3U/SHjgD3WFl+S8D7vTDevcAV5rZS74LewSwAyDgcUn3m9lTmbxfATYBNsM9VTzny0skEolOQTVzVWZ2Mc4cPJQe7B1JekfSYDN723uxzqhw2ieBXSR9H+gH9JQ0x8xi81/LVk/Lhx4ZiutljS5L3hn4hz/vXmApA10zm4ALZfI7YCVgrKRP+Lw3mdnHZjYHuJHmxrDErsA1ZtZoZm8B94auM/sE8+Ts5D2YSCTah/ZSDwK30uxCdBhwS4VrOdjM1vG2eScCV+U1WLCMNVqeW4FzyQwNVoOZzTGzG83s+8A/gS+05sX5OpZ4Dw5fMXkPJhKJ9qEJK7zVyW+AvSS9hJuv+g2ApBGSLq2n4GWx0boMOMPMJpUdzzXQlbRTaT2BpJ64ob7XfN79vLqwL24o8MGy8h8ADpLU4LvDu7fqu0okEok6aa+elpnNNLM9zWwjM/uMmb3vj48zsyMrnH+FmR1bpOxlbU4LP6n3pwpJpwOXeQPduVQ20N0AuEguUFY34D/ADT6+1hXAE/68S8vmswBuAvbAzWW9Djxa5HqjSjDFFUyxvDG/vYFN8WeVD+vwvZsfuaaY0gtAkT+UmRG1FkCf6PNXuNw8LVVMXTijW/yaBke8I2MqS8iPEB1jVuSzWsXC1zRdi6Pl9o/kzbFSZGZEyRd32Iwr+d6JXPOAyPW6emPKw/jnX09PJKYQvGb8H2sutwidObhjUZaZRsvMllpPZWZjgDH+9fsE1gpkzr+KQIRjM/sD8IdQvV4hU+hJIZFIJDqCzhxypCjLTKOVSCQSiTjJMDeRSCQSXYbOHCerKKnRSiQSieWE1NNKJBKJRJdhWZjTqkoCmba23YCjUt5lM29Xu96Ut/P/LpbXbVlcp9WVOSr/lJS3i+btateb8rZP3nrqXC5JjVYikUgkugyp0UokEolElyE1Wp2LoKNyytvl83a160152ydvPXUul8hPBiYSiUQi0elJPa1EIpFIdBlSo5VIJBKJLkNqtBKJRN1I+lqRY4lEvaQ5rQ7E/1H/z8xmSzoFGA78ysyeLJj/i8DmQO/SMTM7M3L+n4nE6TCzH7RF3hiSTs255rPM7Gf+9V5mdlcVZd9pZp/1r39qZmdXkbfmen2eVYHv4CJpL3GeMbNvFci7Ey6Uzro+r1xWWz8nXwNwt5lVFctN0vBYepHfo6QnzWx43rFA3o2As3Hx67K/5eD7lXSsmV3gX29uZs/m1VOhjI2Bk2j+nEv17pGTb1XgxxWuN5hP0ldjZZrZjcWuOpFsnDqWX5jZdZJ2xkX3/B1wEbBDXkZJfwVWwAWbvBQ4gOZ4XyHG+f93wv3BjfL7X8PFAWurvDGOBIKNFrA38DP/+rdANY3HqpnXX8PdGItST73gwos/CNwNxANvLc3fgR8C46vJa2aNkpokDTCzWVXU93v/f29gBPA0rqHcCve9fzKUUdLncdG915KUjWPXH4gH6GrmcuA04Dzc7/kI8keBvgVc4F//A/fAVy3XAX8FLqG67+hq3O//i8D3cLH53s3Js4//fzXgU8C9fn934BEgNVpF6WhLjuV5A57y/58NfCN7rEDeiWX/9wMeLJj3MaB7Zr8H8Fhb5QU+CmyzgcU5eZ+s9LrgtXZIXp9nQh2/i8fryHsLLgjp33HBUP8E/Klg3huBLTP7WwDX5+TZGjgcF+H7sMz2VWBQwXrH+/8nlR8r+P08VeNnFa2jwPVOzBwbWzDvncDgzP5g4I5av+/lcUs9rY5lmqS/AXsBv5XUi+LzjPP8/3MlrQnMxP0BFGEQ7kn4fb/fzx9rq7wfAtuZ2TvlCZLeyMm7mqQf4Z78S6+XYC44Z4j1Jd3q85ZeZ/N+uY3qBbhd0hfMbHTOeUvIDNPdJ+l3uEZkQabOIsPGN1L7U/smZjYpU98zkj4Ry2BmTwNPS/qnmRXtWZWzQFI34CVJxwLTcL+rGAMlfQX399K/fPjNIsNtklbyL2+T9H1c1PHs5/x+xYzNLPL/v+2H6N8CVoqcn2WImb2d2X8HWKdg3gRpeLCjORA3DHWumX0oaTBujL0It0saiBtSfBI333Rpwby/AZ6SdB/uprwrbg6lrfJehZs3WKrRAv6Vk/cSYMUKr4uwb+b1uVXkq7leSbNx34WAn0lagLvJleal+key/75sf0TmtQHRuRZcBVcWuc4AkyRdCvzT7x8MTIxlkDTJXxvS0uHrzWyrAvUejxvq/gHwS9yQ2WE5ee4HSg8dD9A8/Ia/nljDPZ7m7wha/s0ZEJ07BH4laQDwf8CfcQ9xP8zJU+IeSXcA1/j9g3BDyImCJCFGByJpA+BNM1sgaTfcHMJVZvZhleX0AnpbFfMYktagee7scTOb3h55OxJJPXBDXtPMbEZHX08ISeub2at5x8rS9wXWNrML/f7jNM/pnWxm1xeotzdwNO5BBFxjcJGZzY/kWTdWppm9lldvpqwVzGxu0fO7Kr5XuIvffcDMburI6+lydPT45PK8ARNwvd0NgRdxvabRBfOuAPwCuMTvbwR8qYq618JNCO9a2nLOHx7b2vAz+g6wkX8t4DJgFq4HsE1O3r8Cm/vXA3CCkUm44aeRbVWvz3NPkWOBvEvNoZE/x/Mwbugp+9taGTf0lFsv0ADc10rf2Sr4B+KC53/Sfzev+/2tgb/k5NkHWDezfypOQHIrsF7Beo8BBmb2BwHfL5BvY+Ae4Bm/vxVwSmt8dmkr8L119AUsz1vp5gScDBznXz9VMO8on6/0h7MCBSf/cWq4qcB/gNv8dmtOnvv89ihuuGscbphlEfBoG35GzwA9/Otv+DpXxqkto8IT4NnM6xOAm/3rNfI+51rrxSnwVvY30EG4uY6VcNL3F3Lq3BTYH3gFJ2QobYdn30sg79iy/Qsyr4uKbO4BBlT5/ewIjMENx23jP7fpwAxg74JlPA4MyX4npd91JM9EYAX/+ku4h75tcWrUQsKGSn8vRf7+cEOT21d5vbMJi5E+quYzX963NKfVsSySNBI4lOYx+R4F825gZgf5/JjZXFWaVKjMfrhJ9wV5J5Ywv/ZH0o24ntUkv78FxefDamGxmZUmvr+EGz6dCdwt6ZycvAszr/fCSZwxs+kFPqpa6/0uroFcE9fQlSr6iGaJdohNfF0DaTlHMxvX84vRQgxjZsdmdlelGHNw81p3AR9nyoqtwbsAtzRgAE7G/Xkze0zSprh5m/8VqdjM3ij7TvIk6GbNQ4lfBf5uZuOB8V5cUYQGSTLfqvh1bj0L5FvBzJ4ou96oCMXMqpmLTURIjVbHcgRuncevzWyKpPVwa06KsFBSH5onwTcgo4DK4VVc41i40cpQtcJM0lfNq7kkDTKzD6qor8kLVD4A9gR+nUnrk5P3Q0lfwg0H7gR8219D9wJ5a6rXzM4Hzpd0nJn9OaeO8ry3ALdI+qSZPVpNXuBxSd8xs0uyByV9l/z1eyVqUR52N7M7fV1nmtljAGb2QvFnKN6Q9CnA/Lzj8cDzOXkkqR8wF/f9/CWT1rtylqW4AxjlFbzgHjiKNLLv+b+30t/eAcDb8SzNSNqalnNaUbFLoiWp0epAzOw5nGKqtD8FN3RXhNNwf2BDJF2NuykfXjDvXGCCpHtoKfUt4moxsVqFGXAKzTfDe6huIeipuKHIBtwQ5rMAkj6Na3xjfBe3TmkN4ARrFozsiRsabat6MbM/+15ouWvCVXl5cerMY1ja7STmpvFD4GZJ38CpScENl/XC9axzsdqUh02Z1/PK0oqqvL4HnI+bZ52GW8t0TE6eP+Lm7T4CnjezcQCStqF4A3IS7jdytN+/i2IK3GNwIUU2lTQNmIL7O8hF0vG4XnPp7+FqSRdX+4CzPJPUgx1ILfY1Pl83nAPGPbg5BeHmLd4rWG9FOXGRm1YFhdn9OIVZsNcm6Skz26b8dVF8z2jFbA9NUl/c73dONWW1V72STgN2w323o4HPAw+Z2QEF6r0OeAE3l3Ym7ob4vJkdXyDvHrjGDtw82L2x832empWHkhpxQ4nC9UBLQ3bCKVqjw91+SO4qMyt00y/LuxbOYeJpM2vyxwbj5iJfL1Dvs2a2aZV1NgC/NbMT/W+hm5nNriL/ROCTZvax3++LmxMusjQgAUmI0ZEb8BDuqX8ibh3T6cCZBfOOq7Punjj59xZ4wUGN5ewCXJhzzgu4SfptccM+29AOysMO/m4n4Ra+Pu33VwfuKpj3Kf9/ye2kGseSPwGfqvJa61IetsJn9RDQswO+o1uAdWrIV+i7iPwuemf2e5NxAklb/paGBzuWPmZ2j58Mfg04XdJ43NBUHndLOhGnIsxOmuet5sevCbsSpyAUbojxMDN7oMhF+yGYkbjF0VPInweZDvyhwmsouGi2CzLPzJokLZbUH6emG1Iwb0kA8qEfYpyO61EUYTxwiqRNcE4P15ofOovQ08yyziQPmROdzPQ9gbbmVeBhOceS7G85z3WkXgYBz0p6oqzemFMKuOHbW3HCnmy+IvOBl+PmH2/C/e3ti7PcShQkNVodSy32NSUO8v9nx/6LrOYH57zwWTObDEvcrq/B9YQq4s8Z6bf3cI2lrICjuJntVuCaQvXuZGYPS+plVagdM/m7AQeY2b9rvYYaGecdSy7BNSRzcMsFinCxpEG4dXi34n4TvyiS0dwQ75VyVkX74+zB1jGzjSLZWkN5WA+v+K0bzc4j7TFvUegzrUBvnG1a9mErz4XDnWT2B0ljgJ19niPM7Kkar2O5JM1pdSCStsMNlw3E2dcMAM4xr8CqobyeZrawwHkTrWwMvdKxsvQmnGv5t83sZX/sVcuZf/PnbQe8YV4IIelQ3A31NeD0WO9Q0ngz21YFw1wEyhhnZiPyzwzmX4ulw1cU6pX6/EOB/taOKjFJ2+MebPbFzYftEzn3amCMVVYe7mZmI9v0Ype+nt7APmZ2XcHzG3DDr9nvJzqnlcm7OrCd333CanRKkbSdmY2NpK8ALDK/jML3hL8AvFawh5bwpEari+PXZu2Bm7T/kpmtXiDPZTjVV0kB+E3chHJQnSZpP+DrOJXi/4BrgUvNbL0C9T0JfMbM3pe0q897HDAM+IRFxAmSHsPN+e1LcziUJVgBxaOk39DcO6x2KPW3uJv/czSvHbLYEJIXcDSamUkagrO8eqXIE7VXJ35gZhMlHYgTvLxMjtglk/8c4Cu4nsso4CbLsQWTtBpwM05JupTy0CoYHZflrymOV4UyPofrye9FcdHKcTgl7Ts0Kxkt9gCWyXsgzoVmDG6obhfgJCtgeeXzb0bz6MOHsQcjSQ/gHvhekrQhbhnC1Tihzlgz+0mROhOp0eoQJN1GPKBi3pg6knbENVT74RwXjsFJs3PXQMl5FR6DG6KAZo+5IjfFvrgGZCSusbwKd2O8M5LnaTPb2r++EHjXzE73+xPMbFgk7yo4F4rfUmGuz4opHqdUOGwFe4mTga2KDk1K+o6/1jm43vNJuIZgG+AyMwsuafCfzVa44afJuGHB/+EeFLpZAYWd7x3dYAWVpGV5q1YeZvLeA3zVqovjVWqkv4HrdTyBe6/rW0EPQkkvAzv4ObiqkPQ0sFepdyUX3PHu0m81kGcozQ3VIlwPfISZTc2pa5KZbelf/xJYycyOkdQTZ9G1ZbXXv7ySGq0OwP+hBjGz+yN5z8IFNHwdNw91E05JWKTHsyqwqrn1YdnjmwMzzCwvkF15eYP8tRxkZntGznsGGGZmiyW9ABxVGl6T9IyZbVGgrq3NhcFoVyT9F/iaFZTWS3oW9zCwIm7od10ze88PD401s80jeZ8zs8388Ng0YDVzgR2FUxLm3tj8uV+hec7kIStoyCoXxPFaM3ukyPlleW/BNcyF3TQkvYn7HV+Es9iaLWlKkd9ypoz7cA1P1WFRsg2J3y+pPSt+zpIexTm6X4v7nF4qer3Z4XdJDwO/M7Ob/f6Sh7pEPkmI0TE8R+XGYzPyI6AeifNZuwi4zZxDfNEnjz/T0jmgxErAz3FPvBXxqsaHgP/i5j/m+17dxX6LcQ1wv6T3cAtQH/RlbogzoS3CW5J+RhXh69U6Ic6rXYi90H8uH0h6udTjMWezlTffON+fO1/Sa2bW6PdN0qJ41iVciDNgLoW++K6kz5hZ3mJdqE15WKIWN43rcSMFBwGNvuEr9FtWc3yzV4Exkv5Dy++niPLwf1o6TEgs/tk7uAXQq+MEKi8VvV7covxzcQ8jG+IWUOPFOokqSD2tDkDStTgX6wfKju8CHG1mscajATfmPxK3xus+3PDZkLynzZggIa/H4+dpdsbF/9odp566A/ivmb0Yq9fn3xEXpPJOa15YuTHQzwoEN5T0CK6xaxGC3sxuiOS5PFKkxRq8TBlVLcT2PcmROCXcP3EPAvLbP80saHnlex5/8Of+kOalAcI5euRK5n39nzD/h+17D8/G6q1QRkl5+HXcOqag8lDSj3Hx4KoJV5/NL9wi7JG4IcIBOLut0bHerdzi7SBmdkbB+r9K8zD5g3m9Urk4Wl/117sRTkT1OTOLWmXJWa4dj/sbuKw0aiBnX7WBmRW1b1vuSY1WB1BP41F2bi+cwepI3CTyPTkN3mQz26TatMD5a+IasL1xT46PmVlRo9KqyZv76iz44aogMbFCa9yIJd0OHGM+jpVcvKsLLKIerFBGNcrDC3A3/WPM7OGidQTK6kGzGONzZrZKPeVF6tkIFxR0A9xi3xPNbFoN5ayGW6s4Ete4F12Hl6iD1Gh1AK3ZeGTy9ccpvYLedn4I5UIrCwEv6fPAD8zs89XW6/N3w1nT1HXTyqnjV8Aj5deek+cKMzvcvz6siGgjk/ffZnagMpF5s1gns93JiHsG4CTcT/j9HXBS7t0KlFG18tDnG45ze38eN2y9xI+wSC86UGYfMyv3Mqx03l24OccP/f4g3LDm5yJ5HsQJiEoRjz9lZtGh5ALXsa5VEfAyUTup0eoA2qrxKFDvRjij2Edww2zgQrp/EieXDw7zqRUUj/UgF8a+L27eolD4erX0PKxqnZekIebCZaxbKb2z3aByxD1WPhQdKKMe5eFuwA24nkvpd2Jm1qZuJ5V64MrxtyzPU+1vI9GxJCFGx3AC8B+5dSJLNR5tValXO22Jm2cpDUHeD3zXIiHVPef6/7+Kc00vrfEaiZugblOstnhE9TyR3YLzRXxN0p/N7Lg6ympzLKA4lbQz7jsqshj6YuArPk8h5aEfIvs9zollD2t/hWejnOPH6/561iX/e+8tZ0VWip3SJ7tfa++wGuTCqhCbt0tUJvW0Ogg/H5VtPJ4F/lWg8ViS38rWDlU61tpUmo+LzdGVnfdV3Bqm1WgWJ+T1lsqfgA14z1p65YXyzsDJk4Wbo7m2RUFxOXbNvbSOxt+Av4FbjjAF13vKC0CJpL/QUnl4EG5RdFB5KLcG7mzgEqvzZiJpBSu4PiuT53M4q6z7YckC4aPM7I5Inti8Y5v2Dv1D41U4xa5wauHDzOyZtqpzWSP1tDoI37hcLmkN3LxDE06JND2WL8OjLB2XqtKx1qavpPXN7FUAucCVRU1Vz8HZ8+QF+Mvy+wrHVpJblDnSzCZE8p6UeV1Uul2iphtwhUa2ZaGRp/iMjDuUNyjjVh3ekBn2oKXy8Ercw1SM7a3K9X3leAXdpbjF1OvIBUn8bp6wx8+lDsD95nf0h0/IG96s8jPJ1vdn4kPkReLR/Q34kZnd58vcDdfD/VQt17Q8khqtDkTSt3EuD/fhnrr+LBf99bJInjVwa0VaDGngFj2u0MaXDE6KPUbSq77udYGjCuZ9p8oGK3iDkTQCF4Zj10rpPm8tQQ1LbCoX+0jABv41NPcOQ0KMSo3skksi7mhfT0j2F3BLAr5kzd6QP6yyjJdx4UhK83VD/LEg9TZYnvNwqsFbfZlPy9l9RTHnon+yOTPk21vhOvKo9sGnEn1LDRaAmY1R+zjpLzOkRqtjORk3bzITQNLKOJFEsNHC/XEfDqxNyxAfs4Gftc1lNmNm//OCjlLwvBeqGJIcJ2kUzT53pTKrNgw1s3GleYE2ovC6piy1PsX7vIXWFgX4Km5d1X2SSt6QheLdZ0Q2KwLPy4XqWKI8rOOaCuNFL9lDRdd91Ryip1rKH4JqnJd6VdIvgNK6rG9SIBJ2opnUaHUsM3GNTYnZ/lgQaw49sb9FFtZWIiTfJr/3kC2jBy5EeelJeIykv5l3r86hP85h4rOZY4VCOlS4jtVpw/AVtaoDVYcLh5yNUixvcPjJnCXQzWr2hjwBWE3SReR4Q9IssqlYdOyayqllXgp4ww8Rmv99HY+TzxehnhA9NSEX4+wf+HkpSe8Ch5pZ3lAqwLeAM2j+zT/ojyUKkoQYHUBm7mIYsCVOqWa4m83E0tqinDIG4oYWs2Hvz7SIYWlIvl2iyI1a0qW4SLqlp85DcI7mR+blrYXAPMJKuDmA483stgJl7GRla8gqHWsNVIcLhwLuG5nMVQ13qqA3ZCT/zrh5w1wLqOy8lJkVnpfyeVcBzsc5uwhncXS81WCCWy2qIeyMnDvLz8vmpc4yszQv1Q6kRqsDUOs4H9wAPEPLxmNrq3ORZIF6lzL3rHSsLP1kMzsnNJGdo+Irv5Ebrjc61grGPqqk/utqisD2og7l4ePAAbhIAyXVZWF3lzqutwdwNJmeP1Co568aws74fLX8DdwaKzOvzkQzaXiwA6hz7qLEBma2f2b/DEkTYhnkFujGhgeD0vMMjZI2MLNXfJnrkz//UDIGrnoiux4xhaRP4npkq5Yp8/oDDbWWW7DupcKoAJjZmQXy3kflxr1NpNitpDyseV4qMCw6Cxe94Jac7Bfhev4lI+hD/LEiPf/9gE1qWCZSy7zUJ4E3cMsJHqfgfGNiaVKj1YHUeXOaJ2lnM3vIl7UTzkE9iNW2QLeck3CT/Vn14BE5eQ4AbjezK1WlnVKd9MTJqLvTUpn3kb+mIK0w//dx5nVv3KLxovM0J5bl3R+oOvRGFbSG8rCeeaneOGFPKVLx/rhe3taSdjezEyJ5tyvr4dwrFyerCK/iGrxqG61a5qXWoNno+hs4Z5prCs6DJTKk4cEORNK2md0lNyczO7lA3q1xixQH+EMf4BYpFg7pLudm0Lu0b8VDlPcCSv6Ik/OeVLNDcR0xLKeML5xf29PPzD7KyxNLr1ao4T+zO6yAB2Ag/xNmtn0V5/en5TxNUE2nOqJSZ8qoeV5KLjr1Tuad4uUiCjyIM+KdZGabRfI+ifMezPb8ry/yG/ND7FsDRcPOlOdf0Z1enauF/y2MxEVNPqPI8GuimdTT6kDMbHzZoYe93LhI3qdxT6L9/f5Hkk7AhaaPIunLuPVEawIzcL2l52mOWhvLWwqLPhT3+/mMpKLxi2pG0tfM7Lq8YwHOlvQ93HDVWKC/pPPN7HehDLWqByOsgFumkItcaJAS3YBtaX44ycv7XVwvYD4ZD0Aiaro6lYelMt4DciMrBxiE6xGXRER9cZF9GyXl9YJq6fmXuNVvVaGWrhbIxYk7zHJcLXxj9UVcgzUUt86wUIDORDOpp9WBBG5Of7IaXN59ea+b2ToFznsat8j1bjPbRtLuwDfN7NsF8o7G3RAn0dLNOzhPpzrslDJl1CymkDdIlXQwzj3hJ7gQ50Uk/jvigmd+Ajfc2AB8nDf/Vza82IALGnhmQVHDlMzuYtxQ2ZmloeCcvC/hHPerNr0tK6cq5WE981Jyi+xPwYkohBNVnIWb/zndzE4K5FsV10i9ibMGgwI9/0BZg3Ax6Yo89FWtHpR0Fc6ybTTOhT7ZNtVIarQ6EH9zMtwfalU3p0B5b1ixQIHjzGyEb7y2MecsUCjktzJhw6u4rpql3HLO91/AxS0alUnqD2xWZMhM0rO45QX/wsWWur+K9zsON3R2Hc7U+FBgYzP7aU6+7PDiYpwbSF6QziXGr7Uit7D4q1b9Wqm6kHQxleelVgZezZmXQtJgoPRdjjWzt3LOPxLXsL0CrIfzG6yq1yRpDPBl3IjBeNyow8NmFrXTqlE92ETzPGf2pluNCCpBGh7sUKqZMyhaZMHzPpRbzf8AcLXvCX2ck6fEfyV9tsiQ0ZKL8o1SaIgvJ/tbONXhl2l2xAe3ELuoWOBvwFTgaeAB36BE57SymNnLkhr8nMvlkp4CKjZaku40s8+ac4f/qZmdXbQenFNIae7vhjJ1aFF+CjwiJ0Gvep6mDrai5bzURWTmpQrknw+8jZtj3VDShhZfL3UCsLmZvevnsa6m+qG+AX5Y/UjgKjM7Tc12XTGqVg+aWbcqry0RIDVaHYCk7YA3zGy63z8U92T6Gm44JDZpHpOt9yl4CfvilIY/xM1DDABypdiex4CbvKChUFyrDD+l+Uk8dmwJfu7uaUn/smKuG5XK+BNu/gBww6hAUTn3XDlz3glyQRLfxg3lhlg18/prOAf0omRl0LU6OvwNuJey4dt2oOZ5Kd9oHI+b85uAM799lLhP40Lzvodm9qqfL6qW7r6HdyDw8yryZdWDRnK1aFdSo9Ux/A2nskLOGPQ3wHG4IayLicix65WteyHF7ebW4DTRvDi5KH/ArTmZZAXHljNDfGuVzX30p7iU+3OSfkmze0HNwypmZpIOAWLuFSUOwc1JHYtr5IfgHjCCxVd7PYG8tZbTI294K4QXYszzw8Ub44b7/lvwYeEcXMM+hsy8lC/z7py8x+OiLT9mZrtL2hQ39Bdj7bLfUov9gj3LM4E7cHHDxvoe20uhkyX1Br6HC98yCfi/Wh+kErWT5rQ6gOz4t6QLgXfN7HS/v1Qk1jao/x7cvEfQ8imS9wFgNzMr/BQvJ88fhrtJZBfdzgbuM7MPCpTxMs4UtnBjmVNeIdFKDeV+iBt2LcV2ajHEZRHnA0mNuGHaUq+5NC9VuIGWdBZuKPQ2Wg4P5hrIShrvr3kQ8DBOabnQzAqpAqudl8rkG2tm28ktjt/BzBZIetbMgmrWeuZJa0XO7HkRrmf1eWBq3lxdovVJPa2OoUFSdz8xvyctQ3u0x3cyB5gk6S5aOmMXeTp9FWeS+19a3hSDkvfWGOLDuQk8U02DFZmfELB6wTJKYpkWmFlo+G7fzOuYEe1SmFlruHSM9P9n59yKGsjKzOZ6Nd9fzFlvTaii7mrnpUq8KeeleTNwl6QPaA6PUpF6GiVJ3wHGmIvkLeDvuNGNqTjp+lOBrJuZ2Za+jL/TTg74iZakRqtjuAa4X259xzzckxuSNqR5TqAtuZEanNU9U/zW02/VUM8Q38nAaEn3U7CxxDVMn8MtvM4iXAiYImQjMvfGzVOtFDg3GPa+vahT3CM566uDgdLyh0INaY3zUgCY2Vf8y9PlXGIG4BY5txXHA1f41yNxC4zXA7bBzX3uEsi35IHLzBarpWVVop1Iw4MdhF//Mxi408w+9sc2xrk1BKPbtmL9fYB1zGxyjflrCY1e8xCfpDvxPUSKrw/7O3B5pSUEvtf3jWquIZN3vJltm39m+6P6DGQ/DfwfTvb9Wz/Hc0KRHrjcurTSvNSw0ryU5Rg4+znWZ81s09h5rUl2CF7Sv4DHzex8vx9c+5cZvoWWQ7hJtt6OpEZrOUTSPrihq55mtp6kYbj1YblO0/5J/O/UFoLiPmDPaubDMnnb3DE8UG/2BtYN1/M6OrYmpyNRO4eOydRb9bxUJu8twHFW5xq1oshZP30R1wN/DdjDvAegpOfNrKYAoIn2IQ0PLp+cjpswHwNgZhP8U3UR/kgNodE9tQzxlRhd7fqwVuL3mdeLcfMeB+ZlCq1JKz/WBtRsICtpBC769VBa+hYWWUxe9bxUhkHAs3IWZtk51iIPUasC36lwzTEJ+qm4tX8NuFAqpQbr06Qowp2e1Ggtnywys1llY/KFez9We2j0X+OG+HpT/XzY0cCJfs1PtevDasaqDM+Roeo1aa1ELaFjSlyN8/Kreo1XnfNSv6imrjJuwc0J303B92lmt8stMF+xTLk6juZIyIlOSmq0OgGSVsbNQbxuS5votgXPSvoGTsW4EfADigsT6glBsWatQ3z1rk+rBbmAiP8HlFzGxwHnmHPIKKk/y/O0xpq0eqjHQPZdq9IKCZael6pWjFKneGUFM/txDfmG41SVYyVtBuwNvGBmo+u4lkQ7kKxFOgBJt0vawr8ejItA/C3gH3JO7W3NcThH9wU4P75ZOFucInwPOAZYC5iGW3+VO5/lGS3ps9VcaAlJO/mFqkj6pqQ/SGr1dVaZ+vbH9YruBQ7322PA9X5e745A1pLt1Hyc7VRpuxU3rNqmmNk9QOlB5DhckMP7CmY/TdKlkkZK+mppK1BnIzC51u9D0o6SxkqaI2mhpEZJRW22bpf0hSrrOw2nErxI0tnABTgHj59IqsYZI9EBJCFGB5CdoJb0M2BTMztULj7PwwXnEOqpf3hrKRTl3LG/b2a/LnDubNzNoeohPr/mamucx90VwKXAgWb26dqvPre+L5vZ1LLjQ3FBE/9gZj+L5O9Rx5q0mqlTPfhPnAvGszQPD1rO/FAp7wM4yXgt81I1mRL7vKXf1EK/5f6mvNJxGNALmA6sbc6DsA9OSdimf3+J+kjDgx1D9gayJ3AJgJnNlnODbmt+L2kN4HpglBUIkyBpCG7uYU1cDKBrcf5rh+LWneVS5xDfYjMzSfvinNr/LrcItq3oXt5gAZjZVEmvxRosT6vZTlVJPeHnt7Maw+JQ37xUVabEZflq+U0t9vXMlfSK+YCgZjavnf7+EnWQGq2O4Q1Jx+HiAA3HT1j7J70ebV25OX+3NXAquL/JBZIcZWa/imS7CrgfuAE3/j8Ot4h0K/PGv3lI2gmYYGYfS/om7r3/saDUebakn+IctXeVM+xty89qkSqECvET+EXiNf2RVrSdqoJ6ws8/ImkzM3uu2krrnJeq1pR4CXKKoIOB9czsl/7harCZxdwqFqp5neGS9XaSBtC+JsOJWjCztLXzhgtY91ec8umzmeO7Aye287VsiQuxsDDnvKfL9t8EulVZ10Rcj2Nr4Cnc3Nj9BfOuAfwI2MXvrwMc2oafy37Ai7i5rC39dgQwGdivQP77qv18Wum6nwQ2yOyvDzxZMO/zuCG2yf67mgRMLJh3R5xX4RxfRiPwUcG86+IUpf2B03CmzBsWzHsRcCHwvN8fhPM9jOXpFTi+CrBle39naatuS3NayyGSPoGT9h4AvIcLrniDmc2I5Hka2I3m8Bn3ZfetmCHrk2Y2XNKpwDRzQ3yFog+XlbMKMNPa+MfrF07/H060Am6u5/fmvBTz8m4H/BLXO612TVrNSNoDN+fXQj1oBcQYahm4cglmlrveqp55qXrI/KaeMrNt/LFCAT4TXZM0PNgBSIrKiq3A5HWdXIabk/qsFXTixq27GQ8tYj6VxBxFDVmrHuKTs7v6DfA+rhH4B+6JuJukQ82szTzqfON0aI3Z61mTVhNeer41Tj1YmpsqHH6+vHHyi4WPwb2XIvmrmpfy85Nrm9mFfv9xmuORnWxm1xeodpF/3+bLWJU0xLdMkxqtjuGTONfya4DHadkQtAd7ABsAK0l638zm52Uws6GtUO9BwDeAb5vZdC+R/l1OngtwLg0DcPLzz5vZY3LedtfQtsaq9VDzmrRaMRdwcaSZnYcb3itEmcjmZtzneiZOxFFIZENt81In43pnJXrh/Av74mKdFWm0/oQTBq0u6de40YNTCl5zoguShgc7AP9kuBfOYXor4D/ANebtZNqw3u644HpHAK/jGsshuBvEz60dJdpFh/jU0ty0hS9cdkios+Fv3HdbO9tOSToP13sdRUvpeXCJg5yDxf04V/a9/TYB+KEVF9msC7yD61X+EPeQ8RczezmSZ6yZbZfZv8DMjvWvHzOzHQvWvSlOhQtwr5kVXeye6IKkRquDkQsTPhLX4zjDzC5ow7rOA1bE3Yxm+2P9cea588zs+DaqNzjEhxNTBHtL2Tmv8vmvWubDarj23kV6ohXy1bwmrR58A1SOmVkwREj5HJCkN3ERANp0mE3Sy2a2YSDtFTPboGA5w4GdcUOED8ca6ETXJzVaHYRvrL6Ia7CG4hwTLjOzaW1Y50u4yXErO96As7DZqI3qHUfzEN/FlA3xxXpLikfz7W1mbbpEQC6cyjs4f7sHcaHZ2yPmWbtRj8imnnkpSVfjgjFeUnb8u7jo2CMr52xx7qm4GGc3+OvdD7jO4ss3El2Y1Gh1AJKuArYARgPXWoHFva1U74tmtnG1aZlzaop91FWH+Er4ubddgJ1wvoIflt5PJE89a9JqucYfxdJjqkVJU3HihUpzq2bhKM1Iehj4upm94fcn4Ibq+uJime0Zybsabg5tAc2inm1xc1v7mdk74Xe0pIzJwNal3rBf6zjBal8knejkJCFGx/BNXO/heOAHanZMb+shpOe84u6q7EF/U30hL7Of6J9cadFtDtlhpnnlxVZRTrsjaW1cY7ULTpn3LLBUUMkKXARsnZHNX4obFm0T2yncsC841eB2+NAxwD7khIWvU2TTs9RgeR4ys5nATHmvyEi9M4BPeZl+aVnBf8zs3irqfwun0CwN4fbCeWImllFST2s5QtJawI24hqPkJj8CN+z2lSJDk6rBY66jh/jqwdv6jMVF4b2linytsiatWvz388XMnOWKuIYgN+aZpHvKe0aVjpWlt8q8VK1IuhnXSN+FewDaC/fbfBPACkRdTnQtUk9rOcI3SjuUPdmONucMXpSqPebMrKHaPJ2IbXCT/N+Q9BPgJZyLx99z8rW37VSJ1XGOFCUW+mNBJPXGDeetImeAXOr698e5+cd4XNJ3AvNS0R5eK3GT30qMaYc6Ex1I6mklEjlI6odruHbBNUKYWUX3iEyeNXBr0saa2YN+Xmy38qHZNrjWn+M8JUs38v2Af5vZWZE8x+NC06yJG24r8RFwSUzR2hrzUvXgG9xST+/lWpSeia5FarQSVeHl638GPoFbk9MAfNzWUu6Owisfe+GCZD4IPFjuHFGgjHaxncrUNxzXwAI8YGZPFcx3nJn9ucY6s733Z6ucl6qlvtKaw28Br9GBaw4T7UtqtBJVoQ7ymOsoJK1qZu9WcX7Na9JaC0k7AxuZ2eXe1qifmU0pkK8nLshn1bG42puOWnOY6HhSo5WoCknjzGyEpInmg+V1Bdl6rciFqziN5hv5/cCZobVa9axJa6XrPQ33MLGJmW0saU3cuqWdCuS9FDfvdqU/dAjQaGZFYnG1Kx215jDR8SQhRqJaao591EW5DHgGN08E7kZ+OS5WViW6m7duknSmmT0GYGYvZJY2tCVfwYlHnvT1vuUVhEEkdTezxdQXi6u9sUrDrX5ZRnoSX4ZZlm82ibbhENzv5licjH0IsH+HXlHbsoGZnWZmr/rtDOKO9h29Jm2hv5mXXM+ja6U8JZVfo6QlEnVJ6+PiYnVGnpO0lAN/0TWHia5L6mklqsLMXvOuA4P9DXxZZ56knc3sIVjidFHeGGXZWtJH+DVp/jV+v3fbXioA/5b0N2CgpO/ghAqX5OQpdQFPBO6T9KrfH4ozV+6MHAPcKOlbVFhz2GFXlWhz0pxWoiok7YOb7O5pZutJGoab42nrGGAdgne0uAo3RwXwAXCYmRUO/dHeSNoL+CyuMbrDzO7KOf9NXLRgcDf90rq6RpyooU0DV9ZDmWrxuSrXHCa6IKnRSlSFpPG4eFxjrDlS7CQz27Jjr6xt8co0zOwjSSeY2R87+JJyKSq1l/Q2znaq4qTbctKjTnQR0vBgoloWmdmsMlHBMv/kY2YfZXZ/BPyxgy6lIjGpvfIjPL9tZme2w2UmEnWThBiJQkgaLWk94FlJ3wAaJG0k6c+4hbfLE+0daboIF+AW216Di/B8pJmtgZPqn52TtzO+n0SiIqnRShTlcuAOYCourMoC4F/ALJxb/fJEZ+xZdjezO83sOmB6VmpfIG/QEDeR6GykRitRCH8zHA70wwWvHAVcixMmHNOBl9YmSJot6aMK22ycR19no2apvUWCPCYSnY00p5WohoW4tVm9cI1XZ+xxtApmFl2Q2wnpaKl9ItEupEYrUQhJe+Nk0bcCw81sbk6WRDvSxcO/JBKFSZL3RCEkPQh8z8ye7ehrSSQSyy+p0UokEolElyEJMRKJRCLRZUiNViKRSCS6DKnRSiQSiUSXITVaiUQikegypEYrkUgkEl2G1GglEolEosvw/2D+HtrxvK7HAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 432x288 with 2 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "## visualize correlation\n",
+    "sns.heatmap(X_train.select_dtypes(np.number).corr())\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "**Disclaimer**: usually, one would conduct an even more in-depth visual analysis of the dataset. For instance, one would investigate the relationship between all variables and the target variable. The Python package [Seaborn](https://seaborn.pydata.org/index.html) provides some good tutorials on data visualisation.  "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Data Preparation\n",
+    "\n",
+    "Below is a brief, non-exhaustive overview of the most common data preparation steps."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Imputing missing values\n",
+    "\n",
+    "Imputing missing values often requires domain knowledge. In our dataset, for instance, there are a lot of columns, in which the missing value has a meaning and can therefore be meaningful encoded. If any value is missing at random, we can only make assumptions what this value should be encoded as. However, there are some advanced imputing techniques like k-nearest neighbors or an iterative imputer that try to make the best guess for us. If you want to read more about them, checkout sklearn's [documentation](https://scikit-learn.org/stable/modules/impute.html#impute)."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Task: Please impute your missing values\n",
+    "Use the cells below to for your code"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 15,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "#### encode missing values as none\n",
+    "columns_none_encoded = [\n",
+    "    \"Pool QC\", \"Misc Feature\", \"Alley\", \"Fence\", \"Fireplace Qu\", \n",
+    "    'Garage Type', 'Garage Finish', 'Garage Qual', 'Garage Cond', \n",
+    "    'Bsmt Qual', 'Bsmt Cond', 'Bsmt Exposure', 'BsmtFin Type 1', \n",
+    "    'BsmtFin Type 2','Mas Vnr Type', 'MS SubClass'\n",
+    "]\n",
+    "\n",
+    "for column in columns_none_encoded:\n",
+    "    X_train[column] = X_train[column].fillna(\"None\")\n",
+    "    X_test[column] = X_test[column].fillna(\"None\")\n",
+    "    \n",
+    "#### encode missing values as 0\n",
+    "columns_zero_encoded = [\n",
+    "    'Garage Yr Blt', 'Garage Area', 'Garage Cars','BsmtFin SF 1', \n",
+    "    'BsmtFin SF 2', 'Bsmt Unf SF','Total Bsmt SF', 'Bsmt Full Bath', \n",
+    "    'Bsmt Half Bath',\"Mas Vnr Area\",\n",
+    "]\n",
+    "\n",
+    "for column in columns_zero_encoded:\n",
+    "    X_train[column] = X_train[column].fillna(0)\n",
+    "    X_test[column] = X_test[column].fillna(0)\n",
+    "    \n",
+    "#### estimate LotFrontage by looking at neighborhood\n",
+    "mapping = X_train.groupby('Neighborhood')['Lot Frontage'].agg('median').to_dict()\n",
+    "X_train['Lot Frontage'] = X_train.apply(lambda x: mapping.get(x['Neighborhood']), axis=1)\n",
+    "X_test['Lot Frontage'] = X_test.apply(lambda x: mapping.get(x['Neighborhood']), axis=1) \n",
+    "\n",
+    "#### encode all other features with either mode or median\n",
+    "numeric_columns = X_train.select_dtypes(np.number).columns.to_list()\n",
+    "categorical_columns = X_train.select_dtypes('object').columns.to_list()\n",
+    "\n",
+    "for column in numeric_columns:\n",
+    "    numeric_imputer = SimpleImputer(missing_values=np.nan, strategy='mean')\n",
+    "    X_train[column] = numeric_imputer.fit_transform(X_train[[column]])\n",
+    "    X_test[column] = numeric_imputer.transform(X_test[[column]])\n",
+    "\n",
+    "for column in categorical_columns:\n",
+    "    categorical_imputer = SimpleImputer(missing_values=np.nan, strategy='most_frequent')\n",
+    "    X_train[column] = categorical_imputer.fit_transform(X_train[[column]])\n",
+    "    X_test[column] = categorical_imputer.transform(X_test[[column]])"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Outlier removal\n",
+    "\n",
+    "Some models, like linear regression, is sensitive to outliers. Hence, depending on your models requirements, you might want to exclude abnormal data points."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Task: Please investigate the above grade square feet area ('Gr Liv Area') for outliers\n",
+    "Use the cells below to for your code"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 16,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEJCAYAAACt9OGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAA0gElEQVR4nO3df5TddX3n8ed7JjdwI8oESSlMEkNrCoVSE5hD0uJ6FE+TABWyigLFkqVoPCu1Qj2pwWVNUFviZrcg25ZdTqVCVQgCHYOiMQt019INMukkhAhZoghk+BVJJggZYDJ57x/fz02+c+f7/d4fc3/NndfjnHvm3s/9/sT4fd/P5/P+fD7m7oiIiNRLR7MvQERE2psCjYiI1JUCjYiI1JUCjYiI1JUCjYiI1NWUZl9AKzr22GN9zpw5zb4MEZEJZfPmzb909xnF5Qo0CebMmUNfX1+zL0NEZEIxs2eSytV0JiIidaVAIyIidaVAIyIidaVAIyIidaVAIyIidaWsMxFpO739A6zdsIPnB4c4oSvPisUnsXR+d7Mva9JSoBGRttLbP8A1925jaHgEgIHBIa65dxuAgk2TqOlMRNrK2g07DgWZgqHhEdZu2NGkKxLVaESkrTw/OFR2uZrYGkM1GhFpKyd05csqLzSxDQwO4RxuYuvtH2jAVU4uCjQi0lZWLD6JfK5zVFk+18mKxSeNKlMTW+Oo6UxE2kqh6atUk1glTWwyPgo0ItJ2ls7vLtnXckJXnoGEoJLW9CbVU9OZiExK5TaxyfipRiMik1K5TWwyfgo0IjJpldPEJuOnpjMREakrBRoREakrBRoREakrBRoREamrhgQaMzvJzLbEXq+a2VVmdoyZbTSzp8Lf6WF7M7ObzGynmT1mZqfHjrUsbP+UmS2LlZ9hZtvCPjeZmYXyxHOIiEhjNCTQuPsOd5/n7vOAM4D9wD8BK4EH3H0u8ED4DHAOMDe8lgM3QxQ0gFXAAuBMYFUscNwMfDK235JQnnYOERFpgGY0nX0Q+Jm7PwNcANwWym8Dlob3FwC3e2QT0GVmxwOLgY3uvsfd9wIbgSXhu3e4+yZ3d+D2omMlnUNERBqgGYHmYuCO8P44d38hvH8ROC687waei+2zK5Rlle9KKM86xyhmttzM+sysb/fu3RXflIiIJGtooDGzqcD5wHeKvws1Ea/n+bPO4e63uHuPu/fMmDGjnpchIjKpNLpGcw7wb+7+Uvj8Umj2Ivx9OZQPALNi+80MZVnlMxPKs84hIiIN0OhAcwmHm80A1gOFzLFlwHdj5ZeF7LOFwL7Q/LUBWGRm00MSwCJgQ/juVTNbGLLNLis6VtI5RESkARo215mZvQ34A+BTseI1wF1mdgXwDPCxUH4/cC6wkyhD7XIAd99jZl8GHg3bfcnd94T3nwa+AeSBH4RX1jlERKQBLOq2kLienh7v6+tr9mWIiEwoZrbZ3XuKyzUzgIiI1JUCjYiI1JUCjYiI1JUCjYiI1JUCjYiI1JUCjYiI1JUCjYiI1JUCjYiI1JUCjYiI1JUCjYiI1JUCjYiI1JUCjYiI1JUCjYiI1JUCjYiI1FXD1qMRaRe9/QOs3bCD5weHOKErz4rFJ7F0fnezL0ukZSnQiFSgt3+Aa+7dxtDwCAADg0Ncc+82AAUbkRRqOhOpwNoNOw4FmYKh4RHWbtjRpCsSaX0NCzRm1mVmd5vZk2b2hJn9npkdY2Ybzeyp8Hd62NbM7CYz22lmj5nZ6bHjLAvbP2Vmy2LlZ5jZtrDPTWZmoTzxHCLVeH5wqKJyEWlsjeZrwA/d/WTgPcATwErgAXefCzwQPgOcA8wNr+XAzRAFDWAVsAA4E1gVCxw3A5+M7bcklKedQ6RiJ3TlKyoXkQYFGjM7Gngf8HUAd3/L3QeBC4Dbwma3AUvD+wuA2z2yCegys+OBxcBGd9/j7nuBjcCS8N073H2Tuztwe9Gxks4hUrEVi08in+scVZbPdbJi8UlNuiKR1teoZIATgd3AP5jZe4DNwGeB49z9hbDNi8Bx4X038Fxs/12hLKt8V0I5GecQSZSVVVb4q6wzkfI1KtBMAU4HPuPuj5jZ1yhqwnJ3NzOv50VkncPMlhM10zF79ux6Xoa0sHKyypbO71ZgEalAo/podgG73P2R8PluosDzUmj2Ivx9OXw/AMyK7T8zlGWVz0woJ+Mco7j7Le7e4+49M2bMqOomZeJTVtlovf0DnLXmQU5c+X3OWvMgvf0DpXcSKdKQQOPuLwLPmVmhIfuDwE+B9UAhc2wZ8N3wfj1wWcg+WwjsC81fG4BFZjY9JAEsAjaE7141s4Uh2+yyomMlnUNkDGWVHVao3Q0MDuEcrt0p2EilGjlg8zPAt8xsKvBz4HKiQHeXmV0BPAN8LGx7P3AusBPYH7bF3feY2ZeBR8N2X3L3PeH9p4FvAHngB+EFsCblHCJjnNCVZyAhqEzGrLKs2p2aDqUSDQs07r4F6En46oMJ2zpwZcpxbgVuTSjvA34nofyVpHOIJFmx+KRRfTQwebPKVLuTWtHMACIxS+d3c/2HT6O7K48B3V15rv/waZPyF7zGDEmtaK4zkSLKKouodie1okAjIok0ZkhqRYFGpEW04vIDqt1JLSjQiLQALT8g7UzJACItQANFpZ2pRiPSApqZStyKTXbSXlSjEWkBzUol1uh/aQQFGpEW0IjlB5LmLVOTnTSCms5EGqBU81S9U4nTkg2Kg0yBRv9LLSnQiNRZuRll9UwlTqu5dJox4mNXztDof6klNZ2J1FkrNE+l1VBG3LViqNSdAo1InbXC5JRpNZTCXG6a203qSU1nInXWCksPZM1bptH/Um+q0YjUWSMyykrRrNTSTKrRiNRZq0xOqZqLNIsCjUgD6CEvk5mazkREpK4aFmjM7Bdmts3MtphZXyg7xsw2mtlT4e/0UG5mdpOZ7TSzx8zs9NhxloXtnzKzZbHyM8Lxd4Z9LescInFJo+YnwrFFJoJG12g+4O7z3L0nfF4JPODuc4EHwmeAc4C54bUcuBmioAGsAhYAZwKrYoHjZuCTsf2WlDiHCFDf+b40l5hI85vOLgBuC+9vA5bGym/3yCagy8yOBxYDG919j7vvBTYCS8J373D3Te7uwO1Fx0o6hwhQ3wGVrTBYU6TZGhloHPiRmW02s+Wh7Dh3fyG8fxE4LrzvBp6L7bsrlGWV70oozzrHKGa23Mz6zKxv9+7dFd+cTFz1HFDZCoM1RZqtkYHmve5+OlGz2JVm9r74l6EmMnbSpRrKOoe73+LuPe7eM2PGjHpehrSYek7R36zp/0VaScMCjbsPhL8vA/9E1MfyUmj2Ivx9OWw+AMyK7T4zlGWVz0woJ+McIkB9B1S2wmBNkWZrSKAxs7eZ2dsL74FFwOPAeqCQObYM+G54vx64LGSfLQT2heavDcAiM5sekgAWARvCd6+a2cKQbXZZ0bGSziECjH/UfFZWmUbki1Q4YNPMOokyvma5+zozm0bUIlWqwfk44J9CxvEU4Nvu/kMzexS4y8yuAJ4BPha2vx84F9gJ7AcuJzrRHjP7MvBo2O5L7r4nvP808A0gD/wgvADWpJxDBBjfUsblLAHQjoM1tfyzVMI8YS2KxA3NfhP4HnA8MMXdjzKzpcCF7v7x+l1i4/X09HhfX1+zL0MqUO2DrzhQQNS0VW6t46w1DyZOmNndlefhlWdXdhMTxHj/m0n7MrPNseErh8srCDT3A48AXwZecffpZtYFbHX3d9XyYptNgWZiSXrw5TqNt02dwr6h4czAU22gKAS2pH3jx2jHX/yTMbhKedICTSVNZ2cC57v7QTNzAHcfDMFGpGmSxqoMjziDQ8NA+oqWUF36cVJgK2bhvGnnn8hNT0rZlkpVkgzwKtAVLzCzE4CXanlBIpUq5wGXNkiymvTjpMAWZ4zNoY+fP2m2gKvXbeHa3m2lbqMlKGVbKlVJoLkXuNXMZgKY2TuBG4E763BdImUr9wGXFJCqST/OCmzdXfnUwWCF/ZIClQPf3PTshJiaRinbUqlKAs1/Bn4FPEtUs3kZeBP4q9pflkj5kh58SZICUjz9GKDT7FDtI+2hn7Us8sMrzz50rLT9sgLVdfdtz7yHVqCUbalU2X00IYX5UjP7M+BE4Bl311wt0nSFB9zV67ak1iayfnEX9i+VplyQtSxyOd+nLe0MsHf/cNattox2TNmW+im7RmNmc83s1939FXfvc/fdZvbrZvbuel6gSDmWzu/OnL+o1C/ucia/LAzMvHrdFo7MddCVzyX+oi/1i19NTDLZVJJ1dgfwH4gmpiyYAXydKCNNpOHi2VtZSv36LpVJVZxptnf/MPlcJzdcNC/x2Fm/+JfO7+YL9z7G/uGDY77ryudGfZ7I2WkiBZUEmne7++NFZY8Dv1XD6xEpWzlpxgDTp+Uyv4f05qxCv0pWjaeSWQQKQePofI43DhzkYKwaluswVp9/6qjty23OE2lllSQD7DOzY4vKjgVer+H1iJStVJoxRAM3V33o1MxtoHQm1XjHjhSnNA8ODdNpxvRph5vf1n70PaMCiNaykXZRSY1mI3CzmV3u7q+Z2VHAfwd+VJ9LE8mW9ZA3qKipqbBNWjNVqRpPKYmDSg8606ZOof+LixL3qcXASDW9SSuopEazkmj6/VfM7DngFeBdwIp6XJhIKVlpxk+vOY+HV55d0UN16fxuHl55NjdcNA+IstgKszGPd+xINUFjvAMjtYy0tIqyA427/xL4feDfAX8OvBf4/VAu0nAfODl5gbpCedb0/WnSHs5AxWNH4ufviGYuHyMraIw3uKnpTVpFRcsEhBUqfxJeIk310JPJw7geenJ31R3pWQ/nwoSRhaaowgM76XjF5x9Jmbz29TcP0Ns/kJq5Fj9fpU1fmpNMWkVmoDGzm9z9z8L7W9K2c/fltb4wkbikvoasB2m1WWJZx6wkeKUlKnQYozLNBoeGMwPgeAZGjrdfqVzqB5JSSjWd5Yrep71E6iatOasrJW25wyx15H2pX/NZ/SKVNEWlnedgQsWm2uasUk2DSU1vRnqTYzXUDyTlyAw07v4fAcLyyJ8HrnD3y4tfjbhQmbzSHvDuJM5xltZMBaV/zWf1i1TSFHV0vrLfX4UaU7l9SuU84JfO7+YjZ3QT7x1y4J7NAzULBOoHknKUmwxgRMsgV5KlJlITaQ/4fUPDozroO5L72w8ppyM9a/qYtOBRHLx6+wd4/a0DY7bLddiYkf8FR+dzFdUMyn3AP/Tk7swlC8ZL/UBSjrICh7sfBH4OTB/Pycys08z6zex74fOJZvaIme00s3VmNjWUHxE+7wzfz4kd45pQvsPMFsfKl4SynWa2MlaeeA6ZOLKas+IpyUnNUgWVzDBcOGY8RToreBQHr7UbdjA8MvZihg86ZtE+cflcJ2ZUVDMo9wFf70CgtWmkHJXUUP4b8G0zO8vMZprZCYVXBcf4LPBE7PNXgRvc/d3AXuCKUH4FsDeU3xC2w8xOAS4GTgWWAH8Xglcn8LfAOcApwCVh26xzyATxgZNnUFxZ6QBe2DfEnJXfZ87K73PVui2p+xem7x9PB3Va8DjqyCllr9oJYXZmY8yEnIMpszanHavcB3y9A4HWppFyVBJo/h74IPBjoma054Bd4W9JYcG088JxCv0+ZwN3h01uA5aG9xeEz4TvPxi2vwC4093fdPengZ1EE3qeCex095+7+1tEi7FdUOIcUgPVjFWp9Pj3bB4Y0/xzkOSO9SS1eOilPfCTAkSph/jwiPO2I6aMqjFVGhDKfcDXOxBobRopRyXjaE4c57luBP4CeHv4/E5g0N0L7RG7gMK/zm5CAHP3A2a2L2zfDWyKHTO+z3NF5QtKnGMUM1sOLAeYPXt25Xc3CTVi0sdy5jPL0pXPjetaCqm7aTEtKRAkrUdTrDhwlVrDpli5Y2zGOxanHFqbRkopK9CY2fuB+cCj7v4vlZ7EzP4QeNndN4djtRx3vwW4BaCnp6fM38qTWy1mNC5lPH0JRjRO5aw1D1b1cC01O3QhECSNI7n+w6exdsOO1DTr4gBVTUAo9wGvQCDNVjLQmNmngJuJ5jabbmZ/4u63V3ies4Dzzexc4EjgHcDXgC4zmxJqHDOBQrvLADAL2GVmU4Cjw/kL5QXxfZLKX8k4h4xTIzKOjs7nGByqfNVJg0O1kEprWoXAkRYkIGoiKtQ2kmp113/4NB5eeTbX9m7jm5ueHbN/0liWVgkIGoAptVZOH81ngD9y9xnAZcCfVXoSd7/G3We6+xyizvwH3f1S4CHgwrDZMuC74f368Jnw/YNh+pv1wMUhK+1EYC7RdDiPAnNDhtnUcI71YZ+0c8g4VdPRXE6fTnybfW+ML8gUlJvS29s/wIq7t2YGGYNDfSvX3bc9M1ssa5qcVqQBmFIP5TSdzXT3O8P7O4lqIrXyeeBOM/sK0E+0Wifh7z+a2U5gD1HgwN23m9ldwE+BA8CV7j4CYGZ/CmwAOoFb3X17iXPIOFXar5DWp9P3zB4eenL3oQXBXn/rwOEMryoaMdN2Kaemdd192xOzy+JO6MrT2z/Adfdtj7LIMs5VakqbVqs5NKI5VCafcgLNoVqPux8MqcRVc/d/Bv45vP85CctAu/sbwEdT9v9L4C8Tyu8H7k8oTzyHjF+l/QppD7FvbXr2UHCoppmsXOWk9KYFjoJ8rpMPnDyjZGd/4Vxp840VBmi22uqZGoAp9VBOoDmyaELNacUTbGpSzcmrkn6FtIdVIzIvapHSW+iXKScTrnCutFpf1gDNZgaaRk3EKZNLOX0032L0BJp3oEk1pQq1eFiVmmYmSacZHzmjm7UbdpQc75M2Rcy0XMehfplyft2v3bDj0PT/SeNMKh2g2SgagCn1ULJGo0kzpVbKGV9SSqcZnR2M6kfJ5zozj3nJglncs3mgrGaq1eefyp/ftWXMYNDhET8UOMrJhCs+R9IyAvWsOVTb/9OIcTcy+ZhnzHQ7ZuOof2YBMMvd15nZNKL10NqqAbenp8f7+vqafRltKf4ArLbJrCuf421HTBn1IEx7cBe2TfquMDVNsXnX/SgxkHR35fnAyTMS05XTpJ0jaYxOPtdZk1H19Ty2SBYz2+zuPWPKyw00ZvabwPeA44Ep7n6UmS0FLnT3j9fyYptNgaYxzlrzYGYacRoDnl5z3qiyrIfr1eu2pAY1gzG/2k9c+f2a9RvFr7W4lvGBk2ccyrarZc0h7b9rWtATqZW0QFPJFDT/nSi9+ctEAyEhyh6rZbqzTCLVNqUlNS9lNfmsXr89takrPlakoMMsc02baq712t5to7LrBgaHuGfzQF1qGcock1ZTSaA5Ezg/pDg7gLsPmllXXa5M2l7hAZsVCJJkzf9V/NBOm96/2NDwCKvXb+fNAwdrFmTiU9TEg0z8nKWyzKrpa1HmmLSaSmZvfhXoiheEJQJequUFyeSydH43W1Yt4saL5o3KzErL/ip3kszC7AJXrdtScgBmweDQ8LgSFYoVaitZk3Jm1TKqHaWvzDFpNZXUaO4FbjWzTwOY2TuJZmS+M2snkTRZfRZH53PkOm1UkCh3ksxSk2E2wvRphwNiVjApzDKQVGupdpS+Msek1VQSaP4z0VoyhZSbl4FvA39V64uSia2c5p6k6Wji2VyDQ8PkOozp03Ls3T9c0SSZ1SwtkM91cmSuo+TMAOXau/9wQExryjIYM8tA/N7G09fSKhN0ikAFTWfuPhQmwvw1ov6aX3f3Pw7TxYgA5Tf3lBMMhg8606ZOoSufq2iSzGo6vYeGR3CHXGcVI0JTFO59zjvzY1YINeDShbN56MndqbUWLZMs7aKSPhoA3P2X7t7n7q05/aw0VVZzT1y5wWBgcCg1UaDSZY5LGRwaBo+avWplaHiEh3+2Z1SgNOD3f/MYHnpyd2p69/ODQ+prkbaR2XRmZhspYyoqd19UsyuSCa3c2YrNYNzJXcah0fpx45mBoFCLmjY1eZBnLTjwr0XBp9gJXfma9LW04gzRMvmU6qOpeDVNmdzS+iOmTe0cNXCyFhnE7rDiO1uBpL6a6k8wMDiUWKvpMMZMTVOtrMPEay3j6WtpxFLbIuXIDDTufl2jLkTaQ1JtItdpvP5WfTLAhg/6qCysww/Xg+M6bnFSQD7XwZG5zpolC6SZPi3Hqg+dWpNAoLVlpFVUknUGgJkdCcyAw/2b7l7+5E/S1pbO76bvmT3c8chzjLjTacaUDit7LEs14s1y9WruemP44LiDV0HSCqAF06ZOqVkQ0AwB0irKTgYws98ws38FXgd+ATwde4kAUY3ins0Dh0bXj7jX7AGd5uh8ruTyy+NVqzDZ3ZXn0oWzU7+vZRBQ1pq0ikqyzv4GeA54D/Ar4HeBXuCKUjua2ZFm9hMz22pm283sulB+opk9YmY7zWydmU0N5UeEzzvD93Nix7omlO8ws8Wx8iWhbKeZrYyVJ55D6qOaMSzjNTQ8UtcaUyU6LT09Op/r4MV9b2TO/lxpECjMgJC0zo6y1qRVVBJoFgCfcPfHAdx9O/ApYEUZ+74JnO3u7wHmAUvMbCHwVeAGd383sJfDQesKYG8ovyFsh5mdAlwMnAosAf7OzDrD8gV/C5wDnAJcErYl4xxSB7X8RV7ukJY3D9S3xlSJg+7ceNG8MQ/4DmBoOHsetUqDQKkxS2mLrql/Rhqtkj6ag0DhKfJamExzD5DeDhB4tBbBa+FjYVVOB84G/iiU3wasBm4GLgjvAe4G/sbMLJTf6e5vAk+b2U6iwaMAO9395wBmdidwgZk9kXEOqYO0rLNqXLIg+qf17UeeTc326ixjpuUjpnTw1oGDDVkyOi0t+YV9Q6ntbwZ0TcvhDlev28LaDTvKSkMup7N/vFlrSo2WWqgk0GwHzgL+N/AIUU3jdcrsowm1js3Au4lqHz8DBt29MLXuLqDwr7ibqJkOdz9gZvuAd4byTbHDxvd5rqh8Qdgn7RzF17ccWA4we3bJ2ClB0nxl8dUsx+OOR57joDsdltx9blDWTMtvHTjIpQtnV7RgWbXmvDNq+oo/4Hv7B7hq3ZbUfW64aF5Vacj17OxXarTUUiVNZ39GVIOBqLmsGziDqPmsJHcfcfd5wEyiWsjJFZy77tz9FnfvcfeeGTNmNPtyWk5SX0BS0809mwf4yBm1eRCNuOOkBxMnag4q5YSuPN/b+kJNrqmUh3+2h2t7D69tU/hvlKbTLLVmctW6Lcz/0o9SZ2uuZ2d/uTM8iJSjZKAxsylmlnP3x9y98P+Y9wE/Bf6ru//fSk7o7oPAQ8DvAV1mVqhVzQQK/48aAGYVzg8cTbTY2qHyon3Syl/JOIeUKa0vYPX67YkPo0bUHAr2v3WAXEd6Z06uw1ix+KSK1rsZrzseOVy5LpUcccmCWZk1kL37h1lx99bEYFPPzn6lRkstlVOjWQdcXvhgZtcCtwDvBb5pZp8odQAzm1FYIM3M8sAfAE8QBZwLw2bLgO+G9+vDZ8L3D4Z+nvXAxSEr7URgLvAT4FFgbsgwm0qUMLA+7JN2DilT2q/bRj680+zdP8yIe+r6NWNms2yAeA0s68H88YWz+crS00rWQIZHPLEmUc/OfqVGSy2V00fTA3wm9vkzRNlnt5vZR4AvEC0fkOV44LbQT9MB3OXu3zOznwJ3mtlXgH7g62H7rwP/GDr79xAFDtx9u5ndRVSbOgBc6e4jAGb2p8AGoBO4NWTFAXw+5RxSplb/FXvQowkxk3pyhkc8s3+kHuKxLS05orsrz1eWngaUNzdb2v8G9VoOIOmalBot1Son0Ex39+cBzOy3iZqx7grf9RLVbjK5+2PA/ITyn3M4ayxe/gbw0ZRj/SXwlwnl9wP3l3sOKV/aw3L6tFwYMd+8Bcbi6pVVljWSP8m0qYebs1YsPokV39nKcCxtrtCcV1AIFJ+7a2tqf1SjaxJaPE1qqZxA87qZHeXurxHVbh6PrUFjZR5DJrC0X7erPnQqfc/s4Vubnm1I6nAzFKb0f/hne0puW7D/rZHsKXFClefa3m2jpur5jRnTeOrl18ds3mE0pSahxdOkVsoJEj8Gvmxm/5Mow+yHse9OAhqTziNNk/Xrdu2GHW0bZCCqyfzk6b0V7dM1LZfZFDY84nzh3sfYH5uaZ8Q9MchANMWOHvgykZUTaD5P1CT1WeBx4K9j312KlhKYFNJ+3bZ6/00tDFewNkA+14k7JZsT91cw/9tgnWeMFqm3klln7v60u/82cKy7/667x9sQ/gvR+BqZpJSFFPVVxbO+9tU4G0//jWWiK7t/pSjAFMoGa3o1MqH09g/w+psHSm/Yxrq78jy88uxRZdfdtz1z3Zp8rpM3hkfKanJUppe0g0pmBhA55NrebVy9bktLjKVpptffPDBm5uRSs+Jc/+HTODKX/H+9XAeaBFPajjLGpGK9/QNtnWlWiUKgjc8FVk7T2RspfTQHDjKmhiQy0SnQSMVWr9+uIJOgMBfY0flcZk1v7YYdqWOT0vpjNJOyTGRqOpOK9PYPTPrmsiwDg0P8qkS/1fODQxXNU1Zq3RmRVqcajaRK+hV93X3bS+84CaTNFmAGIyXSodPWrEmrpZRad0a1HWl1CjQyRm//wJjMqYHBoYbPGdbKnKgGUjxbQqnxM/HpZ8odeZ81k7LWjZGJQE1nMkrhwZWVniuHM8KKM8SydOVzrP3oeyoOAFkzKWvdGJkIVKORUUqtnyKH+1KSaiSr129P7MPqyufYsmpRVefLmkn56pRa5mSYsUEmDtVoZBQ9oJJ15Q+P/v/IGdEcb8XjZwBWn3/qmIXYch3G6vNPrfrcWevOaN0YmQhUo5FR0tJuJ7tCbaRUn0i9ptdP68/RujEyESjQyCgrFp+kTv8i8dU7S2WAQWOn19e6MTIRKNDIKH3PlL/uymRQ3OyV1rQ4MDjEWWsebMrDXuvGSKtTH40c0ts/wDc3Pdvsy2gZSVliaX0fBhpQKZKiIYHGzGaZ2UNm9lMz225mnw3lx5jZRjN7KvydHsrNzG4ys51m9piZnR471rKw/VNmtixWfoaZbQv73GRmlnUOGUspsaO9/tbYEf4fOHlG4rbFQzSHhkf43F1bExMGaqm3f4Cz1jw47vPU6jgiSRpVozkAfM7dTwEWAlea2SnASuABd58LPBA+A5wDzA2v5cDNEAUNYBWwADgTWBULHDcDn4zttySUp51DiijjbLThER8TfL+3tfwFZUfc61rD6e0fYMV3to6qSa34ztaKz6MpbqTeGhJo3P0Fd/+38P5XwBNAN3ABcFvY7DZgaXh/AXC7RzYBXWZ2PLAY2Ojue9x9L7ARWBK+e4e7b3J3B24vOlbSOaTI0bFOb4nEg+945nmrxyDK1eu3j1n9c/igs3p9ZdMEadCn1FvDkwHMbA4wH3gEOM7dCz8RXwSOC++7gediu+0KZVnluxLKyThH8XUtJ6o9MXv27Epva0KKz5HVNS1X85UhW1naXGXF4n0y433w1rrGmBb0Kg2GWVPciNRCQwONmR0F3ANc5e6vhm4UANzdzayus89nncPdbwFuAejp6Wn7WfCLx4NMtilnnNLBJtdpo8ajjPfB26qDKCtdskDqo50nR21Y1pmZ5YiCzLfc/d5Q/FJo9iL8fTmUDwCzYrvPDGVZ5TMTyrPOMSmkdfJqqpnsIHPElA7WXjg646xr2viaFms9iHJ6yvWklaepZMkCqY927ydrVNaZAV8HnnD3v459tR4oZI4tA74bK78sZJ8tBPaF5q8NwCIzmx6SABYBG8J3r5rZwnCuy4qOlXSOttfbP8CKu4s6i++OOovVLDJaYdaYTjM+vnA2O75yzphfk6WWaG60VR86lVxn0XQ3ncaqD1U23U3WFDfSGO3eT9aoprOzgD8GtpnZllD2BWANcJeZXQE8A3wsfHc/cC6wE9gPXA7g7nvM7MvAo2G7L7l7YYThp4FvAHngB+FFxjna3nX3bWd4pKizeMS57r7tmmqmyNH5HP1fzJ70crx9WPHZA2qhlrMCaNBnc7V7P1lDAo27/wtRk3iSDyZs78CVKce6Fbg1obwP+J2E8leSzjEZpPW77N0/POn6ZEop/PfIaifvmpYb13+3ejw0FCDaQ7v3k2kKGpEga8JMgNfeyF6iGaL+kbRg1C4PDam9dp8cVYGmTfX2D5SdwithupkS7eTFY1bicp12KHmgOGBBez00pPbafXJU81br4WwBPT093tfX1+zLqFrSg07SdQB/fdE8rl63parAPH1aDveoD6fwgAD4wr2PsX/4IABmcOmC2XxlafYqnCLNUKvUajPb7O49xeWq0Uwwpf5B9PYP8Lm7tjKiHxBlO3pajqXzo8XMKk2Q6MrneGP44JjmttNnH30oyECUsVaYsFTBRlpJqTWWakE1mgStWqNJqqkUmse6u/J84OQZ3LN5QDWZChnw9JrzMv/7pu5rlaU9d5rxs+vPLXv7dh7EJ63hrDUPJv7A6u7K8/DKsys6lmo0bSCpD6HwjBsYHNIU/1UqdNIntZOXquFU+jutkppmI35pijQitVrr0Uwg7ZJT30oK68gUZk1YOr+bh1eezdNrzmPF4pPotLSs/OpUcrx2H8QnrSEtG7KWWZIKNBOI0mNrw2J/4zXC+JQfhdpErfu6Llkwq/RGQbsP4pPW0IgpiBRoJpCkfxBSuUsXzqa7K5+4WFmhtpA1F1xXPkdXhUsqFKa2qSQRoBG/NEUaMQWR+mgmkL5n9vCGOvrHLSthotCMltY3Y8CWVYsOLTqWNbYGol+G1f6ftt0H8UnrqPcME6rRTBDX9m7jm5ue1QDMGhgaHsnsK8lKAIgnDhx1ZPLvtE6zmvwy1GSX0i5Uo5kgvqWMspoacSef66woFTzXMXp9msGUqWYOuvP0mvPGfY2gucykPahGMwH09g+oJlNjnWZ85Ixuuivo7zjqyCmjHvrqQxEpj2o0LawwWE/T+dfeiHvF446KJ8tUH4pIeRRoWlBv/wCr12+veO13qa/ifp12nwhRpFYUaFqMJsSsvVyHlcwOK0fSmBr1oYiUpj6aFpM1fkMq15XPcdGZs2oywr/SsTMiElGgaTHqj0mWz5X/TzWf6+TGi+bxizXnsfr8U7ln80BNRvi//taBQzMHiEj5GhJozOxWM3vZzB6PlR1jZhvN7Knwd3ooNzO7ycx2mtljZnZ6bJ9lYfunzGxZrPwMM9sW9rnJLPr5mnaOVlbrubXaxVBsyv1S4mNNqqkhdnflmZYQ2IZHXPOMiVShUTWabwBLispWAg+4+1zggfAZ4BxgbngtB26GKGgAq4AFwJnAqljguBn4ZGy/JSXO0bK0jsz4dHflR/WZVDovWGFq9LTApnnGRCrXkEDj7v8H2FNUfAFwW3h/G7A0Vn67RzYBXWZ2PLAY2Ojue9x9L7ARWBK+e4e7b/JocZ3bi46VdI6WVcm4DhmrOLW40jEtzw8O0ds/QEdKzVJjZEQq18w+muPc/YXw/kXguPC+G3gutt2uUJZVviuhPOscY5jZcjPrM7O+3bt3V3E749PbP8C8636kPpoilbQkduVzYzLA0mamnT4tuWO/a1ouddZmjZERqU5LpDe7u5tZXduMSp3D3W8BboFohc16XguMXjmxa1qOffuHKb8XYuLqNKuoebDcTfO5Tlaff+qY8rSxLkDiYEt3Evt0Os00z5hIlZoZaF4ys+Pd/YXQ/PVyKB8A4ot2zAxlA8D7i8r/OZTPTNg+6xxNVTxWpnjEebvq7DAO1mA8S7HuEgMls8a6FAegq9dtSdzuoLuCjEiVmtl0th4oZI4tA74bK78sZJ8tBPaF5q8NwCIzmx6SABYBG8J3r5rZwpBtdlnRsZLO0VSTdazMyEFPnLOt2ky7QhrzwyvPrioILJ3fzYrFJ3FCV57nB4dYu2EHR6eMlVHfjEj1GlKjMbM7iGojx5rZLqLssTXAXWZ2BfAM8LGw+f3AucBOYD9wOYC77zGzLwOPhu2+5O6FBINPE2W25YEfhBcZ52gqZS4d1mnGwSoy7WrRlFVcsxwYHCLXaWNmElDfjMj4NCTQuPslKV99MGFbB65MOc6twK0J5X3A7ySUv5J0jmbrmpabNM1lQOZ0/CPudHflK06CqEVTVlLNcnjEmT4tx7SpUzR/mUiNtEQywGTS2z/Aa28caPZl1E0+18lHzujmoSd3j+n7SGs2S5oFuZRaNGWl1SwH9w/T/8VF4z6+iEQUaBps7YYdNZngsZGmp9TAOs24ZMGsMUGl+Nd/b/8AHR3GSMJ9X7Jg1qHtr7tv+5jz5DoNnHE1ZcUz/OLXeEJKTUr9MSK1pUDTYBOtf+bjC2fT865jElOBy+0jWbthR2KQedvUTr6y9DTgcGZYUlAoHKOapqykfphr7t0GaD0ZkUZRoGmwtF/RraYrn2P1+aeOeqBX+7BPC6773xrbVJaWilxtH0lSP8zQ8AhrN+zg4ZVnH9pG/TEi9aNA02Bpv6Kv/3D0y/6qlHEcjWLADRfNG/OwHc+6K81sokoLcoVyrScjUn9aJqBOevsHOGvNg5y48vuctebBQ9PLL53fzfUfPo3urjxGNNiwEGRaYWbgSxfOrvmDN20amEY0UaUFM/XDiDSOajR1kNUvUPgFHX+Yt9KqmoU+k1pq5pLH6ocRaT4FmhqJd2J3JMznVegXSHq4NmqmgKzxLJA9c3Ra5la5mtVE1cwgJyIRBZoaKK6RpE0aOTA4xJyV3weilOFVH4o622uVidbdlef1Nw8wODQ2FdmAj5zRzfcfeyExVTnXaam/8kvV0Fqd+mFEmkt9NDVQTY1k7/5hVty9ld7+gdT+grdN7Uws7+wwuvK5Q308hWWLH155NqvPP5WkmcMceOjJ3fR/cRE3XjSPrticXtOn5Vh74XsyJ55My9wSESlFNZoaqLZGUlgaOK0fIdfZAYwNYG8/YgpbViWPXF86vzs1c63aTKtSmVsiIllUo6mBtBpJp1li7SLu+cGh1Ey0fQlNYEBqeUFaX0u1mVbK3BKR8VCgqYG09N3/9rH38PSa8zI72QsP66Xzu3l45dk8HZrAClOkZO1T6fVUm2nVzPRkEZn4FGhqIK1GUmieWrH4JHIdY+s2WR3whf2qecCXup5K1fp4IjK5mFexFki76+np8b6+vpoes7d/gNXrtx/KCItnnZXaLz7ZZHxqmPGmHIuI1JKZbXb3nuJyJQM0yHhSbN8YPnjo/eDQMNfcu42+Z/Zwz+aBCZtyLCKTh5rOWlxaavEdjzynlGMRmRAmRaAxsyVmtsPMdprZymZfTyXSUojTBoUq5VhEWk3bBxoz6wT+FjgHOAW4xMxOae5VlS8rdbqS7UVEmqXtAw1wJrDT3X/u7m8BdwIXNPmaypaWeXbJgllKORaRCWEyJAN0A8/FPu8CFhRvZGbLgeUAs2fPbsyVlSFrUsiedx2jrDMRaXltn95sZhcCS9z9E+HzHwML3P1P0/apR3qziEi7S0tvngxNZwPArNjnmaFMREQaYDIEmkeBuWZ2oplNBS4G1jf5mkREJo2276Nx9wNm9qfABqATuNXdtzf5skREJo22DzQA7n4/cH+zr0NEZDKaDE1nIiLSRG2fdVYNM9sNPNPs66ixY4FfNvsiGmAy3KfusX20232+y91nFBcq0EwSZtaXlHbYbibDfeoe28dkuU81nYmISF0p0IiISF0p0EwetzT7AhpkMtyn7rF9TIr7VB+NiIjUlWo0IiJSVwo0IiJSVwo0E5iZ3WpmL5vZ47GyY8xso5k9Ff5OD+VmZjeFVUYfM7PTY/ssC9s/ZWbLmnEvacxslpk9ZGY/NbPtZvbZUN4292lmR5rZT8xsa7jH60L5iWb2SLiXdWGuPszsiPB5Z/h+TuxY14TyHWa2uEm3lMrMOs2s38y+Fz634z3+wsy2mdkWM+sLZW3z77Uq7q7XBH0B7wNOBx6Plf0XYGV4vxL4anh/LvADwICFwCOh/Bjg5+Hv9PB+erPvLXY/xwOnh/dvB/4f0UqpbXOf4VqPCu9zwCPh2u8CLg7l/wP4j+H9p4H/Ed5fDKwL708BtgJHACcCPwM6m31/Rff658C3ge+Fz+14j78Aji0qa5t/r9W8VKOZwNz9/wB7ioovAG4L728DlsbKb/fIJqDLzI4HFgMb3X2Pu+8FNgJL6n7xZXL3F9z938L7XwFPEC1m1zb3Ga71tfAxF14OnA3cHcqL77Fw73cDHzQzC+V3uvub7v40sJNohdmWYGYzgfOAvw+fjTa7xwxt8++1Ggo07ec4d38hvH8ROC68T1pptDujvOWE5pP5RL/42+o+Q5PSFuBloofKz4BBdz8QNolf76F7Cd/vA95Ji98jcCPwF8DB8PmdtN89QvQj4UdmttmilXuhzf69VmpSzN48Wbm7m1lb5K+b2VHAPcBV7v5q9OM20g736e4jwDwz6wL+CTi5uVdUW2b2h8DL7r7ZzN7f5Mupt/e6+4CZ/Rqw0cyejH/ZDv9eK6UaTft5KVS9CX9fDuVpK422/AqkZpYjCjLfcvd7Q3Hb3SeAuw8CDwG/R9SMUvgxGL/eQ/cSvj8aeIXWvsezgPPN7BfAnURNZl+jve4RAHcfCH9fJvrRcCZt+u+1XAo07Wc9UMhQWQZ8N1Z+WchyWQjsC1X5DcAiM5seMmEWhbKWENrlvw484e5/Hfuqbe7TzGaEmgxmlgf+gKgv6iHgwrBZ8T0W7v1C4EGPepDXAxeHjK0TgbnATxpyEyW4+zXuPtPd5xB17j/o7pfSRvcIYGZvM7O3F94T/Tt7nDb691qVZmcj6FX9C7gDeAEYJmrDvYKoHfsB4CngfwHHhG0N+Fuitv9tQE/sOH9C1Km6E7i82fdVdI/vJWrzfgzYEl7nttN9Ar8L9Id7fBz4Yij/DaKH6E7gO8ARofzI8Hln+P43Ysf6T+HedwDnNPveUu73/RzOOmurewz3szW8tgP/KZS3zb/Xal6agkZEROpKTWciIlJXCjQiIlJXCjQiIlJXCjQiIlJXCjQiIlJXCjQiLcTMXjOz32v2dYjUkgKNSBnM7Awzu8eiZRleC1PB32NmZ1d4nDlm5mGCyTHc/Sh3/7/jvNbZZjZiZg+N5zgitaJAI1KCmf0B8DDRoLoeouUKTiOa7v7fZ+yXa8gFjvUJYBB4v5n9VtaGTbxGmUQUaERKuxn4prv/hbs/65Ffufs97v6ZwkZm9s9mdqOZ9ZrZq8DnKj1RqO2818ymmNkLZra06PtvmNk/ZOzfSTRDxPVEswwsL/r+G2b2rfB3D3BTKF8aZhseNLMnzOzS2D4zzeyHZrbbzPaZ2Y/N7IxK700mLwUakQyhRvCbRNP9lONPiB7eR4e/VfFoavx/BP5D7FqOIpr369aMXf8Q+LWw763AMjM7omibjxIttjUD+FyosX0duIpooa1lwN+Y2fvC9h3A3wHvAn4d+DfgXtWGpFwKNCLZZoS/h2bONbPzwy//fWb2RtH2d7v7g6HWs3+c5/4H4Nww3TzAx4Dn3f3HGft8Cvi+u79EFGzeAXy4aJt/cfd17j4SrvGzwNfc/cfuftDdfwJ8E7gMINTi1rv7fncfAq4FZhNNaClSkgKNSLZfhr+HOu/DQ7eLaLXI4trCL2p1Ynd/gqj28PFQdDlR8ElkZu8iWpnx1rD/L4lmB/5UiWs8Efh8CJ6DZjZIVJM6IRz3WDO73cyeDU2ChQW5ZiBSBi18JpLt/xGt134x0ay7pRwsvUlF/gG40szWE60pf3HGtp8g+vH492ZWuI5pwNvN7CR335Fyjc8A33D3tSnHvR44Hljg7i+EafBfJZp5WKQk1WhEMng0vfmVwB+b2VfNbFZYO2QasGAchz7CzI6MvdL6O+4E3k3U37PRw6JaxcLiYFcAa4iWHZgXXr8FPElRUkCRG4GrzezfWbSk9NSQzt0Tvn8HsB/YG/qJvlrBfYoo0IiU4u4/JFoX57eImrJeI1pr5CyilSKrsRMYir3uSzn3PqJVGs8hOwngQ8B04AZ3fzH+Am4gOSmgcI4fAZ8E1hI1Fb4Q9jkqbPJFogSDV4jWzPlXYKT8W5XJTuvRiIhIXalGIyIidaVAIyIidaVAIyIidaVAIyIidaVAIyIidaVAIyIidaVAIyIidaVAIyIidfX/Ae6sQKlgb5wuAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    },
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEJCAYAAACt9OGOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAA3s0lEQVR4nO29f5xU5ZXg/T3dFFKtkW6TjsEGhEkY2LhG0B5hxnnzGc0GMCbam5ioa0bWMSGfTSYTHT9McDbvoElmJctnxsTdWef1TZzoaBR/pYPRhDBKdrO+gxHSIBJlJRqFkigRGiO00HSf94/73OZ29b237u2qW1Vddb6fT1H3PvfH89QFnnPPec4PUVUMwzAMIytaaj0AwzAMo7ExQWMYhmFkigkawzAMI1NM0BiGYRiZYoLGMAzDyJRJtR5APfKud71LZ82aVethGIZhTCi2bNnyW1XtLG43QRPCrFmz2Lx5c62HYRiGMaEQkZfD2s10ZhiGYWSKCRrDMAwjU0zQGIZhGJligsYwDMPIFBM0hmEYRqaY15lhGEYD0ttXYM36nbzaP8Bp7XlWLJlLz4KumozFBI1hGEaD0dtX4IaHtzMwOARAoX+AGx7eDlATYWOmM8MwjAZjzfqdI0LGZ2BwiDXrd9ZkPKbRGIZhNBiv9g+kas/azGYajWEYRoNxWns+cbtvZiv0D6AcN7P19hUqNh4TNIZhGA3GiiVzyedaR7Xlc62sWDJ3zLnVMLOZ6cwwDKPB8M1eScxhac1s48EEjWEYRgPSs6Ar0TrLae15CiFCJcr8Nh7MdGYYhtHEpDGzjRfTaAzDMJqYNGa28WKCxjAMo8lJamYbL2Y6MwzDMDLFBI1hGIaRKSZoDMMwjEwxQWMYhmFkSlUEjYjMFZGtgc+bInKtiJwiIhtE5AX33eHOFxG5VUR2icgzInJ24F7L3PkviMiyQPs5IrLdXXOriIhrD+3DMAzDqA5VETSqulNV56vqfOAc4DDwfWAl8LiqzgEed/sAFwJz3Gc5cBt4QgNYBSwEzgVWBQTHbcBnA9ctde1RfRiGYRhVoBamsw8Bv1LVl4FLgDtd+51Aj9u+BLhLPTYB7SIyDVgCbFDV/ap6ANgALHXHTlbVTaqqwF1F9wrrwzAMw6gCtRA0lwP3uu1TVXWv2/4NcKrb7gJ2B67Z49ri2veEtMf1MQoRWS4im0Vk8759+1L/KMMwDCOcqgoaEZkMXAw8UHzMaSKaZf9xfajq7ararardnZ2dWQ7DMAyjqai2RnMh8AtVfc3tv+bMXrjv1117AZgRuG66a4trnx7SHteHYRiGUQWqLWiu4LjZDGAd4HuOLQN+EGi/ynmfLQIOOvPXemCxiHQ4J4DFwHp37E0RWeS8za4quldYH4ZhGEYVqFquMxE5Efgw8LlA82rgfhG5BngZ+JRrfwz4CLALz0PtagBV3S8iXwOedud9VVX3u+3PA98F8sCP3CeuD8MwDKMKiLdsYQTp7u7WzZs313oYhmEYEwoR2aKq3cXtlhnAMAzDyBQTNIZhGEammKAxDMMwMsUEjWEYhpEpJmgMwzCMTDFBYxiGYWSKCRrDMAwjU0zQGIZhGJligsYwDMPIFBM0hmEYRqaYoDEMwzAyxQSNYRiGkSkmaAzDMIxMMUFjGIZhZErV6tEYhlFZevsKrFm/k1f7BzitPc+KJXPpWdBV62EZxhhM0BjGBKS3r8AND29nYHAIgEL/ADc8vB3AhI1Rd5jpzDAmIGvW7xwRMj4Dg0OsWb+zRiMyjGiqJmhEpF1EHhSR50XkORH5QxE5RUQ2iMgL7rvDnSsicquI7BKRZ0Tk7MB9lrnzXxCRZYH2c0Rku7vmVhER1x7ah2FMZF7tH0jVbhi1pJoazbeAH6vqPOAs4DlgJfC4qs4BHnf7ABcCc9xnOXAbeEIDWAUsBM4FVgUEx23AZwPXLXXtUX0YxoTltPZ8qnbDqCVVETQiMhX4IPAdAFU9qqr9wCXAne60O4Eet30JcJd6bALaRWQasATYoKr7VfUAsAFY6o6drKqbVFWBu4ruFdaHYUxYViyZSz7XOqotn2tlxZK5NRqRYURTLWeA2cA+4J9E5CxgC/Al4FRV3evO+Q1wqtvuAnYHrt/j2uLa94S0E9OHYdQlSbzJ/H3zOjMmAtUSNJOAs4EvqupTIvItikxYqqoiolkOIq4PEVmOZ6Zj5syZWQ7DMCJJ403Ws6DLBIsxIajWGs0eYI+qPuX2H8QTPK85sxfu+3V3vADMCFw/3bXFtU8PaSemj1Go6u2q2q2q3Z2dneP6kYZRLuZNlh29fQXOW/0Es1c+ynmrn6C3r1D6IqMiVEXQqOpvgN0i4huQPwT8ElgH+J5jy4AfuO11wFXO+2wRcNCZv9YDi0WkwzkBLAbWu2Nvisgi5212VdG9wvowjLrDvMmywdcUC/0DKMc1RRM21aGaAZtfBO4RkcnAi8DVeILufhG5BngZ+JQ79zHgI8Au4LA7F1XdLyJfA552531VVfe77c8D3wXywI/cB2B1RB+GUXec1p6nECJUzJusPOI0RTM/Zk/VBI2qbgW6Qw59KORcBb4QcZ87gDtC2jcD/zak/Y2wPgyjHlmxZO6oNRowb7JKYJpibbHMAIZRR/Qs6OLmj59JV3seAbra89z88TPtrbtMLO6otliuM8OoM8ybrPKYplhbTNAYhtHwWNxRbTFBYxhGYiZyaQLTFGuHCRrDMBJhpQmM8WLOAIZhJMKCSY3xYhqNYRiJqHcX4Yls1mt0TKMxDCMR9ewibJH/9Y0JGsMwElHL0gSl8pSZWa++MdOZYTQxacxNtXIRTuKEUO9mvWbHBI1hNCnj8SKrhYtwkjxlliOuvjHTmWE0KRPF3JREW7GKo/WNCRrDaFImirkpiROC5Yirb8x0ZhhNykQxNyXNU2aR//WLaTSG0aRMFHOTaSsTH9NoDKNJmUiJJk1bmdiYoDGMJsYmcKMamOnMMAzDyJSqCRoR+bWIbBeRrSKy2bWdIiIbROQF993h2kVEbhWRXSLyjIicHbjPMnf+CyKyLNB+jrv/LnetxPVhGPVEqcj3RuvXaC6qrdGcr6rzVbXb7a8EHlfVOcDjbh/gQmCO+ywHbgNPaACrgIXAucCqgOC4Dfhs4LqlJfowjLqgVnm6LD+YUS1qbTq7BLjTbd8J9ATa71KPTUC7iEwDlgAbVHW/qh4ANgBL3bGTVXWTqipwV9G9wvowjLqgVoGTEyVg05j4VFPQKPATEdkiIstd26mqutdt/wY41W13AbsD1+5xbXHte0La4/oYhYgsF5HNIrJ53759qX+cYYyXWgVOTpSATWPiU01B88eqejaeWewLIvLB4EGniWiWA4jrQ1VvV9VuVe3u7OzMchiGMYpapd+v57T/RmNRNUGjqgX3/Trwfbw1ltec2Qv3/bo7vQDMCFw+3bXFtU8PaSemD8OoC2oVODlRAjaNiU9VBI2InCgi7/C3gcXAs8A6wPccWwb8wG2vA65y3meLgIPO/LUeWCwiHc4JYDGw3h17U0QWOW+zq4ruFdaHYdQFlY58T+pJZhH3RrVIFbApIq14Hl8zVHWtiLThWaRKGXVPBb7vPI4nAd9T1R+LyNPA/SJyDfAy8Cl3/mPAR4BdwGHgaryO9ovI14Cn3XlfVdX9bvvzwHeBPPAj9wFYHdGHYdQFlSxBnDb1vwVsHsdKQWeHeMsWCU4UeS/wQ2AaMElVTxKRHuBSVf10dkOsPt3d3bp58+ZaD8OoQyo9GRULBvDMV+PVLM5b/URoosyu9jxPrrxg3ONsdCr999CsiMiWQPjKCGk0mv8G3Ad8DXjDtf0U+FbZozOMCUCctgDjyxmWpKhXqTEF+w0TMuB5ktkbezTl/j0Y8aQRNOcCF6vqsIgogKr2i0h7JiMzjDojajK66ZEdvD04nKpSpU85LsZhgk8Id6tsb8slNqk1o0AyV+9sSeMM8CbQHmwQkdOA1yo5IMOoV6ImnQOHB8cd+FiOi3GY4FNAis7L51pRJdEYw7IFXLt2Kwu++pOGzhhgrt7ZkkbQPAzcISLTAUTkncA38cxphtHwpJ10krwNl+NiHHV/hTGeZAcHBhPdI0x4gSdMVzy4rWGFjbl6Z0saQfN/A78DXsHTbF4HjgD/pfLDMoz6I2wyiiOJYPJdjNvzuZG2Kblk/y2j7u8v/L+0+iKeXHkBPQu6Er+xxwnHwSHlpkd2JBrbRMNcvbMl8RqNc2G+UkT+ApgNvKyqlqvFaBqKC4VBdCqLtG/DR44Nj2wfODyYaI0naYnjNOfGORT4Y2tUzNU7OxJrNCIyR0Teo6pvqOpmVd0nIu8RkfdlOUDDqCd6FnSNaAtxgQFp3obHk9zSX7AfGByi1YtPi30LT/rGnlZrM4wkpPE6uxf4j3iJKX06ge/geaQZRkNT7I0VR5o347QeT8XeZkOqI9pJXL9J3tj949et3RruvRYw8RWPqdk81YzkpBE071PVZ4vangV+v4LjMYy6JMyVOIqOtvDJOIooc1WUMMsi5qNYUFy5aCZrf76bweHj4ibXItx48Rmh16bJRmA0H2mcAQ6KyLuK2t4FHKrgeAyjLonyxiom1yqs+tjYyTiOtB5PlY75CHNpfmhLgcvOnTHK1Lbmk2eFCg6ra2OUIo1GswG4TUSuVtW3ROQkvGwBP8lmaIZRP8RN4l3t+bJMRsVOBqXuk1YDKkWUoNj4/L5EaWuyCnY0c1zjkEbQrAQeAd4QkdeBdwO/AD6WxcAMo56ImtwrlUMsuH7iT7DXrd0aOsGm8TZLQrmCotKCD8wc12ikcW/+rYj8EfAHwOnAr4HNmjQrp2FMYM6f18ndm14JbQ9S7lt4kgk2rQZUanzlCopKCz6w3GONRqp6NOrxc1V9QFWfNiFjNAsbnw8PGQu2h6113PDw9lTR9EnXO3oWdI0IiVf7B1izfmfJfqLGd/68zlCX5kNHjiUaexbBjpZ7rLGI1WhE5FZV/Qu3fXvUeaq6vNIDM4xqE6eNJJn4KvEWnnSCHY9pKW4t5uaPn8lNj+wYFZDZP5AscNQ/XklNIwtzXFpsjahylNJockXbUR/DmNCU0kaiJrgWkZFKlnEp+pOSNFXMeDy94oRYz4Iu2iaPfe+stPdY0uqfK5bMJdc6Oj1orlWqlnusEtqpcZxYQaOq/wnAlUf+MnCNql5d/KnGQA0jS0pN3FER80OqIxNRcdZknzRv4UldncdjWpoaEWzpj6/UPZMKiShST97FhvkqGurNZbuyJF2jEbwyyKnWdAxjolBqki1eh2gJkSpRKfrTvIUnWe/o7SvQIuFiLUqo9fYVOHT02Jj2XMtxLSFOm6rm+pN/bjBYFGBwWKs20dsaUWVJJDhUdRh4EegopzMRaRWRPhH5odufLSJPicguEVkrIpNd+wluf5c7Pitwjxtc+04RWRJoX+radonIykB7aB+GESSJycrPc3bLZfMZjni7DkvRP564muLsyz7+hD8U4ocTJ9TWrN/J4NDYa46pct3arZy3+olQpwD/npV4w08zedd6orf6NJUlTRzN3wHfE5Eb8bSbkXSzqvpqwnt8CXgOONntfwO4RVXvE5F/BK4BbnPfB1T1fSJyuTvvMhF5P3A5cAZwGvAvIuKnwPkH4MPAHuBpEVmnqr+M6cMwRjh/Xif3bHpllHUm1yIcOHSEWSsfBTwtZlgZSWIZRqXiaqKIylDQKhIr1CJr17gf7GcD+MQ5XWx8ft+YBfDr1m5Ndd8w0izw19oZIAuX7WYmjSns28CHgJ/hCZrdeJP67iQXu4JpF7n7+Os+FwAPulPuBHrc9iVuH3f8Q+78S4D7VPWIqr4E7MJL6HkusEtVX1TVo3jF2C4p0YdRR5Rr/y+374e2FMYsAQwOK4cHj6fv97WYMG3CJ+uJKGpiH1aN1ZySTNDBbADF2lQl3vDTpNqpdSEyq09TWdJoNLPL7OubwF8B73D77wT6VdU3HO8B/L/FLpwAU9VjInLQnd8FbArcM3jN7qL2hSX6GIWILAeWA8ycOTP9rzPGTa2jwJPmMStFez6XyXiDbrYtIqGCrtSEH/aGHkaUIKvEG36aQNNyglIrhdWnqRyJBI2I/AmwAHhaVf932k5E5KPA66q6xd2r7lDV24HbAbq7uy0QtYrUOgo8LhNzUvK5Vj561jTOW/1ERSfGsJIAYX0HJ/y4+I9SAivKM61SE3+aydsm+sahpKARkc/hrWm8AXSIyJ+p6l0p+zkPuFhEPgJMwVuj+RbQLiKTnMYxHfDtJQVgBrBHRCYBU13/frtP8Jqw9jdi+jDqhFou/Pb2FRDG5znbKsKwKqe15zl/XicPbSlURCtLosEE+w5O+KW0w+B5Kx7YNsaz69BRLxtAlJYxkSZ+C7isH5Ks0XwR+A+q2glcBfxF2k5U9QZVna6qs/AW859Q1SuBjcCl7rRlwA/c9jq3jzv+hEt3sw643HmlzQbmAD8HngbmOA+zya6Pde6aqD6MOqFc+3+a9Z3ic296ZMe4hIwAVyycMZIC5t6ndlck7qK3r8CKB7eNuBFHrQcNq45ZR+ntK3D9/dsSp7A5acrY98zBoeq5EGeJBVzWF0lMZ9NV9T63fR+eJlIpvgzcJyJfB/rwqnXivv9ZRHYB+/EEB6q6Q0TuB34JHAO+oKpDACLy58B6oBW4Q1V3lOjDqBPKsf/HvcHDaFNPmNYxXhRG3StKIKTVym56ZEeoG3IxQSHc21cYkz4myTj6I85/tX9gwmsDtTbHGqNJImhGtB5VHRaRsgqKq+pPgZ+67RcJKQOtqm8Dn4y4/m+Bvw1pfwx4LKQ9tA+jfijH/h81odz0yA7eHhweJVSK3ZfLoVUkkQNBWnfcOGHhExTCxYI2zTiiXIin5nMTPkV/reNwjNEkETRTihJqthUn2LSkmka5jNf+HzVxhE3YSYVMqTWbfK41kZCptDuuQOjifqmxxLkQh2mSIkx4baDWcTjGaJKs0dzD6ASa92JJNY06odITR6sIVy6aSVfEff3AyLigTT/u4hPndLFm/c5UsUHtEV5fbbmW0EwBSd7QfSFR3H9UrEicSW2iUOs4HGM0JTUaS5pp1DNRb+VvDw6Ny0w2pDoSIR9cg/Hv6wftXRsRKQ/w0uqLxh0bdOPFZ/CX928dk+JmcEjHeIP5Oc/iAkh9ovoP0yTXrN9ZM22gUmtD9RCHYxwnVZJMl6vsj0TkMrffJiKmixo1I+qtvJy1mGCNlqjI8CiNx28fb26wngVdnDxlrFZTnFCyt6/A9Q9sixQyYfpWUi+4WmkDlfYUi8sZZ1SXxJkBROS9wA+Bae66tcBiPNfhT2cyOsNIQJq38qT4NVqiJqdSnnJxi9Gl3toPDpQ2Xf3n729nKCKzZ0dbLtKpIGpcxWOKynmWJeYp1rikSUHz3/Dcm7+GFwgJnvdYJd2dDaMilEq5InI8oWQYpcxEcaaZOJNWe1u8R1fctQq894bHuGLhDA4djXYAiPNcK/5dvX0Fbly3g/6AcPMTbFY7t5d5ijUuaQTNucDFzsVZAVS1X0TaMxmZYZSBP0EWT6JQ2mssqZkoTOMplcZfNdqjC4i81mdIlbs3vVJybGGEpaqJEsbj0STKXV8xT7HGJc0azZtAe7BBRE4DXqvkgAyjUvQs6GLrqsV887L5Y9ZaSnmVjSdtzHmrn+DatVtj0/jHmcUqldwzjLDsw6X6S6NJVGJ9xTzFGpc0Gs3DwB0i8nkAEXknXkbm++IuMoxqkiSh5Jr1O8dkCQCv/sxJUyZx3dqtrFm/M/EbeZKgySH1FvOjdBU/lU0WCIT+llL9+ZpEEk2lEusr5inWuIgmcI0EcN5l3waucE0KfA/4rIvkbxi6u7t18+bNtR6GQTpzTNSEP7lVOFqU1iWfax214D01n+PQ0WOj0r8E3ZnjOG/1EyUdD+KCQP1+ynVgKEVX0fOLG7c/JiDU6aH4ucxe+Wjo7xM8d2+jORCRLaraXdye2HSmqgMuEea78dZr3qOqf9poQsaoH9KaY6JMQcVCBkYX+brlsvn87u1jY3KMJXUHLqUZxAmZ9nyOKbkWrlu7lUNHjpFrjQ4ELZfi53f+vM5QN+iOttyIIEnqpm2lj4040pjOAFDV3wK/zWAshjGKtOaYtKanQv8As1Y+GisIktwzahEbPEFS7IwQ5Mix4/nY+gcGybVIrHsyQD7XwkCg8mcaBgaHuP7+bWx+ef+YqqICXLloJt2nn8Ka9Tu5bu3WxM/FSh8bccQKGhHZQIIUUaq6uGIjMgxHEnfXJLVbShF7hRBZn8UnypX6xMmtHDpyLOIqb2IvvmZwWGmbPIm2yZNChZdv/vrLtVsZn6jx1ovCEowq8Ogze8esXYVRrKlUen1lomePNkZTSqNJXU3TMCpFnLtrWPzHeIRMKVRhxQPbgPjUMSdMahkzOcfFuuRaZEzRMZ9C/wAdbWOzAwQ1hNZWYThBOYEooq5Mmz06SKUKo9W6tLdReWIFjareVK2BGEYxUeaY8+d1JkqNXyn89C9hk1zSNP3FnDRlUuSkLoyd8AX4xDneRH7e6icS1azJgo62HKs+dkamE75lCGg8Uq/RiMgUoJNAOiVVHV8EmWHE0LOgi80v7+fep3YzpEqryIinWLWEjE8lzXUi8ZpD2N38Qmvdp5+SmRt0PtfKCZNaYteU2iZPynyytwwBjUeaXGe/B9wNLAw5XFYxNMMIo7evwENbCiMT+ZAqa5/eXZO3eX9N4iu920etb4xrTWicw/ff6qeWcDBIS7DODYx1Zw5SjcneMgQ0HmkyA/x3YDdwFvA74ANAL3BNqQtFZIqI/FxEtonIDhG5ybXPFpGnRGSXiKwVkcmu/QS3v8sdnxW41w2ufaeILAm0L3Vtu0RkZaA9tA+j/gkzoVRSyLSk8CResWQuvX0F7q5glc7x8Gr/ADGlcMbQKoIQns0ZPOeCWy6bz6Ejx7h27VauXbsVQSOfTbmTvZ9BIa5Gj2UIaDzSCJqFwGdU9VkAVd0BfA5YkeDaI8AFqnoWMB9YKiKLgG8At6jq+4ADHBda1wAHXPst7jxE5P3A5cAZwFLgf7jSBa3APwAXAu8HrnDnEtOHUedk+fb86UUz+ftPzU8ct9KzoIsb1+3IbDxB4kbUIpJowd5nWJWXVl/ELZfND528z5/XyYoHto3SkA471+niZ1PuZJ80Liqq9IOtz0xc0giaYcD/n/+WS6a5H5hZ6kL1eMvt+lU5FbgAeNC13wn0uO1L3D7u+IdERFz7fap6RFVfAnbhBY+eC+xS1RdV9SheWpxL3DVRfRh1TlamkvPeewpf73EBiZeeFerhFcTPi5bUXNXRluObl82PrJZZijiNaUg1VhAV4z/DqMl74/P7Qr3fhhVOnDxp5PyOthwnTPICS5NWCy0mTY2eSteSSaJJGdmRxhlgB3Ae8D+Bp/A0jUPAS0kudlrHFuB9eNrHr4B+VfUDDfYA/r+mLjwzHap6TEQOAu907ZsCtw1es7uofaG7JqqP4vEtB5YDzJxZUnYaFSYsbqJUqv/x8us3xtaEgfAFej9PWBr6Dw+OuPp+pXf7uLMtR5HGdBcce7H7cW9fITblzcGBQbauWlwxd+NaLfKbu3TtSaPR/AWeBgOeuawLOAfPfFYSVR1S1fnAdDwNZF6KvjNHVW9X1W5V7e7s7Kz1cBqOuDfKKJMKMJJvq5IU+gdY8cC2Uf1FmaOU45NRKc3HJ6iJ/XDb3nKHG0mS8TywOVzI+c88Dv93RGki167dyqyVj7Lgqz9JpCHUKk3NeKudGpWjpEYjIpPwkm8+E2j+IPBL4Geq+q9pOnQ1bDYCfwi0i8gkp3FMB/x/rQVgBrDH9T8Vr9ia3+4TvCas/Y2YPowqUeqNMm4ii0rnXy5RwZLFtIowe+WjnNae56IPTCvp9ZZrkVFaRCW9w4ppmzwJ1fg+nvzV/tD2UiUCcq3Hf0cpjePA4UFWPFg6qLVWaWrMXbr2JNFo1gJX+zsi8hXgduCPgbtF5DOlbiAinX6BNJcF+sPAc8BGvFLQAMuAH7jtdW4fd/wJ9dJMrwMud15ps4E5wM+Bp4E5zsNsMp7DwDp3TVQfRpUo9UYZ9x8+y2zGSRhSHdF61j69m8v+YMbIukV7PkdrsXtWdjkxx1DoHxi3IIt75h1tOdZcetaI0EiicQwOaUkNoVaL/Jbws/YkWaPpBr4Y2P8invfZXSLyCeCv8coHxDENuNOt07QA96vqD0Xkl8B9IvJ1oA/4jjv/O8A/i8guPHPd5eB5uonI/Xja1DHgC6o6BCAifw6sx4vpucN5xQF8OaIPo0qUeqOMS0pZTwwOKd976hX+w8KZPPrM3lBz2+CQHncTrqLQSUvUM+9qz/PkygtGtSVdK0uiIVQqTU0aLOFn7UkiaDpU9VUAEfk3eGas+92xXjztJhZndlsQ0v4i3npNcfvbwCcj7vW3wN+GtD8GPJa0D6N6lArAy2rRPwuGlcSL+5VKvdbRluPtweFxPZ8TJoUbLVYsmcuKB7aNMiEWm/18ggkz414I6lVDsIJqtSeJoDkkIic59+Ru4NlADRpJeA+jiSn1RumnmgnLKNzsCHDRB6aNpO5Pq/kdPXY8x3PQ0669LTc2q0FAA/tK7/ZRqX+uWDiDJ1deEOlF1yLpvfOqSS00KeM4SYTEz4Cvicj/g+dh9uPAsblAdm41RkOQ5I1y4/P7TMiEoMA9bmJ/cuUFzFr5aKrrg+WYg8I+yuy3Zv1ONr+8f5QwGVId2d/4/L7QfqbmczaRG5EkETRfxjNJfQl4Fvj7wLErsVICRgJKvVGaB1A0ynFzXVyRtmKCWmMpLzOfV/sHuPep3aHH7n1qN8MR9sD+FNkKjOajpNeZqr6kqv8GeJeqfkBVg/6S/xUvvsYwyqJe7fv1RJI8ax1tuVCPrqSC/LT2fGSi0CFV8+AyxkXi9ZUiAeO39Vd0NEbT4a8bFPoHUr2tG2MJ8xjzaS9RHhqOa0DX378tUticP69zTAVO8+AySpEmM4BhVIzevgLzb/oJ167dOrLAbUJm/ORahUNHjkXm8irlAdfRlhvRgK5YOCPyvI3P77OEl0ZqzGPMqDrjrUpphNPRluOtt4+NBG+G5fI6WCKw8623j41sf73nzEgX7lf7B8yDy0iNaTRG1Um6MG2Upj2fo23ypDEpdYpzeU0tkUnaL1ftE5X6p9RajGVJNsIwQWNUnYmQBWCi8NGzppXMvNDbV+B3R46FnhN2Poyv+FjSejNG82GmM6PihKX8900tNulUlo3P7yuZeeGmR3YwlCCJaFBbGU80fVxOu+Lr4v6NGI2HCRqjYvT2FbjpkR2jvJv8lPx//fAzI5Ubjcrxav8At1w2PzbzQpKKnGHpZ9KuxSTNkmz1YZoPM50ZFcGfPEIjzofVhExGnNaeLzsrcns+x5pPnlX2JJ80xsbqwzQfptEYFcEW+LOnOM6oOF9clKBoz+dCywm053NsXbW4YuNLmiXZ6sM0H6bRGBXBJolsyedauXLRzDFaC1DSy+vGi88gV1Q3J9ci3HjxGRUdY1LNyrILNB+m0RgVYaLUlJmohE3YSdc6qpkmP8m6jtWHaT5M0BgVYcWSuax4cFtsmWNjfLRHZEZO4+VVT0GWVh+m+TBBY1QMEzKVJ87EFbfWUe/uw/Uk+IzsMUFjlE1vX4EVD2yr9TAajq4SAiLKXDk1nzP3YaOuqIozgIjMEJGNIvJLEdkhIl9y7aeIyAYRecF9d7h2EZFbRWSXiDwjImcH7rXMnf+CiCwLtJ8jItvdNbeKeBXbo/owKsea9TvHpEAxyuf8eZ2xguH8eZ2h7QcHBkNNajc9sqPm6WGyTFFj6W/ql2p5nR0DrlfV9wOLgC+IyPuBlcDjqjoHeNztA1wIzHGf5cBt4AkNYBWwEDgXWBUQHLcBnw1ct9S1R/VhVAjzOEuHlD4FILIAGXiTatTxKJF/4PBgTdPD+JpvcAwrHthWkTFY+pv6piqCRlX3quov3PbvgOeALuAS4E532p1Aj9u+BLhLPTYB7SIyDVgCbFDV/ap6ANgALHXHTlbVTaqqwF1F9wrrw6gQpRI2Gsfpas8nLocQVRPGn1Sjjiel2kGSN67bMUbzHRxWbly3o+x7WxBofVP1NRoRmQUsAJ4CTlXVve7Qb4BT3XYXEHxd2+Pa4tr3hLQT00fxuJbjaU/MnDkz7c9qGoKLzO1tOVQJDQZsFloEkloNfRdev9BbKVolXPepZHBsNbXRqH8nlfj3Y0Gg9U1VAzZF5CTgIeBaVX0zeMxpIpka+uP6UNXbVbVbVbs7O8Nt381OsXniwOHBphYy4AmZOe8+MdG5/ht2WGbkMKIKkFVy8myUIEkLAq1vqiZoRCSHJ2TuUdWHXfNrzuyF+37dtReA4P+y6a4trn16SHtcH0aAJAuplmYmnBf3HaajLZn5sNA/UPI5CvDpRTP5es+ZocfbE/aVhGoGSUY9o6TPLo7xlDUwqke1vM4E+A7wnKr+feDQOsD3HFsG/CDQfpXzPlsEHHTmr/XAYhHpcE4Ai4H17tibIrLI9XVV0b3C+jAcYQup163dyld6t486z8wQ4Qyp0p8gQ7JP0GzWgmd+A89U9ulFM3lp9UWRQgZKl2WuV1Z97AxyrUWpcFqFVR8rPxVOuYlFjWyp1hrNecCfAttFZKtr+2tgNXC/iFwDvAx8yh17DPgIsAs4DFwNoKr7ReRrwNPuvK+q6n63/Xngu0Ae+JH7ENOH4Qh7w1bgnk2v0H36KSP/WS3NTDitIrxn6pRxPZthoGtqnidXXpD4mlJlmdMQlkUgK7LOCGBBoPWL6ER9PcqQ7u5u3bx5c62HUTVmr3w0cnGsVYRFv9fBv764P/Gid7Nx6jsmc+SYjnu9SoCXVl8EJCsItuCrP0lUYyZt34ZRLiKyRVW7i9stM4ARq6kMqfLkr/aHHjM8Xvvd0bKu9xeskyTJ7O0r8Nbbpcsyw/HMAgB/ef/W0BcFWyw3qoEJmiant6/AoQT15I1sEI4vyCdJkpkkC0OuVVhz6dhCZpYx2agVJmiamOI3aKP6XLlo5ohAKBUL0ttXiF0HEjwN5fx5naxZv5Pr1m4dY34Lltr209KA5UAzssUETQORJmNvb1+B6+/fVnZ0uTF+Otpyo7zLokyYp7XnvfQtD0YnLu1q9xwK4sxvwBiz24HDgyP3NWFjZIU5A4QwEZ0BwrSTXItw0pRJ9B8eHCV4TJOpD4oX4sP+XvK5Vm7++Jmx2QQEuOWy+QCxLw+tIpHHfEE1Xuq9LIFRHcwZoMEJs+8PDuuImaTQP8C1a7dy7dqtNRidEUbxQnyc++91MX9vvugolf8s7lg5MVJJK30azYsJmgbBginrG2F07qNcq3DoyDFmr3x0lEApjgXxMzbE2R262vNlZ20ox/ssTaVPozmpaq4zIzvMTbV+EbxFfz9qvaMtBy4ZaVxK+2DGhihyLcKKJXPLetHItUpZ3meW0NIohQmaBiFpokaj+kzJtdB9+ik8ufICXlp9EW2TJ41xUQ5LaV9KS2nP51jzSc+NOc2LRjAJTEdbLtQVOg2W0NIohZnOGoTNL+/nbVvcr0sGBodHrVlEvekX+gdGmdKizguL5j9/Xid3b3plzLnFZQx854JKmrRWLJlrMTpGLKbRNABf6d3O3ZteybbGglEWQY0l7k1/pPJkjCtz2PUbn98Xeu7UfC7zRJOW0NIohWk0DcA9IW+yRv3hayhhGkAxg0Phrw1RmkKU9tN/eJC+v1k8jtGmwxJaGnGYRjPB6e0rmCYzQVDgvNVPAIzSAJIiQqSmYOskRj1jGs0ExA+Os5T9Ew8/nsmnoy3HkcEhDg8Ol7w2Lrba1kmMesYEzQSit6/Ajet2NH355IlAW66FjhNPKPkykDbdf1RsSta1XgyjHEzQTBAsbUy2FAdUlkM+18p/cSauuFo/4yEuNsXWSYx6xdZoJgjlRn4b0bSIF1CZZr2kmFbxrg56XPX2FWiRcu46lqn5XEXvZxjVwDSaCYKtx2THsDKSRTksFiWOqLgUXwNNmh07LEXN0JBSvHJz6OgxevsKprkYE4qqaDQicoeIvC4izwbaThGRDSLygvvucO0iIreKyC4ReUZEzg5cs8yd/4KILAu0nyMi2901t4p4r5FRfUxEWiv8ZmyMprevwA+37U11TVy8SFoN9I/ee8qoOJQ1l57F1Lax2svgkI7JIGAY9U61TGffBZYWta0EHlfVOcDjbh/gQmCO+ywHbgNPaACrgIXAucCqgOC4Dfhs4LqlJfqYcFjdmOzI51pY8cC2VE4Wflr9KM0ibZ6vX78xMJKixr9vf4SjgOUQMyYaVRE0qvq/gOLC85cAd7rtO4GeQPtd6rEJaBeRacASYIOq7lfVA8AGYKk7drKqblKvuM5dRfcK62PC0WXxEJmQaxGm5FpLlkcuppTbcNr4laDwKJWx2WJjjIlGLddoTlVV31bxG+BUt90F7A6ct8e1xbXvCWmP62MMIrIcT4Ni5syZaX9LxQnGysQVrDLGT6sIl507I3VmhfZ8ruQaSVRcy5RcS6hLsy88SnkXWmyMMRGpC2cAVVURyXQmLdWHqt4O3A5ehc0sx1JMcXXC8+d18tCWwshkY0ImnI62HG2TJ408t8NHj4VO4iLhwY5Dqjy0pcDUfC6x2Syfa+XGi88oeV5UXAsQG1gZt7bTZbExxgSlloLmNRGZpqp7nfnrdddeAGYEzpvu2grAnxS1/9S1Tw85P66PuiGsOuE9liCzJPlcKxd9YBqPPrN3JBFlW66FXIuMMYPFyemBwSFaSvhZtIowrJo6CDIuriUqsDIuY3M5pZYNo5bUMo5mHeB7ji0DfhBov8p5ny0CDjrz13pgsYh0OCeAxcB6d+xNEVnkvM2uKrpXWB91Q9gbrAmZ0nzinC7WPr17lAZzeHCYIVXa8zmE5J56h45Ge4flc6383afOGrVIXy49C7p4cuUF3HLZfACuW7uV81Y/QW9fwXKWGQ1Jtdyb7wX+FZgrIntE5BpgNfBhEXkB+HduH+Ax4EVgF/D/Ap8HUNX9wNeAp93nq64Nd8633TW/An7k2qP6qBvMgyg9Xe15Nj6/LzTD8bDCiSdM4qXVFzFcpskxy3T3weqZwSqb58/rHFPAztZljIlOVUxnqnpFxKEPhZyrwBci7nMHcEdI+2bg34a0vxHWRz3R3pZLne+qWWjP5zh09NgogeJPutcFElMW4wvv09rz4w50zdpUFabJDgwOsfH5fdz88TMtZ5nRUNSFM0Cz0ttX4K23j9V6GDUl1yqgjFpXCUbbFztK+JNuXHJR38yUpO5LVI6zrE1VUZrsq/0DlrPMaDhM0NSQNet3po7fmEh887L5seUMugKeWFFv8GGTbm9fgUNHwwV0rkVG7hn0/Cr0D4wRKvlcK584p2uUh5/fXq6pKkpA+kRpW7YWYzQiJmhqSCOvz3x60cyRiTXMnbd47SPNG/ya9TtD12dEYM0nzxpzX38/avLvPv2UipqqwjwJb3h4+6jfafVjjGbCBE0NiXqr9d1pp+ZzvPn2IFkpPZUMBPXvVRzrkUWdlEgBrfECK8okVWlTVdT6S7CWjNWPMZoJEzQ1JOqtNvi239tX4Pr7tyUSCLkWSFCoEfDWJv7uU2clvnccHW252Lr0lZ7I693sFLf+EsTWYoxmwQRNhpSy08e91QavbW/LcfDw4JiU8cUcSyhkwFurSJPGPopcq7DqY6Uj5StJvZud6l0QGka1MUGTEUns9P52VC0T/9oDhwfJtQrDIesSQdKIjFaRUG8scX8klT9rLj2r6m/l9W52qndBaBjVxgRNhSjWXg4dOVbSTh9FmI1/cEgrtqaSz7VGuvwq8OmFM8d4YoXR1Z5PPLmX0u7SUs9mp3oXhIZRbUzQVIAw7SWKV/sH6O0rjIoD6WjLsepjZ5TMdzWkGiskIDwuZM67T+Tw0eFRk16c2/FDWwp84pwuNj6/L/KcXKskfkNPqt01EvUsCA2j2pigqQBpqim2t+VY8cC2UfEzBw4PsuLBbYA3QUXZ+H2PrqhgxVyrcNkfzGDj8/sSvUlHBTP6Eep+ZHwpwViKJF5YhmE0LiZoKkDSeJh8rhUtioL38Uv09izoirXx9yzoYs36naGC5sTJk/h6z5mJxuJP8NdGpHIJ/qZy386TemEZhtGY1DJ7c8MQ5U3U0ZYbVQf+5o+fycGYuif+xNuzoIubP37mmGtLmdbi7h1Gz4KuyMqdlfSQsozEhtHcmEZTAaI0kDDzUtzaSHDijdMiKuk+Ww0PKfPCMozmxjSaClBKAwmyYslcciGVttIsrq9YMrdiqeTTjH28VKMPwzDqF1ErEzyG7u5u3bx5c2b3L3dx3b/HTY/sGCkx0J7PcePFo+9RaZdiwzCMOERki6p2F7eb6awGVMr19e1Avpn+gcFRLsPN6FJsGEZ9YqazCUqcy3CS44ZhGNWiKQSNiCwVkZ0isktEVtZ6PJWglMuwuRQbhlEvNLygEZFW4B+AC4H3A1eIyPtrO6ryKeUybC7FhmHUCw0vaIBzgV2q+qKqHgXuAy6p8ZjKppTnWSU90wzDMMqhGZwBuoDdgf09wMLik0RkObAcYObMmdUZWRmUStxoiR0Nw6gXGt69WUQuBZaq6mfc/p8CC1X1z6Ouydq92TAMoxGJcm9uBtNZAZgR2J/u2gzDMIwq0AyC5mlgjojMFpHJwOXAuhqPyTAMo2lo+DUaVT0mIn8OrAdagTtUdUeNh2UYhtE0NLygAVDVx4DHaj0OwzCMZqQZTGeGYRhGDWl4r7PxICL7gJdrPY4a8i7gt7UeRJ1jzygZ9pxK00jP6HRV7SxuNEFjjEFENoe5KBrHsWeUDHtOpWmGZ2SmM8MwDCNTTNAYhmEYmWKCxgjj9loPYAJgzygZ9pxK0/DPyNZoDMMwjEwxjcYwDMPIFBM0hmEYRqaYoGkSROQOEXldRJ4NtJ0iIhtE5AX33eHaRURudRVJnxGRswPXLHPnvyAiy2rxW7JCRGaIyEYR+aWI7BCRL7l2e04OEZkiIj8XkW3uGd3k2meLyFPuWax1eQURkRPc/i53fFbgXje49p0isqRGPykzRKRVRPpE5Iduv3mfkarapwk+wAeBs4FnA23/FVjptlcC33DbHwF+BAiwCHjKtZ8CvOi+O9x2R61/WwWf0TTgbLf9DuD/4FVlted0/BkJcJLbzgFPud9+P3C5a/9H4D+57c8D/+i2LwfWuu33A9uAE4DZwK+A1lr/vgo/q78Evgf80O037TMyjaZJUNX/Bewvar4EuNNt3wn0BNrvUo9NQLuITAOWABtUdb+qHgA2AEszH3yVUNW9qvoLt/074Dm8wnn2nBzut77ldnPuo8AFwIOuvfgZ+c/uQeBDIiKu/T5VPaKqLwG78KrhNgQiMh24CPi22xea+BmZoGluTlXVvW77N8CpbjusKmlXTHvD4cwXC/De2O05BXAmoa3A63hC9FdAv6oec6cEf+/Is3DHDwLvpMGfEfBN4K+AYbf/Tpr4GZmgMQDvTRXvzbTpEZGTgIeAa1X1zeAxe06gqkOqOh+viOC5wLzajqi+EJGPAq+r6pZaj6VeMEHT3LzmTD2479dde1RV0oavVioiOTwhc4+qPuya7TmFoKr9wEbgD/HMhn7ZkeDvHXkW7vhU4A0a+xmdB1wsIr8G7sMzmX2LJn5GJmiam3WA7xG1DPhBoP0q51W1CDjoTEfrgcUi0uE8rxa7tobA2cW/Azynqn8fOGTPySEinSLS7rbzwIfx1rI2Ape604qfkf/sLgWecFrhOuBy53E1G5gD/LwqPyJjVPUGVZ2uqrPwFvefUNUraeZnVGtvBPtU5wPcC+wFBvFsvdfg2YEfB14A/gU4xZ0rwD/g2d63A92B+/wZ3qLkLuDqWv+uCj+jP8Yziz0DbHWfj9hzGvWMPgD0uWf0LPA3rv338CbBXcADwAmufYrb3+WO/17gXv/ZPbudwIW1/m0ZPa8/4bjXWdM+I0tBYxiGYWSKmc4MwzCMTDFBYxiGYWSKCRrDMAwjU0zQGIZhGJligsYwDMPIFBM0hlFHiMhbIvKHtR6HYVQSEzSGkQAROUdEHhKv1MJbIvJrt39ByvvMEhF1SRfHoKonqeq/ljnWmSIyJCIby7mPYVQKEzSGUQIR+TDwJF7gXDdeCYEz8VLA//uY63JVGeBYPgP0A38iIr8fd2INx2g0ESZoDKM0twF3q+pfqeor6vE7VX1IVb/onyQiPxWRb4pIr4i8CVyftiOn7fyxiEwSkb0i0lN0/Lsi8k8x17fiZX24GS9yf3nI9fe47/3Ara69R0S2iEi/iDwnIlcGrpkuIj8WkX0iclBEfiYi56T9bUbzYoLGMGJwGsF78VL4JOHP8Cbvqe57XKiXLv6fgf8YGMtJeLmw7oi59KPAu921dwDLROSEonM+iVewrRO43mls3wGuxSvWtgz47yLyQXd+C/A/gNOB9wC/AB42bchIigkaw4in032PZM0VkYvdm/9BEXm76PwHVfUJp/UcLrPvfwI+IiLvdvufAl5V1Z/FXPM54FFVfQ1P2JwMfLzonP+tqmvVS/d/GPgS8C1V/ZmqDqvqz4G7gasAnBa3TlUPq+oA8BVgJl6SR8MoiQkaw4jnt+57ZPHeTbrteBUUi7WFX1eqY1V9Dk97+LRruhpP+IQiIqfjVfe8w13/W7wMwJ8rMcbZwJed8OwXkX48Teo0d993ichdIvKKMwn6xbg6MYwETCp9imE0Nf8HeBEv3fu/JDh/uPQpqfgn4Asisg5Y5MYRxWfwXh6/LSL+ONqAd4jIXFXdGTHGl4HvquqaiPveDEwDFqrqXhF5B/AmXvZqwyiJaTSGEYN66c2/APypiHxDRGa4+jNtwMIybn2CiEwJfKLWO+4D3oe33rNBVUMLX7mCWdcAq/FS+c93n98HnqfIKaCIbwLXicj/5co0T3bu3N3u+MnAYeCAWyf6RorfaRgmaAyjFKr6Y7xaNb+PZ8p6C9iBV0kxVRxNgF3AQODzSETfB4HvAxcS7wTwMaADuEVVfxP8ALcQ7hTg9/ET4LPAGjxT4V53zUnulL/BczB4A68Ozf8HDCX/qUazY/VoDMMwjEwxjcYwDMPIFBM0hmEYRqaYoDEMwzAyxQSNYRiGkSkmaAzDMIxMMUFjGIZhZIoJGsMwDCNTTNAYhmEYmfL/A1A7i5YjnDfEAAAAAElFTkSuQmCC\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fig, ax = plt.subplots()\n",
+    "ax.scatter(x = X_train['Gr Liv Area'], y = y_train)\n",
+    "plt.ylabel('SalePrice', fontsize=13)\n",
+    "plt.xlabel('Gr Liv Area', fontsize=13)\n",
+    "plt.show()\n",
+    "\n",
+    "#Deleting outliers\n",
+    "indices2drop = X_train[(X_train['Gr Liv Area']>4000) & (y_train<300000)].index\n",
+    "X_train = X_train.drop(indices2drop)\n",
+    "y_train = y_train.drop(indices2drop)\n",
+    "\n",
+    "#Check the graphic again\n",
+    "fig, ax = plt.subplots()\n",
+    "ax.scatter(X_train['Gr Liv Area'], y_train)\n",
+    "plt.ylabel('SalePrice', fontsize=13)\n",
+    "plt.xlabel('Gr Liv Area', fontsize=13)\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Feature engineering\n",
+    "\n",
+    "In order to maximize our model's performance, we should also look into creating new features. This usually requires domain knowledge. However, there are also automated tools available. One of these tools is called featuretools. Click [here](https://github.com/alteryx/featuretools) for more information."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Task: Please think of a new feature and visualize if it has any correlation with the target variable\n",
+    "Use the cells below to for your code"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 17,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEGCAYAAACzYDhlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAABpaElEQVR4nO2deXhU1d34P2cmmUz2DRJiQgIhYd+EiOgrVIlStLgraq1Yq6WLCNbautSl4lK1/qBQt+Kub6tg3XmRqqBVW7eALLKHSCAxkJA9mUwmmTm/P+7CTOZOSJCBJJzP88yTmTP33nNmGM73fnchpUShUCgUinBiO9YLUCgUCkXfRwkbhUKhUIQdJWwUCoVCEXaUsFEoFApF2FHCRqFQKBRhJ+JYL6Cn0K9fPzlo0KBjvQyFQqHoVaxdu/aAlLL/oY5TwkZn0KBBFBUVHetlKBQKRa9CCFHaleOUGU2hUCgUYUcJG4VCoVCEHSVsFAqFQhF2lLBRKBQKRdhRwkahUCgUYUdFoykUCkUfx+eT7K5uZn+Dm/QEJ4NSY7HZxFFdgxI2CoVC0Yfx+SSrNu/jpuXrcbf5cEbaWDhrPDNGDTiqAkeZ0RQKhaIPs7u62RQ0AO42HzctX8/u6uajug6l2SgUCkUfZn+D2xQ0Bu42H/sb3Ob7R8O0poSNQqFQ9GHSE5w4I20BAscZaaPNKzlnySdHzbSmzGgKhULRhxmUGsvCWeNxRmrbvTPSxkMXj+XOtzYdVdOa0mwUCoWiD2OzCWaMGsDweVOobHSTFu+kurmV0uqWgOPcbT4qG93k9o8LyzqUsFEoFIo+js0myO0fFyBIrExrafHO8K0hbFdWKBQKRY/EyrS2cNZ4BqXGhm1OpdkoFArFcYaVaU1FoykUCoXiiGNlWgvrfEdlFoVCoVAc1yhho1AoFIqwo4SNQqFQKMKOEjYKhUKhCDthEzZCiGFCiPV+jwYhxI1CiBQhxPtCiJ3632T9eCGEWCKEKBZCbBRCTPC71tX68TuFEFf7jU8UQmzSz1kihBD6uOUcCoVCoTg2hE3YSCm3SynHSynHAxMBF/AGcCuwWkqZD6zWXwOcDeTrjznAE6AJDuBu4GRgEnC3n/B4Avi533kz9PFQcygUCoXiGHC0zGiFwC4pZSlwPvCCPv4CcIH+/HzgRanxOZAkhMgAfgi8L6WskVLWAu8DM/T3EqSUn0spJfBih2tZzaFQKBSKY8DREjaXAy/rz9OllBX6831Auv48E9jrd06ZPtbZeJnFeGdzBCCEmCOEKBJCFFVVVXX7QykUCoWia4Rd2AghHMB5wKsd39M1EhnO+TubQ0q5VEpZIKUs6N+/fziXoVAoFMc1R0OzORtYJ6Xcr7/er5vA0P9W6uPlwEC/87L0sc7GsyzGO5tDoVAoFMeAoyFsruCgCQ3gbcCIKLsaeMtvfLYelTYZqNdNYf8CpgshkvXAgOnAv/T3GoQQk/UotNkdrmU1h0KhUCiOAWGtjSaEiAXOAn7hN/wgsFwIcS1QCszSx1cC5wDFaJFr1wBIKWuEEPcCX+nHLZBS1ujPfw08D0QD7+qPzuZQKBQKxTFAaC4NRUFBgSwqKjrWy1AoFIpehRBirZSy4FDHqQoCCoVCoQg7StgoFAqFIuwoYaNQKBSKsKOEjUKhUCjCjhI2CoVCoQg7StgoFAqFIuwoYaNQKBSKsKOEjUKhUCjCjhI2CoVCoQg7StgoFAqFIuwoYaNQKBSKsKOEjUKhUCjCjhI2CoVCoQg7StgoFAqFIuyEtZ+NQqFQfB98Psnu6mb2N7hJT3AyKDUWm00c62UpDgMlbBQKRY/E55Os2ryPm5avx93mwxlpY+Gs8cwYNUAJnF6IMqMpFIoeye7qZlPQALjbfNy0fD27q5uP8coUh0NYhY0QIkkI8U8hxDYhxFYhxClCiBQhxPtCiJ3632T9WCGEWCKEKBZCbBRCTPC7ztX68TuFEFf7jU8UQmzSz1kihBD6uOUcCoWi97C/wW0KGgN3m4/KRvcxWpHi+xBuzWYxsEpKORwYB2wFbgVWSynzgdX6a4CzgXz9MQd4AjTBAdwNnAxMAu72Ex5PAD/3O2+GPh5qDoVC0UtIT3DijAzcopyRNtLincdoRYrvQ9iEjRAiEZgKPAMgpfRIKeuA84EX9MNeAC7Qn58PvCg1PgeShBAZwA+B96WUNVLKWuB9YIb+XoKU8nMppQRe7HAtqzkUCkUvYVBqLAtnjTcFjuGzGZQae4xXpjgcwhkgMBioAp4TQowD1gLzgXQpZYV+zD4gXX+eCez1O79MH+tsvMxinE7mUCgUvQSbTTB9RDrL5kymot5NRqKTURmJKjiglxJOYRMBTABukFJ+IYRYTAdzlpRSCiFkGNfQ6RxCiDloJjuys7PDuQyFQtFNfD7Je1v3q2i0PkI4fTZlQJmU8gv99T/RhM9+3QSG/rdSf78cGOh3fpY+1tl4lsU4ncwRgJRyqZSyQEpZ0L9//8P6kAqFIjx0NxrN55OUVDXx2a4DlFQ14fOF9T5W0U3CJmyklPuAvUKIYfpQIbAFeBswIsquBt7Sn78NzNaj0iYD9bop7F/AdCFEsh4YMB34l/5egxBish6FNrvDtazmUCgUvYTuRKMZOTnnLPmEK576gnOWfMKqzfuUwOlBhDup8wbg70IIB1ACXIMm4JYLIa4FSoFZ+rErgXOAYsClH4uUskYIcS/wlX7cAilljf7818DzQDTwrv4AeDDEHAqFopdgRKP5C5xQ0WihtKDh86aQ2z/uqK1ZEZqwChsp5XqgwOKtQotjJXB9iOs8CzxrMV4EjLYYr7aaQ6FQ9B6MaLSOPhuraLTOtCAlbHoGqlyNQqHokdhsghmjBjB83hQqG92kxYeujdYdLUhxbFDlahQKRY/FZhPk9o9jcm4/cvvHhYxCUzk5PR+l2SgUil5Pd7QgxbFBCRuFQnHMORKtBAwtSPloeiZK2CgUimOKaiVwfKB8NgqF4piiWgkcHyjNRqFQHFP8w5YzEp1cNCELIaCqqVX5XfoQSrNRKBTHFCNsOSPRyVWTc3jm0xIeXVPM1c9+qaoA9CGUsFEoFMcUI2z50oIslqzZGWRO+/aAMqf1BZQZTaFQHBEON6LMCFvumJQJmsDZuq+Bwf2UOa23o4SNQqH43nzfiDKbTTAoNdayCsCO/Y2MzEhQIc29HGVGUygU35sjEVE2KDWWBy4cE1AFYN60fF4tKrOs9KzoXSjNRqFQfG+ORCFMm00wITuJOVNz8UmQEl76vJRal0fVOOsDKGGjUCi+N0eqEGZ2SizDByR0qdKzonehhI1CofjedKcdQGeoGmd9F6G1kVEUFBTIoqKiY70MhaLXYkSjKSFxfCGEWCultOpbFoDSbBQKxRFBFcJUdIaKRlMoFApF2AmrsBFC7BZCbBJCrBdCFOljKUKI94UQO/W/yfq4EEIsEUIUCyE2CiEm+F3nav34nUKIq/3GJ+rXL9bPFZ3NoVAojg4+n6SkqonPdh2gpKqpR5ec6U1r7c0cDc3mDCnleD+b3q3AaillPrBafw1wNpCvP+YAT4AmOIC7gZOBScDdfsLjCeDnfufNOMQcCoUizBgJnucs+YQrnvqCc5Z80mNrnPWmtfZ2joUZ7XzgBf35C8AFfuMvSo3PgSQhRAbwQ+B9KWWNlLIWeB+Yob+XIKX8XGpRDi92uJbVHAqFIsz0ppYBvWmtvZ1wCxsJvCeEWCuEmKOPpUspK/Tn+4B0/XkmsNfv3DJ9rLPxMovxzuYIQAgxRwhRJIQoqqqq6vaHUygUwXSW4NnT6E1r7e2EOxrtNClluRAiDXhfCLHN/00ppRRChFVf7WwOKeVSYClooc/hXIdCcbxwpBI8jwa9aa29nbBqNlLKcv1vJfAGms9lv24CQ/9bqR9eDgz0Oz1LH+tsPMtinE7mUCgUYcZI8PSvcdZTqwD0prX2dsKW1CmEiAVsUspG/fn7wAKgEKiWUj4ohLgVSJFS/l4I8SNgLnAOWjDAEinlJD1AYC1gRKetAyZKKWuEEF8C84AvgJXAX6WUK4UQf7aao7P1qqROheLIEc4Ez8NtZXAs1no80BOSOtOBN/Ro5AjgH1LKVUKIr4DlQohrgVJgln78SjRBUwy4gGsAdKFyL/CVftwCKWWN/vzXwPNANPCu/gB4MMQcCoXCjyO5cVtd60gneH7fVgZWqGTUo4MqV6OjNBtFX6IrQuRIbtzhEAJWlFQ1cc6ST4J8LCvnTVHC4hjRVc1GVRBQKPoYXc0dCRX2ezhtmI90CHGoRMuuRI+pJM2eiaqNplD0MUJt/MM73P2H2rgPpw3z/gY3yTEOLpqQhdBPe21tWbf62Rh0piUdKnrsaGlYiu6jNBuFoo/R1dwRY+P2x2jD3JlGYqU5ZCQ6mX1KDs98WsKja4p5+pMSZp+Sw4CE7ocQd6YlHSp6TCVp9lyUZqNQ9GKsfDNdzR0x2jDf/sYm3G0+clKjuWXGCIorm6hqau2Wn2fEgHgWr94ZsMkvXr2T6SMHdPszHarrZ2f9bo5Ex1BFeFDCRqHopYTa+KePSLdsZJadHMPuA03sb2il2dNOTkosE3O0NswxDjvxzshDmp9CaQ4vXDPJcpOvanIzJK17m/yhhGVn0WMqSbPn0mUzmhAiRwhxpv48WggRH75lKRSKQxFq499T62LGqAGsnDeFV+aczMp5U5g+Ip2Pdlby7jf7uPq5L/nZ80X86K+f8E15I2OzEnF5vNy7YsshzU+hNAeXp93SJHc4m/z3SbRUSZo9ly5pNkKIn6NVYk4BhqBl6z+JlqCpUCiOAYcyGfnf/ZdUNbGxrJ6lH5cECJTfvrqe/7thCjYhumR+CqU5ZKccmbbQhlkwOSaSZXNOoc3rJSU2qsv5P6qtdM+lq2a069FKzXwBIKXcqdc7UygUx4iuRGYZ/hybEETYbCFNXYNSY7t8raeuKuCOtzZRWt1iCpXB/WIZ3C/2e23yocyCE7JTunUdlaTZM+mqsGmVUnr0agAIISLQKjorFIpjhGEystImrDbuRZeNDylQunuthy4eS2aSM0jryO0fx6DUWHZXN/PFt9XdqkrQ1ZBtRe+kq8Lm30KI24FoIcRZaGVi3gnfshQKxaHozGRUUtUUtHE/+O5W7pw50vTN+AuU7l7rltc2Wmbtf588FxVJ1rfpqrC5FbgW2AT8Aq2O2dPhWpRCoegaoUxGVht3aXULOSnRvHDNJFyedrJTYgOSN7tzrVBC4PtoJyqSrHOOdAHSo01XhU008KyU8ikAIYRdH3OFa2EKheLw6bhxZyQ6ubQgC0+75ISkKAaldt0P0h0h8H20k85Mecc7faEyQleFzWrgTKBJfx0NvAecGo5FKRSK74f/xp0c42D2KTlm0qX/RgWaNlLd3IrDbsPl8QbdNXdHCHwf7URFkoWmL/izuipsnFJKQ9AgpWwSQsSEaU0KheJ7YrMJRmbEM2dqLvlp8fzunxuCNqphN0xh+/5GHlq1lcsKslmyJlgY2WwipBAALaTa36zzfbST3m4mCid9wZ/VVWHTLISYIKVcByCEmAi0hG9ZCoUiFF3dlCvq3SxZXczcaXmWG9WeGu1u+drTck1BY7zX8a65oz+nM7PO4Wgnx8pM1FsEXF/wZ3VV2NwIvCqE+A4QwADgsnAtSqFQWNOdTdm/0KbVRhXjiMDd5kMIAnw7RuXmUPXRILRZZ9gNUxiSFtftPJcjaSbqqgDpTX6QvuDP6lK5GinlV8Bw4FfAL4ERUsq14VyYQqEIpjtVjY0N6p0N5cyblh9UwiU9ISpgLCPRyVWTD1ZuvvrZL4P64BgVn3fsb+S6KblkJB68szbaE3TsH9OV/jJdrVR9KLraywd6V4Vow5TpX4KoJwrFzuhUsxFCTJNSrhFCXNThraFCCKSUr4dxbQqFogPdsd2bvpYB8dQ0t7JszmRcHi+xDjttXsm3B5p56qoCFq/ezrxp+bjbvZ2a06w0gXnT8nnp81Iq6t1me4KRGQldMrf5b5RHykzUHQ2pt/lBentlhENpNj/Q/55r8ZjZlQmEEHYhxNdCiBX668FCiC+EEMVCiGVCCIc+HqW/LtbfH+R3jdv08e1CiB/6jc/Qx4qFELf6jVvOoVD0dkL1oAm1KRsbVMGgVMZkJtHsaec/u6q58pkvuOb5In7+UhFXnTKYU4ekMCYzsVPtwmojX7JmJxdNyDIFz6tFZQHaSFe1hyNVQLM7GlJ3v0vF96NTzUZKebcQwga8K6VcfphzzAe2Agn664eARVLKV4QQT6Iliz6h/62VUuYJIS7Xj7tMCDESuBwYBZwAfCCEGKpf6zHgLKAM+EoI8baUcksncygUvZrs5BiWXlVAUWkNPgnvbCjnlhkjzLIye2qaqW7y4G730trmIyf1YOLmtweaLYtxGtUAEqIdnWoXoTby7JRorj0tl5c+L6XW5QnYrLuqPRypsOfuaEh9wQ/SmzhkgICU0ieE+D3QbWEjhMgCfgTcD9wktOJq04Af64e8APwRTRCcrz8H+CfwqH78+cArUspW4FshRDFaUVCAYilliT7XK8D5QoitncyhUHRKT45O8vkk723dH1SjbPqIdADWbN/Pd7UtNHu8ljk1pTXN+CQhN/9Jg1I73XxDbeTldS089mGx5Wbdnc3/SJiJuiNAVF7P0aWr0WgfCCFuBpYBpv4rpaw5xHl/AX4PGL1vUoE6KWW7/roMyNSfZwJ79eu2CyHq9eMzgc/9rul/zt4O4ycfYo4AhBBz0FonkJ2dfYiPoujr9PTopI4mqeQYB7uqmvi4uIrU2ChKKpto8niDNBfDZxHriMAurCPT0uKdh9x8Q23kIzPiOXVIquVmHeqc7OSYoBydI/Edd1eA9HY/SG+iq8LGCHO+3m9MArmhThBCzAQqpZRrhRCnH9bqwoyUcimwFKCgoEBVsT7O6elZ2tXNrVx7Wi5CQFyUHYFg0Qc7zE38zpkjcbdLS81lx/5GTkiKJjPJyfzC/ADN5+GLx2IT8NmuA+bG7/95/bW9YenxrJo/hX0NgRv5oH7W34/V5p+dHBOkoR1Joa4ESM+kS8JGSjn4MK79P8B5QohzACeaz2YxkCSEiNA1jyygXD++HBgIlOktDBKBar9xA/9zrMarO5lDoQhJT45O8vkk39W5eeZTTWu5/exhNHnauW6Kdr/32toy7l2xhUcuHWepuWwqb+DGZeu574LRxEfZ+fMl42jxtJOVEo3L42XG4k8CTHM/Gp1BRITtiGh7HTd/qyrSPUmoK8JDp9FoQoiThRAbhBBNQojPhBAjunphKeVtUsosKeUgNAf/GinllcCHwCX6YVcDb+nP39Zfo7+/Rkop9fHL9Wi1wUA+8CXwFZCvR5459Dne1s8JNYdCEZIjEZ3UlZySw7nG7upmbnltI+42HxmJTmKdkSz9WMuHefqTEq6anENyjIMIm+CumSMDorrunjmST3ZU4m7zcceb3zAmK4n+8Q4KBqWQHh/N3H98TXKMg+vPyOO6KbmUVDXxVWmNOe+RzEUxrnkkcmoUvYtDaTaPATcDHwPnoflgftjZCV3gFuAVIcR9wNfAM/r4M8BLegBADZrwQEq5WQixHNgCtAPXSym9AEKIucC/ADtaVerNh5hDoQjJ941O6q4WYBWMALBq8z4eWrWVSycOpH98FGW1Lry+g+axiyZkmT1p4GAI8pypuWwqb2DFxnIe//EEtlQ00NLm48mPd3FZQTZVTR4q6t20tHmZnNsP0ExnyTEOrpqcE1AbLS3BSUai83tpex0/n2E+276v4ZBBAz05UENxeBxK2NiklO/rz18VQtx2OJNIKT8CPtKfl3Awmsz/GDdwaYjz70eLaOs4vhKtt07Hccs5FIrO+L7RSd3x+YQSTMPS43lo1VZ+PCknwB/z2I8nmBu0f3kZA3ebj+zkGP7f+zuoqHfz63+s49rTcnnsw2IAlqzZybWn5fLMpyUBm3p6gtZ6oGMy570rtvDCNZMOO9kyVHfPhe9vx9MumTctP6jwpyFse3qghuLwOFRSZ5IQ4iLjYfFaoehTGP6Fybn9yO0f163NrTsJhXtqmtm2r4HrpuQyd1oeyTEOblq+ntKaZmaOzTQFjXGNBSs2c98FowPMY/44I23sa3BTUe82zxF+S3e3+bDbCNLUBqXGkpcWZ7lul6f9sJMtrQTvLa9tZObYTCrq3bz0eSnXnqZ99heumRQgSHpTGRlF1zmUZvNvtGoBVq8loMrVKBQ6XdUCfD7Juj11ZohyTmo0d84cSXFlE3FRESQ67UGbf2l1CzVNrTx/zUm4PO386cIx3PbGJvPOf35hPi9+Vhowr/RzFzkjbRQOT2NMZlKAALXZBKMGJFiue2ByDLurm+kf7zBL3XTVpBVK8Np1GVlR7zZzcy46MTPgej05UENx+ByqgsA1R2shCkVvp6s+n93VzdyuC4qMRCeXFWQHnHP/hWMoyEnk5Nz+pnbyzoZy6t1e9lS7+P1rm8hJjWbpVQVE2gVeKSmpbKLW5QGMoIBRPPlxsfn6gQvHBAkag5zU2KCqBL//4Qh21zQz9x9fB3yWkwendknbCyV4C3JSzPFQ309fKKevCEZIeehoGSFEOvAAcIKU8my9hMwpUso+43gvKCiQRUVFx3oZil6O4djuzOfz2a4DXPHUFwBcf0aeGc5skJMazQ3ThnLHmwc1l/suGM17m79jbFYKj7y3A9A24GVzJnPZ0s9JjnFw0YQsslOiKa9r4aNtlUwZmoYQYBNw0YmZQbkwRnmbdXvqTOFn+FbGD0zkh3/5JGjDX9nF8ORQfpfpI9LZU+vq9PtRPpvehRBirZSy4FDHdTWp83ngOeAP+usdaNUE+oywUSiOBF1JKPS/c7dy9s8cm2kKGsAMWX5q9kRaWn08dNEYYqIieOrjXVTUayYnwyxltAnYUdnExvKGgxn7KQe1B59Pq/i8taIBwBQ0xly3vLaRF66Z9L1MWZ0FWxzq+1FlZPomXRU2/aSUy41oNL2cjDeM61Io+iQ+n8Qm4IELx3D7G5sATWMwNBMhYPiAeJJjHKazH7TSNHtqWsyQZ2ekjbvPHUVOanSAyami3s2yoj0smzOZljZv0EbdUWuYV2jdxbO6uZX5hXksLyoz19FdU5bNJkwT2f4G7RpdFRqqCkDfozttoVPRggIQQkwG6sO2KoWiD+K/0SfHOJgzNZfRmYn85bLxfHugOaCEjOHwNzb6SwuCc2vueWczz19zUlD5mVtmjAjpn+kY6eWT1rXSNn/XyDOflpjrqHV5ul0R2fi8D63aysyxmdhtcFJOCqfkphIR0aW+jYo+RFeFzU1omfxDhBD/AfpzMENfoThu6U7yof9GX1HvZslqLRpr+ZzJ3LgsMNR38WotSdM4JjslxlID2VPt4sXPSs2aaTYBIzPiQ66hY6TXa2vLgnJejIZoxjpeuGYS/eOjum3K2l3dzEOrtnJZQXbA9R+6eCznjj1BmcWOM7paG22dEOIHwDBAANullG1hXZlC0cPpqiPbEEi7q5v48yXj+PZAMx6vj9fWaiaq7+qtQ32HD4hnXmEeDruNpOhISw0kXW/LbCRvApw6JNWyMKbPJ2n3Skuz2yOXjMMrJQ67jSc+Kg7I15HIwzJn7W9wM3NsZlDC6C2vbWRMZqIykR1nHKotdKjETdUWWnHc0VGLkZJDVgzwNyV1vMOfNy2fNdv20T8uylKQ5PfXfDctHi/3rNhsqYHc9dY3XDU5h5c+13JsLi3IwuXxUlLVZGoixrqrGlu5461NQdeZe0Y+39W5eO6/mrls3rR8s7TN9wk5Tk9wYreF7p+jhM3xxaE0m3M7eU8ldSqOG6y0mEcuGXfIjdQwnV17Wm7QHf6SNTt58icTWVtaw2/OHBpQnuams4bS7Gnns5Jq8tPi8bRLVn1Twd+umsj+ejfRDi0arbS6hSVrdjL3jDzsNhHUNG36iHSznP91U3IprW4xs/eFgFEZCeytaaah1cvFE7N4bW1ZQGmb79O5clBqLCf55dUYqJyZ4xOV1KlQdAGrEio7KxtDbqSGNrFjf2On9czqWzx4JWQmO1k4axwlVc0M6R/HgaZWLn/qc1Nw3H72cFrafPzipbUBmo2hgeSnxzH/lWAta9nPJ5sBCcPSNbOcT8LH2ys5e0wGje42Fn4Q7K8Zm5nAynlTvlfIsc0mOCU3lYcuHmtWrFatl49fuhoggBDiR8AotN40AEgpF4RjUQpFT8NwrGckOs0QZUeEjf936Th+++qGgI00OzmGNdv3s7GsnszEaOYX5uGIsAUJppzUaDztMkAbmTctn4ToCH7TQbAdaPYEdeD010Ai7baAcGljnXtqW7hhWh5xjgh+988NZnmcX07No6Khhbve3mxZPTo/Pf6ImLkiImycO/YExmQmHjJnRlV67tt0SdgIIZ4EYoAzgKfRItG+DOO6FIoeRXqCk5zU6CC/y8MXjzU7V/aP03wUG8rq+K62BYDaFg/5afF4fT7+ctl4/vTuVjztkksLshg/MIlf/31d0Gb/9OyCAKGUkegkPy0+oFGakcxpt8G8afnc885mrXrz6oOJnf7rnF+YbwqjmWMzuWfFZq6bkmupbQ1Njz+imkdXcmZU1YC+T1eD3U+VUs4GaqWU9wCnAEPDtyyFomcxKDWWe88fE+R3+f1rG/FJmDQole37G5mx+BMONHto9nh5a305Ph/c/M8NzF+2gRuXrWd+4VBu/uFQln5cwro9dZabfU2zh4KcRK4/I49bzx7G3Gl5/O6fGwIapWUkalUI8tLieenzUkqrW8hOjtEKW04IbhmwePVOLpqQBUBUxEENy6p69IgBCUd9g1eVnvs+XRU2LfpflxDiBLQmZhnhWZJCcWzorMumzSaItAuzo+XcaXlma4DKRnfAZhmpO+qtwn5vf2MTpdWuTjf74qomfnV6Ps98WkKj22vZKO3SgizmTcvnTyu3mlFj+xrcXHtaLvkhWgYYRT0H94vFGWkzc2w6tg8Y3O/o+1O6055B0Tvpqs9mhRAiCXgYWKuPPR2WFSkUx4CumHEGJDiZfUpOUKZ/fFQEO/Y3ct2UXF5bW0Z1s6fToABDhnWWUGkcG+oawwbEs6faxcUTs7ALSIlx8OTHJdS6PPz5knGWgQuGslJR5zLnfenzUuZMzSU7OYYBiU5OHdLvmJitVKXnvk+nmo0Q4iQhxAAp5b1SyjogDtgEvAosOsS5TiHEl0KIDUKIzUKIe/TxwUKIL4QQxUKIZUIIhz4epb8u1t8f5Het2/Tx7UKIH/qNz9DHioUQt/qNW86hUISiK2acRnebKWiMYxav3kmtq41vvmvALuCXU3NpaGnrtMmZuenrTcTmTM3lz5eM5drTcnnpcy3XxesLPKfjNZwRdhav3smja4r528cluNt9OCIEd587ilpXK3fNHBmwhnvPH83oExK56ayhnJAcw7KiPVx7Wi4XT8zC64O/frgTZ6TdzMsJpeGFi8Nt0qboPRxKs/kbcCaAEGIq8CBwAzAeWErnJWtagWlSyiYhRCTwqRDiXbTSN4uklK/ogQfXAk/of2ullHlCiMuBh4DL9HYGl6NFwp0AfCCEMPxFjwFnAWXAV0KIt6WUW/RzreZQKCzpSsOuUJn+39W18OiaYlPTSY2N5J7zRvH4R8VBmstNZw1lQOLBu3hHhGD8wCSK9zfpEW6C+y8cw5LVWhsBK+3nvgtGs2BFYBTZog928MzVBbqZroWc1GgeveJE6lra2FPjYuH7O8yEzaX/3sXlJ2UHaGgLzh/N2BMSj5mjXlV67vscStjYpZQ1+vPLgKVSyteA14QQ6zs7UWqNcpr0l5H6QwLTgB/r4y8Af0QTBOfrzwH+CTwqhBD6+CtSylbgWyFEMTBJP65YSlkCIIR4BThfCLG1kzkUCkvS4q3NOP3jDppxMhKjLY9JT3SSkeikot7N4tU7ee6nJ7GprI7zx2eSmeTkkUvGUXKgmdZ2H8/9ZzeOCMHDl4zjuzoX8c5IMyLNGWnj/gvGUJCdaAoDo5zMwlnjKat1MS4riQ17aymtbglYv7vNR3ltizleWt3CxvL6gHBpwAyXfvGzUp6eXUB9SxvpCU7GnpCIw2GnpKrJUsMbdsMUhqSFN+O/Y9SaoWGpUOi+wSGFjRAiQkrZDhQCc7pxLkIIO5qPJw9NC9kF1OnXA00jydSfZwJ7wWxhUA+k6uOf+13W/5y9HcZP1s8JNUfH9c0xPlN2dvahPo6iD2O3EVQ9+a6ZI4mwHzxmVEYCC84fzV1vfWMe88dzR1F6oJmbzhpKZaOb//18D3tqXDS0enl0TTFzp+Xx6JrioPl27G9ESvjLB4FmuT+8uYnlcyaTnx7HI5eMY3d1M9mpseypaSbGYaeqsZWGVq+l0IuNiuD6M/LMQIAYR3B7acMPVOvycEJSNKfl9w94P5SGt3VfA4P7Hb3NXoVC9z0OJTBeBv4thDiAFpH2CYAQIo8utBiQUnqB8XpwwRvA8O+12iOMlHIpmjmQgoKC8BumFceEriQLVtS7eXdTBQtnjWfbvga8Pvjbx7twRtoZmKwdHxFh4+TBySy9aiL76t3EOyM50NTKA+9uCwgYSIpx8F1dS4D/oaNgkJKQzv9t+xpJT4wiKjqC+KgIiisbSXRGEuOIYGdlI+9sKA8yrd197iiiHTaz66chLHNSowO0IMNnFMofEspRv2N/IyMzEgJyZay+V+CIJGaG8qEN72KnUEXP41Dlau4XQqxGC3N+Tx7sIW1D8910CSllnRDiQ7T8nCQ/bSkLKNcPKwcGAmVCiAggEaj2GzfwP8dqvLqTORTHGV29Q05PcHL68LSADQ60LpbjspIQQrvrT4t30truo7SmheEDIrh/5daggIFFs8ZzYnYS9184miWrd1oKhif/Xcy54zItN/YYRwQuj48TEp242rws/biEa0/L5c/vbSc5xsFVk3NMB7/dBiMGJJAaH8na3XUBiZ8LVmxh6VUFzHmpyJz7gQvHMCE7iewUayEwKDXWbOzWMULu1CGpQQVGO36vjgjB3H983S1txEpodcWHpuhdHNIUJqX83GJsx6HOE0L0B9p0QRON5sh/CPgQLbDgFeBq4C39lLf115/p76+RUkohxNvAP4QQC9ECBPLRqhcIIF8IMRhNmFwO/Fg/J9QciuOMUHfIw26YYgqQ9AQn2ckxDE2LD2lCuvnVDQxNi+OGafm42rzER9lpbfdaHt/gbuPBVcXcMC2fKydl4wMevmQcrW1e9ta6ePmLUmaOzSQuys6dM0cGdN+cX5jP/Su3Uuvy8NTsAtOsZ2hBRgSbUTJnfFYSf/lgBz85ZRCLV+8kOcbBpQVZplkv2mFjZTec7jabYEJ2EnOm5uKTICVmhJx/GHKo73XO1NxuaSOhhNaw9PgAQZyR6LSsaK3oPXS5NtphkAG8oPttbMByKeUKIcQW4BUhxH3A18Az+vHPAC/pAQA1aMIDKeVmIcRyYAtaMun1unkOIcRc4F+AHXhWSrlZv9YtIeZQHGd05oO4uUNNsxEDDm5wRm0xuw3sNsGC80YiEdzwysG79kWXjbfUTMrrWpgzdQg1Ta2MyEhk8ertnJzbn+yUaJas1vw3G8sbAG0TfXp2AZWNreyubja7c2YkOjnQ1Bp0bUPgPPahFv328CXjOH14Gne99Y2p9XQsp9M/LgoptcZq3x5oprKxcxNXdkoswwckBAkAf7NbqO+1Y5T0obSRUEJr1fwpLJw13iwi2jG/Sflveh/ioGXs+KagoEAWFRUd62UojjAlVU2cs+STgI0xJzWa300fzrb9jYBmcqp1eVg1fwpbKhp59tNd/Oy0IWzb14BPwjsbyrlz5ijm/mNd0HXmTB0SoJkYJqdal8cskrng/NE89uFOrpiUjcvjDUjqrHV5mDM1l6zkGBa9v8MspHn9GXlE2NByaHTh11GQ3H3uKF5bu4fLJ+Vw86sbuf6MPNNnY+CMtDFnai6vFpUdcsP2N2elxWt13vY1WGtEVt+rMZchUI2xlR00G/95bEJw47L15uc2eGXOyUwalGr24bn6uS+D5up4XcWxQQixVkpZcKjjwqnZKBTHHCNZ0Lh7zkmN5voz8rn5nxuCBMS+BjfTR6TjbvMG3NXPm5bPtoqGoDv50uoWvD4fj185gXV76kyTk7FxGqavu976hvmF+QiEGYpsmMxiIu1m5v/jP55As8dLeZ0LT7vk5S/3mP4eIwT68SsnUNPsIS0+ihZPOz+fmkdKjNbF0yrgIDnGQX5aPDcW5vNdfYtZjLOjiau70V/ZyTEsvaqAotIaUyDfMmMEjghhamBWGpHVPPML802NDg5WDjBCoZX/pm+ghI2iT9MxWTA60s5lSz8PqjX2yCXjiI6MoLTGZTrH/d8PVQImKSaKDXvrePqTYI3CMBq423wMS4/n1/8IrPC8eLXW9MzYZNfp15lfmM+ozHgcEQKflNxz7ihioiKoqHOxfV8ji1cfbC0wZ2ouF52YycJZ49lT3Rzk55h9So7ZWsBfsBoCx9iwuxP95fNJsyGbcd2HLh7L9BHp2GyiUx+R1TyLV+80NSIrAaVK2fQNulqIU6HotRh3yJNz++HyWDv1t+1v5LKln7HVQoNxt/moqHNx3wWjA8KZ5xfms/tAMx9uq2ThrPHMK9SKc+akRrPgvFF8sqPSPLaqg//FuK67/WBBTikPbr7lNS38+vQ8Hv2wmFte38Tv/rmBpJgoYh12bpsxnNfXleFu8zEqI4GspBhmjBrAafn9mF94sLDmpQVZQeV1lqw5WP3Zf8PuaiFMn0+yqbyObfsauG5KLhmJTtxtPm55bSN7al0B33Vu/7ggrSjUPCcOTOKVOSezct6UIG1KlbLpGyjNRtFn6Eo+TYwjImTei7stdPfNgSmxLP9qD4tmjccrJWlxDjxeH642H5F2EXCXf+fMkXjavVw8IYuzx3jpH68JiVDzOiNt3H/haGqbPcydlgdAemI08/VgBNDMYWV1LjKTokmMjqR/nINalwcJfLSzkmnD0ml0t/PiZwdbPg9MjgmZ1Nlxww6lPfSPc5pZ/CckOSmtbgkwnV01OcfUlLpi1go1T05qbMhzVSmbvoEKENBRAQK9m676HL7aXc1X39ZaVlo2osB+c+ZQ7nr7YJWA+y4Yg8/npc7VRkpcFH9ds5PbzxnJ5u/qGZYeb3bqNHBG2rh5+lDavAe7cBrdMe/Ra5oZNc5qmlrxSi3ibeH7O8z3Fpw3ikUf7DTX1DE44M6ZI2lv9/Hsf7/l8pOy+eGoAQABTvu50/IszXuPXDKOgcnRJMZEUlF/MPS7o2nMP28mOcbB3Gl5QcEQy4r2MHNsJs98WtIlh72qDND36GqAgBI2OkrY9G5CRZ0tufxEXB6vqelsKq9n3ivrmDk2k9x+sZTWNPNqUVmAc/qmM/Opd3uJd9o5ISmGPdXNTMxJxibg969t5GenDiYywsaCFVu4bkquZTmahy4aw+P/Lmbm2EyzfMznu6qYfWouxZWNFOQkU+vysLOyGWeEjUc/LA4Z2RUqymzhrHHcu2IrNxbmk9MvhkmDUgM28pzUaK4/PT9AcBqC9Q8/GhEU+j19RDp7al2m9mATMGOx9p2GWoORWDp8QEKXBYahgSotpW+gotEUxxUdfQEZiU4uK8g2gwGMDTUjMYrLCrJZVrSHeYX5REfaqXV5AEyNwRAePz11EL/3c67fd8Fobj9nJNInudHPyW0ZOBDrCGohPW9aPvvqXGQkRHPnW99QWt1iXtfK3GV03uysrM3sU3LoH++gf5zT0txkE1gmaO7Y3xgUDLBy3hTTrGaEJRvRa6HWYLfB1Pz+jM9K6rLA6EqbaEXfQwUIKPoEhi/AwKo1snHHPyDRyX0XjGHJ6p0ALL78RJ69uoD7LxxDbr9YHBGCK0/OZtEHOwLOv+PNb/D5JK62g0EGVt0u503LR/pk0PzLivYwbmAy1c2tnDsu03Su761xWfasSXBGsmjWeApyki3fd9htLF69k9ioSOz62x0d9EaC5tOflPDYh8XUujw8cOEYXi0qAzShfP0ZeVw3JZfqplbWbN/POUs+4YqnvuDq575k9ilaC2pjzo5rGD4ggd++up73tu4/Kn1vFL0Xpdko+gQd82nsNus78c9Kqlmyupjbzx7GZQXZvPLVHlMDMUq9/ObMYUTYheX5W/c1MCIjISCb32iAlpMSQ1SEHYnEh7TUtIzkRH+T1vKiMhacN4q73j7oz1lw/mgqG1uoa2kn1mEPqldm5OgMTYvD5Wln2z4PPkmQScpmE0wfkc6yOZNN/09STCS1Lk+QL8gIu/bPxTHCkl8tKguqin3nzJE8+VExpdUtqkim4pAon42O8tn0fvx9ATGOCGb97TNLx32tq53hA+IprmzEGWk3a4r5b7zzC/PM7H3/8689LZcVG8uZe0Y+d/q1Glhw3ihqXB4a3V5eX1fGgxeN4Rf/u9Y8vzOfxzOflvDUVRPZUFaPx+tjaFo8Sz/exdljMszN/fazh9GkVx+QEl5fp1UfWDRrPL/pxNlu5ZD/f5eOJyU2kkZ3O998Vx9U0eDa03J57MODfqjnflpAtMPOgAQnXh/srGxkU3kDr68rC8j8f2XOyUzO7ReWf1tFz0X5bBSWdCU8uKfS3u5jc0W9focezaiMBCIibEGfadKgVPbUNAfcieekRnPb2SNobffR7m2hrNaFBIamxzM0LY4pQ9MCzF7LLe7k/aPWaptbA6ouVzW6efDd7YAWmHCguTXg/FCaVk5KNAvOGwlC0D8uigPNrZTVuZgyNC0gR8boj9ORrfsaAkx1HTUMqyTK3766npvOzCfWGRlQ0cD4fMLv52AVliwE3LhsfZDgVEmWis5QwuY4ojeHnba3+3hzQzl3vOkfkjya88acwAfbKwM+0wMXjqF/vMPMOYl32ol3RpobpGGGerWojKUfl3DnzJFUN3lwtx0swCkExEbZee6nJ7G3xkW0I4KnPt5FRb0bZ6SNel2DuWhClmlay0h0UuvycOuMEfxm+XqGpsWZ/XHy0wKrGIO2Qde5PCTFOPj5iwfbANx97ijAEyScrM73Bh4SUBUAQidRZiTFmJUFjLElazSTmf/1rZInO5osVZKloisoYXMc0ZsbUm2uqDcFDRx02A9KjQ36TLe/sYnHfzyBq0/JIcZhJ6dfLL94aW3AMYtXayVotu9vZOnHu/jdD4eTkxod4L+ZfUoO1zz/VcCdf727jZ+dOpg2n4+bzhpKWa2L5UWa+WnBeaPITI5mbWkd7jYfU4Ye7I+TkegM6mszb1o+Hq80fTXG2u55ZzMLZwWWx3ltrbXPZOnHuwK+p44aRqgkSldru6UQGpoez+gTEjh1SGrIsGSVZKk4HJSwOY7ozQUNDYe1P+42H/tCfKZ1e+t4Z0M5v/xBHmtLay2PcXnaeWdDOZcVZBMbZeeumaO4Xq9fdtEE61IvT88uYEtFQ0AC5m0zhtPY2k5ZXQsDU2Nw6sUo/cOFjUACQ8AZYcgXT8yyXJtPwn0XjGZvzUFhlpYQxZM/mcj+BjdVja28sW4vN501jFte2xhSw7DSQm4/ezjx0daVFEYMSGBQvzgG9ev896DClxXdRQmb44hwFDQ8Wj6gjMRo67XHRVmOOyNszBybyT3vbOa6KbmWx9S7PNwyYwQlVU1ECBsu78G7/aiIwOMN81qtq43m1nbTzxPvtBMZYePRVVpS5tKPS/jjuaO4/ezhVDd7AuatqHdTXNlomdXf8fWO/Y1mYcq7Zo4kLSGKe1dsMXNz7pw5kl+dkUd+WlynhS87aiHp8U7W7a3joVXbgjSthbPGM7ifMoUpwoPKszmOONIFDQ0fkJGXcc6ST1i1eV9Y8i1GpMdz7/mBhTDvPX80u6ubWHDeqKACmfFREcRHReBu81nmwtw2YzgSrabZI+/t4OcvFVHd7CEnNZqMRCf5aXHm8UaI8DOflnDDy1/zt49LuGJSDis2ltPo9rJAL+ECmlbyx3c20z/eycgTEoPWlpMaw01nDTXH3tlQzt3nBq/fyINxt/m063t8Abk5967Ywoa99RTtrmNQamzIwpcQmHvjk/CHNzZRWt3CS59rPq15hXks+/nkXuG7U/ReVOizzvES+nwkS4WEaqAVjqZWuw808fGOKg40a/kkNgGpMQ6e/e+33DVzJBvK6oPCgp+6aiJ3vPUNM8dmEhVhY/zARLZUNNDo9hIdaV0ixnDov7W+3PTfGOHJVmHLQmAZJTZ3Wh6PrikmJzWa304fTnFlI2OzkqhpcuPxSiobW4lx2MlKikEI6BcXRZvXS6TdbtlMzKhz5h8RZ4x15/tes20/P3s++Hf+3E8LOGN4elf/ORQKExX6rLDkSNraj4QPqKtmuP0NrTzw7jbLDX9DWX1Ad0iDNq8vqPjl/MJ8Xl9XZvpK/KPPACrqWshMjA64889Ojrb8nMY5nVVzvqwgmz+t3GpGsT1x5QR2H2hmQEIUETZbQBO3hbPGMzIjxiyf0/F6ht/IEH7GWHe+79gQVa9jHGorUISXsJnRhBADhRAfCiG2CCE2CyHm6+MpQoj3hRA79b/J+rgQQiwRQhQLITYKISb4Xetq/fidQoir/cYnCiE26ecsEUL77x9qDsWRpWOJGLD2Afl8kpKqJj7bdYCSqibTzNYVM5zPJ9lV2cSBEP1ghIAYh93sJTN3Wh4Zidq6YqIiTEFjHL949U4uLdD6ueSkRpvmsUfXFPP0JyU4HXZqWzRfS0W9m8c+LGZvXYvl55TSulzNH88dxZjMBOYX5uOTkosnZjF3Wh7JMQ52VjaRmRRDVnJMUBTaTcvX4/URZOqcN00TkMZxdhvmWMfvO9R3ffDfLCqg540hgNMTojr9d+rsml2dW3F8EzYzmhAiA8iQUq4TQsQDa4ELgJ8CNVLKB4UQtwLJUspbhBDnADcA5wAnA4ullCcLIVKAIqAAkPp1Jkopa4UQXwLzgC+AlcASKeW7QoiHrebobL3HixntSNKVvJ3Ojtld3dypGc7/3Oum5Fo61p/9aQFlNe6AysbzC/NJS4giwiaY/8qGoHX/+ZKxVDe3kpcWz1y/7pnGNY3cGkMY5KRG8+vT87jbr5zM3TNH8eTHWqmWnNRoM9Agt18ssc4Itlc04JUEhCrPL8xn1AkJ3PnWN1w8YSAL398RtLbnflpAnDMCh91GTbOH5lYvZXUumlq9Zob/I5eM4/6VW6l1eQK+767+e6zZvp+NutnRJmBsViKn56dZthiYPiLdcryjf6c353Apvh89rsWAEOIt4FH9cbqUskIXSB9JKYcJIf6mP39ZP347cLrxkFL+Qh//G/CR/vhQSjlcH7/COM44t+Mcna1PCZvD41A+oM78Ovsb3Fzx1BdB1zTKnvifa9XT5Z7zRlHT7AkIUTauv2jWeOw2wTy/BmTGe0atr99OH8rNr24Mmv/hi8ewr6GV3P6x2AUkxkTiaffh82mtm6WET3ZUMmVoGkLAsPR4HtBNZQ9fPIbYqAgEcJNFn5v5hfmAFqzxG7/8IP+1LVmt+XpumJYfkMQ6vzCfvLQ4MhKdlNW2kJHoZFRGIhERtkN+1/5mNqt/s1CCf9mcyQFttENd82j67xQ9ix7lsxFCDAJORNNA0qWUFfpb+wDDK5kJ7PU7rUwf62y8zGKcTubouK45wByA7Ozs7n4sBYf2AYXy6+w+0IxXSh798YmU1bp44b+lgNbK2OXxUlLVRHXzQdNZRb2bVd9U8PAl45BSMiDByZ//tZXJQ/pbXh8kUbpACtBIzh1FbKRg9ik5ZrXljhtkWV2LGXZ83wWjsdkEbV5JTXNrgHa1sbzB9BsZPhl3mxebTbCnxmW5rmaPl2Hp8Ty4amtQ6PG954/mpc92AzBzbGZQEuvi1Tt54ZpJvLdlPz4Jf3p3K3fOHMng1DgqGwNbAvjPub/Bbf5bGH6xjv9mof6dQuU3dfQT9eYcLsXRIezCRggRB7wG3CilbBB+hZeklFIIEVbVqrM5pJRLgaWgaTbhXEdfpjMnf6jcnvVldeaGPr8wn98U5tHo8fLnf203N9/7LhjN7WcP4zldEM0YnRHQX2betHwk0vL6IIiw2Xj8o2IzakxKePLfxdz5o5G0tLmIsGka0IOrtpr5K/ML83nxM20+o0qB4ZC/+9xRLDh3JHe9syVA23jxs1Lzef94J7/RzX5W67IJcLd5AwIQjLXVNrcyY3QGVU2ekP1jSqub8UmwC7j+B0MoqWpm7j++DlqPfzO4Nq80tY5Q5q1Q/04h85s6+OXCkcOl6FuEVdgIISLRBM3fpZSv68P7hRAZfiauSn28HBjod3qWPlaOZkrzH/9IH8+yOL6zORRHmEPZ6gelxvKXy8azpaLB3CRTYx088e8S4OAd+19mjeeudwLLztzx5jfMmZrL7FNyiHXYOdDs4bopWu2u19aWsWTNThZffiJ3zRxp5roYQujBVVu57ewRlFa3BFQw1uqXtQUUoLz/wjE47IKkGAe//+fGIM3A2PjveWczCy8dp0WopURT1dgKwMUTs5iYncSi93cw+9RBAbk9/prL/MJ8MpOcOCLsAQEIEFgB+trTcs0xK63r0TXFpqnQEHz+36VhinNG2njo4rHc+damoEAE/xJFPp9ESnjkknHsrGw0KxYsnDWeURkJXaqDdjj10npzUVhF9wmbsNEjw54BtkopF/q99TZwNfCg/vctv/G5QohX0AIE6nVh8S/gAb+IsunAbVLKGiFEgxBiMpp5bjbw10PMoTjCdKXemsvjDdjc7545kv5xB8097jYfdrsw7/JBEyYV9W58El75ag/zC4eaoc/OSBu/OXMo0ZE2Im2CtIQoFs4aR3FlM63tPjMPJTEmMmjDvrQgy2wNYMz9hzc2sWjWeCJsImTYsXFsm0+yYmM5M8dmBggK29RcZo7NIDnGYQoSQ3Ox2+DkwSlsLKvnxc92M2dqnmWdtJc+LzWF2zsbyllw/mjueivQZ+OvdflXfDZwt/nISormuZ8WkJMaS3VzK6XVLUHHGOYtq5uFBy4cw4TsJLJTYrtcB6279dJUQMHxRzgrCPwPcBUwTQixXn+cgyYAzhJC7ATO1F+DFk1WAhQDTwG/BpBS1gD3Al/pjwX6GPoxT+vn7ALe1cdDzaE4wljZ6jW/QQuf7TrApvJ6Fq8O7Hh5z4ot3DAt3+wAWZCTSH1Le0AI8lWTcyjISWRoejy//kEepdXNJMc4zGss+mAH/eOd/Pof67juhbXctHwDURE2PtlRyUUTsphXmEeETQRk6zsjbWSnxFhu0Fv3NVDZ6LbsummEHTsjbdiF4PrT8/mipCrgmFeLyshPj2fBis3mNSrq3TzzaQnpCU42ltXz0KrtFJXWE2ETLCvaw58vGce8wjyuPS3XFJDOSBvD0uM5f3wmJw9OZuW8Kbwy52SeubogwDwG4JPW3TNLa1qIdtjJ7R9HamxUp+HpVjcLt7+xSYtU0zf9jt0/QwmDrh4Xat6blq9nd3VzyHMUvZuwaTZSyk+BUL+2QovjJXB9iGs9CzxrMV4EjLYYr7aaQ3Hk6Wirz0h0MvuUHK59oSjort1fk6l3tzFnymBqW9qYnJvKz/Tqysb7S9bs5LEfTzALYxrazPP/3W06rTv2cvnHl6XMmTqEe3WT2tKPS7htxnDmnpGHu92HlJpwtDJPeX1gEzaWFe3h2tNyiYqwkZcWx0OrDiZk3nPeKJZ+vIsdlU0svWoiX+6uNQtq1ro8uDzWvpgEZ4RZZcAZaWP7/kYuK8jmkfe2mVUK/D9jRZ2LoWnxtHthcD/Nmb+rsilI63pnQzl/unAMt/l18Jw3LZ9lRXuYPjINn08e0rx1rBz7KqDg+EOlDSuC6I4tPTs5hvsuGM1f1+zk8pOyGZYez4GmVm6Ylsf/fr6Hino3S9Zo5fwf8Muk31PjMk1LoRI2N5TVBQiTRR/sYO4ZeTzy3g5yUqO1PJlpeQB8vL2S66YOobiykeum5JpmuD+t2sbcM/KQUmv6FWkT3HfB6ICQYmODTnRmc8O0odzx5iYzv+bumaNoafNiF4LKRjcbyxsAqHW1mZFphokrMTrS0hczvzDf/Nw3Tx/GM59+C2gmvWED4lj288m42rzEOuzsrW3ht68GVhWYMWoAg/sFC41bZozgzGFppMZFUVRag9cHy4q0NtfzXvmaW2aMYMaoAZ2at46VY18FFBx/qNpoOirPRqO7tvSSqiZ+/8/1XDl5EPvq3QFJjP6ayLzCPJwRdtZs28fPThvCnmoXQwfE8fiHO5lXOJQ5fv1m4KDD3N+5D/DQRWN4/N/FAUmWOanRQWVp/LWpRy4dawqXnNRoHrhwDG1eSWWDm8rGVl5du5fLT8om1mEn0Wkn1umg3Sdp90pKDjTj9fkYlBrLc//51gx3XnjpOKIddtbuqTPrsV1zag6JMY6gUOuUWAeedi9J0Q5qWzwIBC/8t4RpwwewrGgPz/10Ern94w6ZqxIqp8nnk2wqr2P1tkq8Psx2zV3JczlWvhPls+k79Kg8G0Xv4dsD3Wuwtr/BzenD0vn2QLMZBACa36bZ086Nhfl8V9+CM9LOK1/tYe4Z+QEbzJ8uHMN3tS7uPX+06bh3Rmpl9f9m0Risf3wU918whuv0zpag5aR0LEvjX0PMyHnJSHRyWUF2gIlvwXmj+ON5o/B6Ja3tmnM+Nc7BV7trA3rWzC/M5+wxGeyobOLumaN49j8l/Ox/cgPMY/VuL3//sphHLhlHu89HWW0LL39RyiUTs0iMieSr0hqz+ObsUwfT4GrD0y5N01Eo01JNc6v5XRttrzu2EXB5vEH14bpiljpWjdBUA7bjDyVsjmM6msuyk2PYWmEd4bS/wW2Zhd7S5iUnNZbt+xsD/DYds/1/c+ZQLj8p2xQoGYlOrjw5G6+UVDS08uG2SuZMzSU7JYboSDt/+/euIH/GnTNH4nTY+K4ucFPumJNiFNfMTonmiSsnsEgvC3PRhCzzesbnuuvtzTx+5QTmvvx1wDx//6I0KKT4yZ9M5OFLxvGirpWU1boAzHI1xZVNnDsuk3innXZp49UP9nJZQTYDEqPZVdXEf4ur+NlpQ9i2TwsDf2dDObNPyWFAgmY6sjIt5aRGU17n5ifPfNntPJmc1GiiI+18tutAp+bQY9UITTVgO75QwuY4xcqM8dDFY6mo02p9zRybaYYhv7OhnDavxOeT2GyC9nYf/y2pZltFPVkpMSRFR2AXB/NCrDb1RR/s4PErJ3DdlFw+3l7JjNEZlqG/tS4Pj1w6jh2VTVT5OdptArJTotlb3cyB5jZLe78hxDoKuvmF+Z0mSq7fG+gbunfFliATnrvNR2u7Dxtw9am5lNe6mJiTwu1nDyPWGclNy9eTHOPg0oIs6lvaqW5u5c6ZI5n7j695/McTeOWrPcyZOiTg+543LZ9XvtrD/wxJ5T/FVbS2e/nTRWO57fWDnTfvPX8Mc14qCliflaaZnRzD0qsK2FZRT0ZSDAca3STEOMxSM8pMpTjWqOZpxylWoae3vLaRlNhIrj8jPyAM+ZdT8/jfz0vYVF7HB1v28UlxFUtWb6fdBzct38DvX9tEfnoci2aNZ15hXsiS/Ov21GnXOz0vSBgtWbOTiyZoZf+jHVrpllqXh8c+1NaQkRjNn1dt5+53tpLgjAxoOPbOhnLunqm9thJ0/pWercKAvYFL1fJ+OvzPyEmNprbZw83/3MANL3/NX1bv5NtqF4P7x1HZ4GZoWhxXTc5h6cclzHtlPQ+t2k5lQyvJMQ5cbV5mjs00o+T8P/PMsZnsqGzi2heK+Nnza/nLB9t54soJvPzzk1k1fwpRETaum5JrVrM2zq1s9AuB9kne27qfO9/aRLsPfvfPDRxobuMPbwQnc357QIUWK44NSrM5TgnlHxiQGB3grHe3+Xjy42J+MXVIwF3yE1dO4Ou9dVw3JZd+sZG423zc8aZ2Rz6/MM9S8xiaHs91U3JpcrdZzp2dHM28wjwSoiJxe7zMmZprVib2tHmpavLgbvNx/8qtLL78xIDw4pe/1LSgYQPiQiY61rg83DlzpLnpGyazpRa+oREDEszPoPmQRplh2MY173hzk+kX8o8UM95fsGKLVs4/wobdZq1V2W0E1FErrW7hV39fxz9/eQpbKhqDNCFD++sfdzBqy7hxuPa0XFPQhtLi9tQ0MyRNma0URx8lbI5TQoWeNrS0B21SM8dmsmDFFpJjHFw0IYuoCJu5ITe0tJGR5AzIyl9eVMb8wvyAyLS7Z47i/723jdLqlpDCqLxeK4C59OOSgNbIF03Iotrl4fZzRpjh082t7UHdM3dUNvHizyZZXtvpiKCpVsukn1+YT2qsg9KaFt5Yt5df/SCPP74T2GCtscXD3DPy8Hh9nJSTwubvrH1Zxqa+LUQ2/8CUGO79vy384ZyRlusal5XEHW9+E3RerastSHgtWaOVoomOtAdoXsaNQ0cBYzWfapKmOFaoX95xSqhkv8yk4MKLdpsWXWb4QoamxdE/Pop7/DboO2eOZNmXe9hY3kBFvZsXPytl6VUTaXC3kxrrYFdlI+eOy+S1tWUsLyrjprOGBkV7+ZdiWbxaq3u2+0Aziz7YETDPG+v2khwTye1nDw8oYXP3uaN4+pPiIO3FX9A5I23cNmM4GUnRJERHMmlQMvvqXdw8fSgnJEXj9UFZrYtFq4vNJNRFs8bR0tZuuXlLqQUk5KfFM68wD5/eUA20PBq7EMwqGIi7rS0o4u7OmSNx2AlI1sxIdHJpQRYNLdba35B+cdS6WqlqbKWiXgvsMJrFGWtyt4WuzZaeENWl34eqW6Y40qg8G53jMc/GKm+jvd3HWxu/4863vjEd3sMHJOCTkj//S9uwl1xxoll92cAQVveu2GLmePgXhDQSJy8ryGbVNxVcWjCQqqZWfBKGp8dzv66x+PPoFSeabZP953nsxxN44qOdnD4snRb9jn5oerwZJbasaA8zx2Zit8GJ2ck8tmYHRaX1wMEKB/5a101nDSXKbiMjKdqy/81jP55As9tDmxSmH8T4TKu+qQgKdjDqtvkLwnvOG8WrRXs4Obc/dhsMH5DAkx8Vc+2UXOpdHh54dxtD0+L41el5bN3XQH5aPI/oAtJ/LUY/HP/1L5w1HkeE4N4VWwIi+HJSo7l1xgh2VjbR7vMxNiuRacPSDyk0VA6Mojv0uOZpPZ3jUdh0pL3dx/99U8FLn33Lz6fmUd/SFlAI0vAZ3FiYzy2vbwo6/+bpQ8lOjaW4spERGQk88WGxmXFvJGk+82kJi2aNNxuHZSQ6uf2cEfzOQqjcc+4oy3nmFebh9UF0pI1H3tPCmudO06oEdDStdUwOvf6MPMtj5kzN5ZTcFEoOuEytyL8D57iBSSz+YDsn5/YnOtLGiIwEFqzYzMyxmSGv55/34oy08fAl49ixvxHQghrOH6+1Xyocnoa73UtZrTtAmN197iie/HexqZHNm6a1mX70w+Kg+f7vhikIATXNrUTabbg8XtLindhtsK+he3ksqhGaojuopE5Ft/D5JP8tqeaW1zQn/+n7GwM2NcNncO1pucRERVialHL7x5l3w/65Jx6vZtYxfArtPhkQpvzIe9ssqyAfaG4NWcfMboOxWUnm+3YBMoRT3N+/Ecpx7pNQ3dxGvDOCa0/LJd5pJ14PafbXWHxS0uzxsnN/IwsvHU9Vo3WpHV+Hezh3m4/iykazPcC8afkMTInmgZXbOHFgEjGOiKDosXve2cwjl4yj2dPOnhqt5trFE7Ms56tqcpsFMDsyqF/3BISqW6YIB0rYHKd0tMnbBBSV1pibzAlJ1uHLdhu8vnYv9184JuAu/N7zR/PQqq0kxzi48uRs0hOcbN/XYPZGMcw/zkgbSXoNMf8w5Zc+L+XPej8Vr08rbgkEBRoY5ri7Zo6irsXDcz89iW0VDYzMTKDeZe1X8Y8sS4iym74V0PwrtS4PCVF2+sdFsbfWRYRNi3DrGKq86IMdzJmqVQ3ISY1mWEYCNptgfmEey4vKAhqWdVQg/EOsDcH91FUFOCIEX++twyetheA2XRPy157CXVNM1S1ThAMlbHox3XHi+h+bkegMCqu974LRjDohkZzUaC4/KZsBCVGWG85Jg1JIT3Dy8he7WThrPGW1LoYPSKDW1coVk7IRiACHvmF6W7x6J/ML85k3LZ82n5f5hfm0tHnN61fUu3lg5daghMys5Gj+dtVE1pbWmoUm50wdQnWTm0UfFFOrhzPv3N+EzyctnfBVjW5unj6UnNRY6lvaWPhmYI+Y/vEOfFJw9XNfBpxn1WLZpwcEXFaQza/+d21QgEOty6O1no6yB4ROG9+D/7U2lNXxyx/k8fIXpUwdlhYyAOH1dQed/a+tDY70O1STsu5yOI3QFIpDoXw2Or3NZ9MdJ27HY+cV5gXUMQNtY7vzRyOItGvdIOMcdtp9BDm+x2Ql8LPntYz2sZkJXHXKIHNzD3Vdw2fy8MVjWPTBTq45NQdnpJ2UuChufjXQV5OTGs1vpw9nx/5GpIQVG8t55NJxfLLzAD6JufnWujzmdQ1/yLyXvzajuYamx4MkIPDgr1ecaOkbeu6nJ3GNX4sDY9zK72J00bTy0xi5R68WleGIENwyYwRen4/+8VHc8trGIGe/f2fO19eVWVY+MHrYGJ/rxIFJDO4Xi9cHVU3hqykWquinQtER5bPp4xiJfEPT4rhu6hBaWtvxScne2mZyUuMsjzU2x1Amm8QYBze/uoFfn55HQ6uXdzaUm4mTzggb0ZE2Pi85aGqbMjQtIL8m1HWF0IRITmost84YTozDTr3bw3e1rqAw5csKsnn6411MHzWA/nFR3Dx9OG6Pl1f9zFQGRjkdd5uP1jYvc6flae2iVxfz5E8mIAkMK3a1BucQudt8HNCTRTuOD+kfF6CdGJt/KL/J13vrAoTTTcvX8/Al47jltY3cdNYw0x/mr+kY34/R2XPO1FxOHKh1yfy2+mAPm1qXh+EDEvjB0DRz0w9ncqaqW6Y40ihh00PxN3sZUUVGXkV2cgxVja38bvowEmMizTBk7Q5/LG3tkqqmVtO0ZuXwtTLZoAuLwf1ieeS9bfx4Uo5pEptXmMcD727juim55rlWznar6yZE2fn16XkBZqoHLhzDSYNS2N/YyvPXnERJVTM5qTEsen87Pxp7QoApbn5hPr/6QS5P/LskwC9iKOXOSBu7q10882mJ6dPZUtHAq0WBuSa1Lo/l+kKZDL+razHbOo85IZF9DW5z8w8VuOCPu83H7gPNlFa3kJnkZNnPJ/PFt9UMSIph94FmLp6YxTsbyk3/TkeBMrhfLCtVVWRFH0GZ0XR6khnNykRm3FU7IgQ3TMvnjje/Mc0wxqZnlUOycNZ4spKjmfW3zzo97u6ZowAf96zYyo1n5uPzQUpMBN81aLkwA5OiueX1TZwxtB8zxmRw99ubuW5KrtlALNR175o5kuzUGK57oShoc/bPw7nvgtEMTInC5cH0hXQ8FjCP9/eR+PeucUbaePzKCfzhjW9M89NFE7IQAk4elMyOyib+/K/tAb4qt6edxlZvwLr9TVjGGgw/U35aHE2t3qCk1qUf7wppKls5bwp2G/x3V03AeXefO4rxAxOob2lXAkXRKznmeTZCiGeBmUCllHK0PpYCLAMGAbuBWVLKWiGEABYD5wAu4KdSynX6OVcDd+iXvU9K+YI+PhF4HogGVgLzpZQy1ByHWm9PEjah8hwWzRpPTJSdtaW1+CQ47DYW6uXzIXQOyU1n5gf5X24/ezgN7nbc7T6cETYcdkFmcgw2m6D0QDMvf7WHW2eM4Fd/XwdoeSzvbCjnlhkjeGjVVmaO1UrpJzgjWeBnBnvgwtHUNGtmqYk5yVQ2uGlt9/H714LzZeZOywvoB7No1njcbV5+s3yD5bHZydFEOyIorW7GYRekJTgpq23h71/sCTCxPX7lidy0PNg388gl46hpbiU3LY62dh/NrV6+q3PR0OrltbVlplAalh5vlsXx5+GLx1Ba08Lr67QKAX84ZwQ79Oi5T3ZYV7JeVrTH7Jj51e4aU7vzX9cL10zi5NzUrv04FIoeRk/w2TwPPAq86Dd2K7BaSvmgEOJW/fUtwNlAvv44GXgCOFkXHHcDBYAE1goh3taFxxPAz4Ev0ITNDODdTuboNYTKc2hubTeTIY3N2d+cEyqHxNhM556Rx4BEJykxDv7w5sE7/6sm57Dwg51mxYAh/eO49/zR2G0ioPzJnTNHsm1fA6XVLWaSZEaik/mF+YzISGB/g5uKejcfbtvPxROzTad7qFpo/vc57jYfW/c1MDk31fJYm4A4ZyRt7V48Xh9D+ifgiBQ8+npwgqNdaE3ZbvMLzb7nvFHUNLfyxL9LqHV5+L8bprC1ooGGVi92gVlhGjTB5u/rMa5b2dga0Hbg/pVb+d0Ph3G7Pk+9u42lVxUQaRfEOOy0eX3MGD3A1FaaPdY+I5envcu/DYWitxI2YSOl/FgIMajD8PnA6frzF4CP0ATB+cCLUlOzPhdCJAkhMvRj35dS1gAIId4HZgghPgISpJSf6+MvAhegCZtQc/QaQuU57Kk9WB04OcbB7upm/nTRGHYfaGZ5URl23RHfsReNlJq/55H3djA2M4E7Zo40N1Mj18W/9pn/Bv3wxaOxCTvNre1IKfHJYH8FwC/9woDvPX80j354sMy/VWFO/1poRqRVZmI0je52fvfDYQGmrvmF+aQlRPHsp7s4Na8/2Smx7KtvIdZhDwowmDctnwfe3cLVpwzixZ9NYn9DKxJ4+uNdZjUD0CK5RmQk8Of3tvGzUwcHrO+dDeXcfe6oAHPX/MJ87B2sW7UuDxOyk7rsV8lJibX8d81OUSHFir7P0Q4QSJdSVujP9wHp+vNMYK/fcWX6WGfjZRbjnc0RhBBiDjAHIDs7u7ufJWxY5TncOXOkaXIytJHFqw9qI7eePZwEZwSD+sVy2+sH7+gXnDcaKb2MzUxg+qgBDEh0sq60lgXnjqSs3k1mYjTXTcklKTqCR97bEZDEePfbm3n8xxP4tV5af36hZkrzd7pfWpBlbtLGeXe+9U1AiRijMKeRtDkuK5EGdzu1Lo+ln+e2GcO580cjSI6NwueT7K11sWT1TuZMHUJDSxsOO9yzYis5qdH84ZyRAa0GDN9NalwUkTZBcWUjf7MIxzYEg2EWvPykbB65ZBx2m6B/fBTr99Zyz7mjiImKoKzWxYuflfLb6UMDotPuu2A0WUkxRETYuhS1Nbifdf7K4H5K2Cj6PscsGk33r4Q1OuFQc0gplwJLQfPZhHMt/hwqGdPoz545ZzKrt1Xi9UGju61L2sj8wnyGpsUxZWgaQkB5nYuTByfzk1MGBdQ5W3D+aN5aX27W3XrworGWJp71ZVoXy4xEJ5F2GzdMy6emqdUsvz80Ld7yvI7Nx2pdHuKi7Jw0KIU73tzE7eeM4C+XjafdKwOKbbrbfPxp1TatZEx0JMWVTfgkXDpxIA0tbbS0eUmOieKvV4wnwmajpKrJ0k8VHWGntqWN5UXB1Y8fuHCM+Z3PGDWA4QPizZpiHq+PvTUtpuA1tCVHhCDRGcncM/Jwt/uQEv66ZicTspO7HB5szuenCWUnx6jqyorjgqMtbPYLITKklBW6maxSHy8HBvodl6WPlXPQJGaMf6SPZ1kc39kcPYKuJGMawqii3m3mbWQkOrltxnCqXR4yE7VSMlZdKY32w/6mpXEDJ5iCxjjurre+CSgMWdnQEjKc16rV8r3nj8br9RLntK6T1rH52PzCfPZUu0iJczBzrKaE3vPOFm4szDf75Bimv9fWlmlNxapdxDoi+MeXpVxWkB2g/fzmzKEkx0RgEwSZ0uYX5pMYG4HTbufSgixsNkwhYRMwITvJ/K5tNsGg1Fi27Ws0G5D5Cy93m1Za5omfTOTF/3zLyMwkhND8Y5522e16Yf75K6q6suJ44mi3hX4buFp/fjXwlt/4bKExGajXTWH/AqYLIZKFEMnAdOBf+nsNQojJeiTb7A7XspqjR2DVjvmm5evZXa216zU2oHOWfMI33zVo+S867nYfSz8uYW+dJhisAgKs2g+v31tHcoyD68/IY+407ZEc46C4spHX1pZhE5ASF8XffjKRnNRoANNMtGJjuaVQu/Otb0iMieIfX3zLveePNtdpCKL0xCjmF+Yzd1oe156Wy4uflfKnVduQCJ75tISk6Eit34tdcNe5I1mxsdxsQz37lBzGZiXy9y/28Px/d/Pb6cOD5l/0wQ5OSI5h2vB0+sdH8cgl47jprKHMmZpLbr9YGt3tXPbU5yxZXcxfPtiJTQje2VDO8AEJQT4S/3+TUEEWQkom5aYGtMuefUoOGYlOSqqa+GzXAUqqtJI5R+q3oFD0JcKm2QghXkbTSvoJIcrQosoeBJYLIa4FSoFZ+uEr0cKei9FCn68BkFLWCCHuBb7Sj1tgBAsAv+Zg6PO7+oNO5ugRWEWaJcc4qGpsZX+DmxhHBA+t2hoQAXbvii1cNCHLTHQ0GmO1tnuDtAqr9sMxDnuQX8RoV9xRY7lz5kga3W00ur3834bv+OUP8qiob7HcgNu8Pibm9OPRD3eayY/DByRQ72qlpKqZh1ZtD/r8e6qbuW3GcHZXu8zSNv4Z9RX1bhav3snN04eaocfFlY3WpjohyEuPJ7d/HLurm+kX7yAtXisqOmPxJ0HaybI5kxmTmRSkNXT8N7HS1JJjHEG+qVe+2sMJSdEBlQG6o5mo6sqK44lwRqNdEeKtQotjJXB9iOs8CzxrMV4EjLYYr7aao6eQnuAMiBiLi7JjE4FFIP033kZ3G9eelkt+Wpy5MRmlTWafksOC80Zx19sHo6YmZCcHbZZSErRRLl69M6CvjDF+74ot/PmScWaeSWNrG7+dPtyy5plNHCy6aQQDGPksqXEOy037pEEp1DR7guY12hc8prc1aHC3m+dMtPhMzkgb6QlaFeKOpVU+23XAchNvafNaCgH/6D+rDpcPXDgGj89nqUUagsaY46bl6xnexb4vqrqy4njiaJvRjnuyk2O4YVo+KzZqIclZSTFme2Q4uPFeNEFzSTW1ennm0xLK61wBJjVDA/C0e3n4knE8fPEYnppdQLQD5k3LDzBrhWoX0OC2bj28s7KRqybnkJMazbThA/jTyq3cOXNkwDXnTcunrM5leb5E8v/0HjUdz4mwC3ZVNVmbqnQ54Iy0cdqQfjz30wL+74Yp/M+QfizUc4qM9zurQmxs4v50tokb0X/OSBsV9W6WFe3RosZ0s9yE7CRSY6OCrmmlRRqaSVfwn7crn0uh6M2o2mhHmT21Lv66ZqfZvve6KbmdRnO9s6Gc+y4YzV/X7OQ3Zw4NqBm2+LLx1LjaAmqj3XfBaNZs2xcQDhzrsFveQcc6rJ37Xr3awCOXjOP+lVupdXkYkBDFnKm5ZuXllz4vZVZBluX5ZbUtFJXWU17XaprXJg1K4S8fbOecMQOYNDglZJKnseEWDEoJ0EI6RnF1FrXV3RL5RpTYsBumsHVfAzv2N3Lvii3UujwsnDXe9PF0vOZJOdafQyAoqWo6ZGSZVXSaikZT9FVUbTSdo1Wu5rNdB/i0uNqMeJo7LS+gvhhoG9b/XnsyB5payUiMZkR6PHvrWqiod+Gw22n2tJOdEkt1cyuznw0uf+KfG+OMtPH07IlsqWg0NShnpI3f/XAYp+amsLmiiTvePJiX42/Ce+TSsTjsNoqrmvhoWyVnj8kI8Pvcf+FoQAQ0UTPygTqWeplXmEdBTgqn5fXjq9Jq1pXWBVzrzpkjyUiMYlBq3BHZcA+3RH5n53V8Lzs5hve27resYWcIKhVZpujr9IRyNQoL0hOcAeYXKx/BfReM5revrjdzYIxNq2NJ+dJtzeZ1/AtO2myCJZefSGu7j+zkaEYMSMDd7jM1E5uAnNQYhg1IJD8tgcGpMfx7Z5XZIdMoaJkc4yAjMYqkGAc5KTHEOSN5/MoJtLb5iIq04Yy08fx/SgK0qGa/fCADQ1uKtAtsNkFtcxsvflYacN6ja4r547mjjphj/HBL5Hd2ntV7hmZSWt3M13vrAop3dsd/o1D0dZSwOcoMSo0NML9U1LtZ9U0Fj1wyDpsN0uOd/OndLWb14M6czkb5E6vkzocuHsuPRmcQEaHZ46YNSye3X1zAHTvAe1v389Cqrfxi6pCAgpp3zhzJEx/t5NazR3LnW5uYM3UIf3jl6wANaM22fVw4YWBAjsvtZw/nvgtGc4dfN0yjIOXFE7T8mhOSogNqkYEmkDISo47GP8ERxRBA+xvcAb1sQEWWKRT+KDOaztEyo/l8kpKqJrbsa2BXZRMfWpinfnPmUHxS0uzxApr2s+iycUzO7Rd0rVWb97FtX4NltNjKQ9xV+1eXvvXsYTS6vaam8fo6rVnZkz+ZwKbyBsss/cevnMBf3t9hViswzvvV6bn0i3OybV8DXp/WbdOofGyzCdrbfby5oTxAIN13wWguGJdpCsfeRqhK3Yf6N1AoejvKjNYDscoYf+InEwP6txgJi3Om5vLomoO9WwYkBEdSGQ5mq8KYXbmr9s/zMKLeOm6WGYlOtlQ0WF6/ttnDjsqmgAKXzkgb+xs8PPFRiWnWe/jicZzk5/CPiLBxwbhM8tPi2FfvZkCik1EZib1W0ED3gxIUiuMNJWy+B4eqcdYRq4zxr/fUWm7kRiK6kRMzfeQAy2sa5VYOJ1/jUPklC2eNZ0R6Ai5dw/JJTcsyfDoV9e6gc/ybjj32oSYsLzoxE5tNBH1fYzKTGDewbzjPVWSZQtE5StgcJodT18oqY9yqZL8RBmzgbvNR1eRmSFqcuWFXN7fisNtwebxkJDoP667a/268ot7Nmm37eO6nJ1Hf0kZGopMR6Ql8sL0y4LqG/+Wms4ax8P3teNql6eiPddgZ3C82oHWysY7joQ7Y4QYlKBTHA8pno9Ndn83h2OitzslJjeams4YFlDyxakm8ct4UBqXGsmrzPh5atdXM0zHOefTHJzI4NY6qpsML9a1pbqW8zh2wjqVXFTDnpeB2zsvmTGZURmJQ2O/CWeOZPiKdPbWuoLt75dNQKPomymcTZg6nrpWVXf+WGSOYPiKdMZmJVDa66R/n5NvqJkvtwDDDXXtablBhyrn/+JqV86YEBREcCuNuHOAnz3wZcM2i0pqQZV8iImwhzUZWd/eqDphCcXyjhM1hcjh1rTqz6/tv0IP7xVp2fzQ27FCVib/Pxt0dE5/xGbtjNlJ1wBSK45veG/5zjDnculbGBj05tx+5/eMsTV2hjvGv+dWd2l9dwaqe2Dsbynno4rFHpHaXqgOmUBzfKJ+NzuHk2RxuSZTDxXCyW/lsvq+zPZQDP5QP5nDnOJrfl0KhCD9d9dkoYaNztJI6Q9HVMGp/h36kHo12pNoJ+wuDAQlOvD6obFTtihUKRWhUgEAvojthweEMrzWubUS99eUwZYVCcXRRPpseQE9rD9zT1qNQKHo/fVbYCCFmCCG2CyGKhRC3Huv1dEZnYcFqPQqFoi/QJ4WNEMIOPAacDYwErhBCjDy2qwpNdztLHm/rUSgUvZ8+KWyASUCxlLJESukBXgHOP8ZrCklPCwvuaetRKBS9n74aIJAJ7PV7XQac3PEgIcQcYA5Adnb20VmZBT2tiGNPW49Coej99FVh0yWklEuBpaCFPh/LtfS0Io49bT0KhaJ301fNaOXAQL/XWfqYQqFQKI4BfVXYfAXkCyEGCyEcwOXA28d4TQqFQnHc0ifNaFLKdiHEXOBfgB14Vkq5+RgvS6FQKI5b+qSwAZBSrgRWHut1KBQKhaLvmtEUCoVC0YNQhTh1hBBVQOmxXsdh0A84cKwXcZj01rX31nVD7117b1039N61d3XdOVLK/oc6SAmbXo4QoqgrFVd7Ir117b113dB7195b1w29d+1Het3KjKZQKBSKsKOEjUKhUCjCjhI2vZ+lx3oB34Peuvbeum7ovWvvreuG3rv2I7pu5bNRKBQKRdhRmo1CoVAowo4SNgqFQqEIO0rY9ECEEM8KISqFEN/4jaUIId4XQuzU/ybr40IIsUTvSLpRCDHB75yr9eN3CiGuPgrrHiiE+FAIsUUIsVkIMb83rF0I4RRCfCmE2KCv+x59fLAQ4gt9fcv0OnsIIaL018X6+4P8rnWbPr5dCPHDcK67w2ewCyG+FkKs6E1rF0LsFkJsEkKsF0IU6WM9+veiz5ckhPinEGKbEGKrEOKUXrLuYfp3bTwahBA3HpW1SynVo4c9gKnABOAbv7GHgVv157cCD+nPzwHeBQQwGfhCH08BSvS/yfrz5DCvOwOYoD+PB3agdUrt0WvX54/Tn0cCX+jrWQ5cro8/CfxKf/5r4En9+eXAMv35SGADEAUMBnYB9qP0m7kJ+AewQn/dK9YO7Ab6dRjr0b8Xfc4XgOv05w4gqTesu8NnsAP7gJyjsfaj8qHU47B+CIMIFDbbgQz9eQawXX/+N+CKjscBVwB/8xsPOO4ofYa3gLN609qBGGAdWrO9A0CEPn4K8C/9+b+AU/TnEfpxArgNuM3vWuZxYV5zFrAamAas0NfSW9a+m2Bh06N/L0Ai8C16gFVvWbfF55gO/OdorV2Z0XoP6VLKCv35PiBdf27VlTSzk/Gjgm6eORFNS+jxa9fNUOuBSuB9tDv7Oillu8UazPXp79cDqcdi3Tp/AX4P+PTXqfSetUvgPSHEWqF1zoWe/3sZDFQBz+mmy6eFELG9YN0duRx4WX8e9rUrYdMLkdqtRI+NWRdCxAGvATdKKRv83+upa5dSeqWU49G0hEnA8GO7oq4hhJgJVEop1x7rtRwmp0kpJwBnA9cLIab6v9lDfy8RaGbuJ6SUJwLNaKYnkx66bhPdh3ce8GrH98K1diVseg/7hRAZAPrfSn08VFfSY9KtVAgRiSZo/i6lfF0f7hVrB5BS1gEfopmekoQQRhsO/zWY69PfTwSqOTbr/h/gPCHEbuAVNFPa4l6ydqSU5frfSuANNEHf038vZUCZlPIL/fU/0YRPT1+3P2cD66SU+/XXYV+7Eja9h7cBI+LjajR/iDE+W48amQzU6+rwv4DpQohkPbJkuj4WNoQQAngG2CqlXNhb1i6E6C+ESNKfR6P5mbaiCZ1LQqzb+DyXAGv0u8G3gcv1iK/BQD7wZbjWDSClvE1KmSWlHIRmFlkjpbyyN6xdCBErhIg3nqP9O39DD/+9SCn3AXuFEMP0oUJgS09fdweu4KAJzVhjeNd+tJxR6tEtx93LQAXQhnYXdS2aXX01sBP4AEjRjxXAY2g+hk1Agd91fgYU649rjsK6T0NTvzcC6/XHOT197cBY4Gt93d8Ad+njuWgbbjGauSFKH3fqr4v193P9rvUH/fNsB84+yr+b0zkYjdbj166vcYP+2Az8QR/v0b8Xfb7xQJH+m3kTLSKrx69bnzMWTZtN9BsL+9pVuRqFQqFQhB1lRlMoFApF2FHCRqFQKBRhRwkbhUKhUIQdJWwUCoVCEXaUsFEoFApF2FHCRqEIA0KIVL/KuvuEEOV+rx0djr1RCBHThWt+JIQosBifqZdN2SC0itu/0Mf/2GHeB4/cJ1QoukfEoQ9RKBTdRUpZjZaLgRDij0CTlPKREIffCPwv4OruPHrFhqXAJCllmRAiCq2Iq8GiTuZVKI4aSrNRKI4SQohCXQPZJLSeRVFCiHnACcCHQogP9eOeEEIUCb/eOp0Qj3bTWA0gpWyVUm4P6wdRKA4DJWwUiqODE3geuExKOQZNQPxKSrkE+A44Q0p5hn7sH6SUBWiVDX4ghBgb6qJSyhq0kiKlQoiXhRBXCiH8/1//xs+MdtSauSkUHVHCRqE4OtiBb6WUO/TXL6A1ybNilhBiHVoJnVFojc1CIqW8Dq0+15fAzcCzfm8vklKO1x9Hq+6WQhGE8tkoFD0IvQjmzcBJUspaIcTzaFpRp0gpNwGbhBAvoTX2+mk416lQdBel2SgURwcvMEgIkae/vgr4t/68Ec33ApCA1h+lXgiRjlYKPiRCiDghxOl+Q+OB0iOzZIXiyKE0G4Xi6OAGrgFe1fvIfAU8qb+3FFglhPhOSnmGEOJrYBtaJ8T/HOK6Avi9EOJvQAuaoPppGNavUHwvVNVnhUKhUIQdZUZTKBQKRdhRwkahUCgUYUcJG4VCoVCEHSVsFAqFQhF2lLBRKBQKRdhRwkahUCgUYUcJG4VCoVCEnf8P4QMk4EmbaMsAAAAASUVORK5CYII=\n",
+      "text/plain": [
+       "<Figure size 432x288 with 1 Axes>"
+      ]
+     },
+     "metadata": {
+      "needs_background": "light"
+     },
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "# Adding total sqfootage feature \n",
+    "X_train['Total SF'] = X_train['Total Bsmt SF'] + X_train['1st Flr SF'] + X_train['2nd Flr SF']\n",
+    "X_test['Total SF'] = X_test['Total Bsmt SF'] + X_test['1st Flr SF'] + X_test['2nd Flr SF']\n",
+    "\n",
+    "sns.scatterplot(x=X_train['Total SF'], y=y_train)\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Encoding of categorical features \n",
+    "\n",
+    "In sklearn, all machine learning algorithms assume that the categorical features are represented as numbers. This transformation can be done in many ways. Among the most popular is probably [one-hot-encoding](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html#sklearn.preprocessing.OneHotEncoder) or [label encoding](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html#sklearn.preprocessing.LabelEncoder). If you are interested in reading more about other, not so common encoding possibilities, check out the [category_encoder package](https://contrib.scikit-learn.org/category_encoders/). "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Task: Please encode your categorical features as numbers. Also think about numeric variables that are actually categorical.\n",
+    "Use the cells below to for your code"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 18,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# transforming some numerical features that are actually categorical features\n",
+    "for column in ['MS SubClass', 'Overall Cond', 'Yr Sold', 'Mo Sold']:    \n",
+    "    X_train[column] = X_train[column].apply(str)\n",
+    "    X_test[column] = X_test[column].apply(str)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 19,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# encode categorical features with target encoding\n",
+    "categorical_columns = X_train.select_dtypes('object').columns.to_list()\n",
+    "encoder = TargetEncoder(cols=categorical_columns)\n",
+    "\n",
+    "X_train = encoder.fit_transform(X=X_train, y=y_train)\n",
+    "X_test = encoder.transform(X=X_test)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Perform feature selection / extraction\n",
+    "Usually, one would also perform feature selection or feature extraction. This will most likely increase the model performance if done well. However, since we are still in the explanatory phase, we will skip it. If you later want to interpret your model and its result, often feature selection is useful. You can read more about feature selection [here](https://scikit-learn.org/stable/modules/feature_selection.html).   "
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Modelling"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Task: Please train at least two models.\n",
+    "An easy way to get started is to use models from [sklearn](https://scikit-learn.org/stable/index.html).\n",
+    "Use the cells below to for your code. "
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 20,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "C:\\Users\\di872\\Anaconda3\\envs\\bda\\lib\\site-packages\\sklearn\\linear_model\\_coordinate_descent.py:648: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations, check the scale of the features or consider increasing regularisation. Duality gap: 6.072e+11, tolerance: 1.332e+09\n",
+      "  model = cd_fast.enet_coordinate_descent(\n"
+     ]
+    },
+    {
+     "data": {
+      "text/html": [
+       "<style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: \"â–¸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"â–¾\";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>Pipeline(steps=[(&#x27;robustscaler&#x27;, RobustScaler()), (&#x27;lasso&#x27;, Lasso())])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" ><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">Pipeline</label><div class=\"sk-toggleable__content\"><pre>Pipeline(steps=[(&#x27;robustscaler&#x27;, RobustScaler()), (&#x27;lasso&#x27;, Lasso())])</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-2\" type=\"checkbox\" ><label for=\"sk-estimator-id-2\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">RobustScaler</label><div class=\"sk-toggleable__content\"><pre>RobustScaler()</pre></div></div></div><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-3\" type=\"checkbox\" ><label for=\"sk-estimator-id-3\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">Lasso</label><div class=\"sk-toggleable__content\"><pre>Lasso()</pre></div></div></div></div></div></div></div>"
+      ],
+      "text/plain": [
+       "Pipeline(steps=[('robustscaler', RobustScaler()), ('lasso', Lasso())])"
+      ]
+     },
+     "execution_count": 20,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "# lasso regression\n",
+    "lasso = make_pipeline(RobustScaler(), Lasso())\n",
+    "lasso.fit(X_train, y_train)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 21,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<style>#sk-container-id-2 {color: black;background-color: white;}#sk-container-id-2 pre{padding: 0;}#sk-container-id-2 div.sk-toggleable {background-color: white;}#sk-container-id-2 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-2 label.sk-toggleable__label-arrow:before {content: \"â–¸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-2 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-2 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-2 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"â–¾\";}#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-2 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-2 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-2 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-2 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-2 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-2 div.sk-item {position: relative;z-index: 1;}#sk-container-id-2 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-2 div.sk-item::before, #sk-container-id-2 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-2 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-2 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-2 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-2 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-2 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-2 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-2 div.sk-label-container {text-align: center;}#sk-container-id-2 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-2 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-2\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>RandomForestRegressor()</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-4\" type=\"checkbox\" checked><label for=\"sk-estimator-id-4\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">RandomForestRegressor</label><div class=\"sk-toggleable__content\"><pre>RandomForestRegressor()</pre></div></div></div></div></div>"
+      ],
+      "text/plain": [
+       "RandomForestRegressor()"
+      ]
+     },
+     "execution_count": 21,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "# random forest\n",
+    "rf = RandomForestRegressor()\n",
+    "rf.fit(X_train, y_train)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Evaluation"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Task: Please evaluate your models on the given error metric and use at least one naive benchmark\n",
+    "Use the cells below to for your code"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 22,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "85660.7584852929"
+      ]
+     },
+     "execution_count": 22,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "# naive benchmark\n",
+    "y_pred_mean = np.ones_like(y_test) * y_train.mean()\n",
+    "mean_squared_error(y_pred_mean, y_test, squared=False)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 23,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "26480.37517310123"
+      ]
+     },
+     "execution_count": 23,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "y_pred_rf = rf.predict(X_test)\n",
+    "mean_squared_error(y_pred_rf, y_test, squared=False)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 24,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/plain": [
+       "29527.99647561015"
+      ]
+     },
+     "execution_count": 24,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "y_pred_lasso = lasso.predict(X_test)\n",
+    "mean_squared_error(y_pred_lasso, y_test, squared=False)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Task: Perform hyperparameter tuning with cross validation on one of your models. Do the results improve?\n",
+    "Use the cells below to for your code"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "Fitting 5 folds for each of 16 candidates, totalling 80 fits\n",
+      "[CV] END ........................max_depth=3, n_estimators=5; total time=   0.7s\n",
+      "[CV] END ........................max_depth=3, n_estimators=5; total time=   0.9s\n",
+      "[CV] END ........................max_depth=3, n_estimators=5; total time=   0.6s\n",
+      "[CV] END ........................max_depth=3, n_estimators=5; total time=   0.6s\n",
+      "[CV] END ........................max_depth=3, n_estimators=5; total time=   0.6s\n",
+      "[CV] END .......................max_depth=3, n_estimators=10; total time=   1.2s\n",
+      "[CV] END .......................max_depth=3, n_estimators=10; total time=   1.3s\n",
+      "[CV] END .......................max_depth=3, n_estimators=10; total time=   1.4s\n",
+      "[CV] END .......................max_depth=3, n_estimators=10; total time=   1.2s\n",
+      "[CV] END .......................max_depth=3, n_estimators=10; total time=   1.2s\n",
+      "[CV] END .......................max_depth=3, n_estimators=15; total time=   2.6s\n",
+      "[CV] END .......................max_depth=3, n_estimators=15; total time=   1.7s\n",
+      "[CV] END .......................max_depth=3, n_estimators=15; total time=   1.7s\n",
+      "[CV] END .......................max_depth=3, n_estimators=15; total time=   2.1s\n",
+      "[CV] END .......................max_depth=3, n_estimators=15; total time=   1.7s\n",
+      "[CV] END .......................max_depth=3, n_estimators=20; total time=   2.0s\n",
+      "[CV] END .......................max_depth=3, n_estimators=20; total time=   1.8s\n",
+      "[CV] END .......................max_depth=3, n_estimators=20; total time=   2.0s\n",
+      "[CV] END .......................max_depth=3, n_estimators=20; total time=   1.8s\n",
+      "[CV] END .......................max_depth=3, n_estimators=20; total time=   2.1s\n",
+      "[CV] END ........................max_depth=5, n_estimators=5; total time=   0.5s\n",
+      "[CV] END ........................max_depth=5, n_estimators=5; total time=   0.6s\n",
+      "[CV] END ........................max_depth=5, n_estimators=5; total time=   0.4s\n",
+      "[CV] END ........................max_depth=5, n_estimators=5; total time=   0.6s\n",
+      "[CV] END ........................max_depth=5, n_estimators=5; total time=   0.5s\n",
+      "[CV] END .......................max_depth=5, n_estimators=10; total time=   1.3s\n",
+      "[CV] END .......................max_depth=5, n_estimators=10; total time=   1.4s\n",
+      "[CV] END .......................max_depth=5, n_estimators=10; total time=   1.2s\n",
+      "[CV] END .......................max_depth=5, n_estimators=10; total time=   1.2s\n",
+      "[CV] END .......................max_depth=5, n_estimators=10; total time=   1.1s\n",
+      "[CV] END .......................max_depth=5, n_estimators=15; total time=   1.6s\n",
+      "[CV] END .......................max_depth=5, n_estimators=15; total time=   2.1s\n",
+      "[CV] END .......................max_depth=5, n_estimators=15; total time=   1.9s\n",
+      "[CV] END .......................max_depth=5, n_estimators=15; total time=   1.7s\n",
+      "[CV] END .......................max_depth=5, n_estimators=15; total time=   1.6s\n",
+      "[CV] END .......................max_depth=5, n_estimators=20; total time=   3.1s\n",
+      "[CV] END .......................max_depth=5, n_estimators=20; total time=   2.7s\n",
+      "[CV] END .......................max_depth=5, n_estimators=20; total time=   2.1s\n",
+      "[CV] END .......................max_depth=5, n_estimators=20; total time=   2.3s\n",
+      "[CV] END .......................max_depth=5, n_estimators=20; total time=   2.4s\n",
+      "[CV] END .......................max_depth=10, n_estimators=5; total time=   0.9s\n",
+      "[CV] END .......................max_depth=10, n_estimators=5; total time=   0.9s\n",
+      "[CV] END .......................max_depth=10, n_estimators=5; total time=   0.9s\n",
+      "[CV] END .......................max_depth=10, n_estimators=5; total time=   0.9s\n",
+      "[CV] END .......................max_depth=10, n_estimators=5; total time=   0.8s\n",
+      "[CV] END ......................max_depth=10, n_estimators=10; total time=   2.5s\n",
+      "[CV] END ......................max_depth=10, n_estimators=10; total time=   2.1s\n",
+      "[CV] END ......................max_depth=10, n_estimators=10; total time=   2.2s\n",
+      "[CV] END ......................max_depth=10, n_estimators=10; total time=   1.8s\n",
+      "[CV] END ......................max_depth=10, n_estimators=10; total time=   2.8s\n",
+      "[CV] END ......................max_depth=10, n_estimators=15; total time=   3.0s\n",
+      "[CV] END ......................max_depth=10, n_estimators=15; total time=   3.2s\n",
+      "[CV] END ......................max_depth=10, n_estimators=15; total time=   4.4s\n",
+      "[CV] END ......................max_depth=10, n_estimators=15; total time=   3.4s\n",
+      "[CV] END ......................max_depth=10, n_estimators=15; total time=   3.4s\n",
+      "[CV] END ......................max_depth=10, n_estimators=20; total time=   4.1s\n",
+      "[CV] END ......................max_depth=10, n_estimators=20; total time=   3.8s\n",
+      "[CV] END ......................max_depth=10, n_estimators=20; total time=   2.6s\n",
+      "[CV] END ......................max_depth=10, n_estimators=20; total time=   2.4s\n",
+      "[CV] END ......................max_depth=10, n_estimators=20; total time=   2.2s\n",
+      "[CV] END .......................max_depth=15, n_estimators=5; total time=   0.5s\n",
+      "[CV] END .......................max_depth=15, n_estimators=5; total time=   0.6s\n",
+      "[CV] END .......................max_depth=15, n_estimators=5; total time=   0.8s\n",
+      "[CV] END .......................max_depth=15, n_estimators=5; total time=   0.6s\n",
+      "[CV] END .......................max_depth=15, n_estimators=5; total time=   0.6s\n",
+      "[CV] END ......................max_depth=15, n_estimators=10; total time=   1.1s\n",
+      "[CV] END ......................max_depth=15, n_estimators=10; total time=   1.0s\n",
+      "[CV] END ......................max_depth=15, n_estimators=10; total time=   1.1s\n",
+      "[CV] END ......................max_depth=15, n_estimators=10; total time=   1.4s\n",
+      "[CV] END ......................max_depth=15, n_estimators=10; total time=   1.2s\n",
+      "[CV] END ......................max_depth=15, n_estimators=15; total time=   2.4s\n",
+      "[CV] END ......................max_depth=15, n_estimators=15; total time=   2.6s\n",
+      "[CV] END ......................max_depth=15, n_estimators=15; total time=   3.4s\n",
+      "[CV] END ......................max_depth=15, n_estimators=15; total time=   2.6s\n",
+      "[CV] END ......................max_depth=15, n_estimators=15; total time=   2.5s\n"
+     ]
+    }
+   ],
+   "source": [
+    "params = {\n",
+    "    'n_estimators': [5, 10, 15, 20],\n",
+    "    'max_depth': [3, 5, 10, 15]\n",
+    "}\n",
+    "\n",
+    "scorer = make_scorer(mean_squared_error, squared=False, greater_is_better=False)\n",
+    "\n",
+    "grid_search_model = GridSearchCV(\n",
+    "    estimator=RandomForestRegressor(),\n",
+    "    param_grid=params,\n",
+    "    scoring=scorer,\n",
+    "    verbose=2\n",
+    ")\n",
+    "\n",
+    "grid_search_model.fit(X_train, y_train)\n",
+    "\n",
+    "print('Best score:', grid_search_model.best_score_)\n",
+    "print('Best params:', grid_search_model.best_params_)\n",
+    "\n",
+    "estimator = grid_search_model.best_estimator_.fit(X_train, y_train)\n",
+    "y_pred_tuned = estimator.predict(X_test)"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The score from the random forest has improved significantly, highlighting the importance of hyperparameter tuning."
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Task: Please evaluate the residuals of your models. Do you consistently under- or overestimate the house prices?\n",
+    "Use the cells below to for your code"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "# residual analysis\n",
+    "for y_pred, title in zip([y_pred_rf, y_pred_lasso, y_pred_tuned], ['random forest', 'lasso', 'tuned random forest']):\n",
+    "    \n",
+    "    residuals = y_pred - y_test\n",
+    "\n",
+    "    sns.distplot(residuals , fit=stats.norm)\n",
+    "    plt.title(f'Residual analysis of {title}')\n",
+    "    plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "The distribution of the residuals follow a normal distribution and hence we do not consistently under- or overestimate the house prices"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Next Steps"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "#### Task: How can you improve our existing model?\n",
+    "Use the cell below to for your answer"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "To improve our model, we could do the following steps:\n",
+    "\n",
+    "- create better features, e.g. by having a closer look at the data\n",
+    "- remove irrelevant features, e.g. by doing unsupervised feature extraction\n",
+    "- create an ensemble to improve predictions\n",
+    "- hyperparameter tuning\n",
+    "- ..."
+   ]
+  }
+ ],
+ "metadata": {
+  "interpreter": {
+   "hash": "2258dfa08c46b77d2bc2b7524b68bff9e582ce15fe6c25ecebf58bb0c8a8f397"
+  },
+  "kernelspec": {
+   "display_name": "Python 3",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.8.13"
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
-- 
GitLab